دورية أكاديمية

Meso-scale modelling and radiative transfer simulations of a snowfall event over France at microwaves for passive and active modes and evaluation with satellite observations.

التفاصيل البيبلوغرافية
العنوان: Meso-scale modelling and radiative transfer simulations of a snowfall event over France at microwaves for passive and active modes and evaluation with satellite observations.
المؤلفون: Galligani, V. S., Prigent, C., Defer, E., Jimenez, C., Eriksson, P., Pinty, J.-P., Chaboureau, J.-P.
المصدر: Atmospheric Measurement Techniques; 2015, Vol. 8 Issue 3, p1605-1616, 12p
مصطلحات موضوعية: RADIATIVE transfer, SNOW, ELECTROMAGNETIC wave propagation, RADIATIVE transfer equation
مصطلحات جغرافية: FRANCE
مستخلص: Microwave passive and active radiative transfer simulations are performed with the Atmospheric Radiative Transfer Simulator (ARTS) for a mid-latitude snowfall event, using outputs from the Meso-NH mesoscale cloud model. The results are compared to the corresponding microwave observations available from MHS and CloudSat. The spatial structures of the simulated and observed brightness temperatures show an overall agreement since the large-scale dynamical structure of the cloud system is reasonably well captured by Meso-NH. However, with the initial assumptions on the single-scattering properties of snow, there is an obvious underestimation of the strong scattering observed in regions with large frozen hydrometeor quantities. A sensitivity analysis of both active and passive simulations to the microphysical parametrizations is conducted. Simultaneous analysis of passive and active calculations provides strong constraints on the assumptions made to simulate the observations. Good agreements are obtained with both MHS and CloudSat observations when the single-scattering properties are calculated using the "soft sphere" parametrization from Liu (2004), along with the Meso-NH outputs. This is an important step toward building a robust data set of simulated measurements to train a statistically based retrieval scheme. [ABSTRACT FROM AUTHOR]
Copyright of Atmospheric Measurement Techniques is the property of Copernicus Gesellschaft mbH and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:18671381
DOI:10.5194/amt-8-1605-2015