يعرض 1 - 10 نتائج من 29 نتيجة بحث عن '"Mulas A"', وقت الاستعلام: 1.42s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية

    المصدر: Arbor; Vol. 199 No. 810 (2023); a722 ; Arbor; Vol. 199 Núm. 810 (2023); a722 ; 1988-303X ; 0210-1963 ; 10.3989/arbor.2023.i810

    مصطلحات موضوعية: Música, emoción, vibro táctil, Music, emotion, vibrotactile

    وصف الملف: text/html; application/pdf; text/xml; audio/mpeg; audio/x-wav

    العلاقة: https://arbor.revistas.csic.es/index.php/arbor/article/view/2575/4012Test; https://arbor.revistas.csic.es/index.php/arbor/article/view/2575/4013Test; https://arbor.revistas.csic.es/index.php/arbor/article/view/2575/4014Test; https://arbor.revistas.csic.es/index.php/arbor/article/view/2575/4015Test; https://arbor.revistas.csic.es/index.php/arbor/article/view/2575/4016Test; https://arbor.revistas.csic.es/index.php/arbor/article/view/2575/4017Test; https://arbor.revistas.csic.es/index.php/arbor/article/view/2575/4018Test; https://arbor.revistas.csic.es/index.php/arbor/article/view/2575/4019Test; https://arbor.revistas.csic.es/index.php/arbor/article/view/2575/4020Test; https://arbor.revistas.csic.es/index.php/arbor/article/view/2575/4021Test; https://arbor.revistas.csic.es/index.php/arbor/article/view/2575/4042Test; https://arbor.revistas.csic.es/index.php/arbor/article/view/2575/4023Test; https://arbor.revistas.csic.es/index.php/arbor/article/view/2575/4024Test; https://arbor.revistas.csic.es/index.php/arbor/article/view/2575/4026Test; https://arbor.revistas.csic.es/index.php/arbor/article/view/2575/4027Test; https://arbor.revistas.csic.es/index.php/arbor/article/view/2575/4028Test; https://arbor.revistas.csic.es/index.php/arbor/article/view/2575/4030Test; Abad, Federico (2006). ¿Do re qué? Guía práctica de iniciación al lenguaje musical. Córdoba: Berenice.; Alves Araujo, Felipe; Lima Brasil, Fabricio; Candido Lima Santos, Allison; de Sousa Batista Junior, Lucenildo; Pereira Fonseca Dutra, Savio y Coelho Freire Batista, Carlos Eduardo (2017). Auris system: Providing vibrotactile feedback for hearing impaired population. BioMed Research International, 2017:2181380.; Argstatter, Heike (2016). Perception of basic emotions in music: Culture-specific or multicultural? Psychology of Music, 44(4), pp. 674-690.; Baijal, Anant; Kim, Julia; Branje, Carmen; Russo, Frank y Fels, Deborah (2012). Composing vibrotactile music: A multi-sensory experience with the emoti-chair. En Karon MacLean y Marcia K. O’Malley (eds.). The Haptics Symposium 2012. Vancouver, BC, Canada. March 4-7, 2012. Proceedings. Nueva Jersey: IEEE, pp. 509-515.; Balkwill, Laura-Lee; Thompson, William y Matsunaga, Rie (2004). Recognition of emotion in Japanese, Western, and Hindustani music by Japanese listeners. Japanese Psychological Research, 46 (4), pp. 337-349.; Bidelman, Gavin y Krishnan, Ananthanarayan (2009). Neural correlates of consonance, dissonance, and the hierarchy of musical pitch in the human brainstem. The Journal of Neuroscience, 29 (42):13165-71.; Birnbaum, David M. (2007). Musical vibrotactile feedback [Tesis Doctoral inédita]. Mc Gill University: Montreal. Disponible en: https://escholarship.mcgill.ca/concern/theses/xd07gx894Test; Bowling, Daniel L. y Purves, Dale (2015). A biological rationale for musical consonance. Proceedings of the National Academy of Sciences, 112 (36) 11155-11160 201505768-.; Bresin, Roberto y Friberg, Anders (2011). Emotion rendering in music: Range and characteristic values of seven musical variables. Cortex, 47(9), pp. 1068-1081.; Brewster, Stephen A. y Brown, Lorna M. (2004). Non-visual information display using tactons. En Elizabeth Dykstra-Erickson y Manfred Tscheligi. CHI’04 extended abstracts on Human factors in computing systems, Vienna Austria April 24 - 29, 2004. Nueva York: Association for Computing Machinery, pp. 787-788.; Brown, Lorna M.; Brewster, Stephen A. y Purchase, Helen C. (2005). A first investigation into the effectiveness of tactons. En First joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. Pisa, Italy, March 18-20, 2005. Los Alamitos: IEEE Computer Society, pp. 167-176.; Caetano, Gina y Jousmäki, Veiklo (2006). Evidence of vibrotactile input to human auditory cortex. NeuroImage, 29(1), pp. 15-28.; Cai, Yuexin; Zhao, Fei y Zheng, Yiqing (2013). Mechanisms of music perception and its changes in hearing impaired people. Hearing, Balance and Communication, 11(4), pp. 168-175.; Cavdir, Doga (2022). Touch, Listen, (Re)Act: Co-designing Vibrotactile Wearable Instruments for Deaf and Hard of Hearing. En: Proceedings of the International Conference on New Interfaces for Musical Expression. NIME 2022.; Celeghin, Alessia; Diano, Matteo; Bagnis, Arianna; Viola, Marco y Tamietto, Marco (2017). Basic emotions in human neuroscience: neuroimaging and beyond. Frontiers in Psychology, 8, 1432.; Cheung, Vincent K.; Meyer, Lars; Friederici, Angela D. y Koelsch, Stefan (2018). The right inferior frontal gyrus processes nested non-local dependencies in music. Scientific reports, 8(1), pp. 1-12.; Cheung, Vincent K.; Harrison, Peter M.; Meyer, Lars; Pearce, Marcus T.; Haynes, John-Dylan y Koelsch, Stefan (2019). Uncertainty and surprise jointly predict musical pleasure and amygdala, hippocampus, and auditory cortex activity. Current Biology, 29 (23), pp. 4084-4092.; Convento, Silvia; Wegner-Clemens, Kira A. y Yau, Jeffrey M. (2019). Reciprocal interactions between audition and touch in flutter frequency perception. Multisensory Research, 32(1), pp. 67-85.; Crommett, Lexi E.; Pérez-Bellido, Alexis y Yau, Je M. (2017). Auditory adaptation improves tactile frequency perception. Journal of Neurophysiology, 117 (3), pp. 1352-1362.; Darrow, Alice-Ann (2006). The role of music in deaf culture: Deaf students’ perception of emotion in music. Journal of music therapy, 43(1), pp. 2-15.; De Guglielmo, Nicolas; Lobo, Cesar; Moriarty, Edward J.; Ma, Gloria y Dow, Douglas E. (2021). Haptic Vibrations for Hearing Impaired to Experience Aspects of Live Music. En Tadashi Nakano (ed.): Bio-Inspired Information and Communications Technologies: 13th EAI International Conference, BICT 2021, Virtual Event, September 1-2, 2021, Proceedings 13. Springer International Publishing, pp. 71-86.; Di Stefano, Nicola; Vuust, Peter y Brattico, Elvira (2022). Consonance and dissonance perception. A critical review of the historical sources, multidisciplinary findings, and main hypotheses. Physics of Life Reviews, 43, pp. 273-304.; Eerola, Tuomasy y Vuoskoski, Jonna K. (2011). A comparison of the discrete and dimensional models of emotion in music. Psychology of Music, 39 (1), pp. 18-49.; Eerola, Tuomas; Friberg, Anders y Bresin, Roberto (2013). Emotional expression in music: Contribution, linearity, and additivity of primary musical cues. Frontiers in Psychology, 4, article 487.; Eerola, Tuomas; Vuoskoski, Jonna K.; Peltola, Henan-Riikka; Putkinen, Vesay y Schäfer, Katharina (2018). An integrative review of the enjoyment of sadness associated with music. Physics of Life Reviews, 25, pp. 100-121.; Ekman, Paul (1992). Are there basic emotions? Psychological Review, 99(3), pp. 550-553.; Fang, Yingjie; Ou, Jing; Bryan-Kinns, Nick; Kang, Qingchun; Zhang, Junshuai y Guo, Bing (2021). Using Vibrotactile Device in Music Therapy to Support Wellbeing for People with Alzheimer’s Disease. En Francisco Rebelo (ed.). Advances in Ergonomics in Design: Proceedings of the AHFE 2021 Virtual Conference on Ergonomics in Design, July 25-29, 2021, USA. Springer International Publishing, pp. 353-361.; Fery, Madeline; Bernard, Corentin; Thoret, Etienne; Kronland-Martinet, Richard y Ystad, Solvi (2021). Audio-tactile perception of roughness. En Keiji Hirata, Satoshi Tojo y Tetsuro Kitahara (eds.). Music in the IA Era. Proceedings of the 15th International Symposium on CMMR, Online, Nov. 15-19, 2021. Springer, pp. 245-250.; Fletcher, Mark D. (2021). Can haptic stimulation enhance music perception in hearing-impaired listeners? Frontiers in Neuroscience, 15, 723877.; Fontana, Federico; Camponogara, Ivan; Cesari, Paola; Vallicella, Matteo y Ruzzenente, Marco (2016). An exploration on whole-body and foot-based vibrotactile sensitivity to melodic consonance. En Rolf Großmann y Georg Hajdu (eds.). Proceedings of SMC 2016. 13th Sound & Music Computing Conference 31.8.2016-3.9.2016, Hamburg, Germany. Hamburg: Zentrum für Mikrotonale Musik und Multimediale Komposition (ZM4), pp. 143-150.; Fritz, Thomas; Jentschke, Sebastian; Gosselin, Nathalie; Sammler, Daniela; Peretz, Isabelle; Turner, Robert; Friederici, Angela y Koelsch, Stefan (2009). Universal recognition of three basic emotions in music. Current Biology, 19 (7), pp. 573-576.; Frühholz, Sascha; Trost, Wiebke y Kotz, Sonja A. (2016). The sound of emotions-Towards a unifying neural network perspective of affective sound processing. Neuroscience y Biobehavioral Reviews, 68, pp. 96-110.; Gabrielsson, Alf y Lindström, Erik (2010). The role of structure in the musical expression of emotions. En Patrik N. Juslin y John A. Sloboda (eds.). Handbook of Music and Emotion: Theory, Research, Applications. Oxford: Oxford University Press, 367-400.; Gold, Benjamin P.; Pearce, Marcus T.; Mas-Herrero, Ernest; Dagher, Alain y Zatorre, Robert J. (2019). Predictability and uncertainty in the pleasure of music: a reward for learning? Journal of Neuroscience, 39(47), pp. 9397-9409.; Gorzelańczyk Edward; Podlipniak, Piotr; Walecki, Piotr; Karpiński, Maciej y Tarnowska, Emilia (2017). Pitch Syntax Violations Are Linked to Greater Skin Conductance Changes, Relative to Timbral Violations - The Predictive Role of the Reward System in Perspective of Cortico-subcortical Loops. Frontiers in Psychology, 8, article 586.; Good, Arla; Reed, Maureen J. y Russo, Frank A. (2014). Compensatory plasticity in the deaf brain: Effects on perception of music. Brain sciences, 4 (4), pp. 560-574.; Gosselin, Nathalie; Peretz, Isabelle; Johnsen, Erica y Adolphs, Ralph (2007). Amygdala damage impairs emotion recognition from music. Neuropsychologia, 45(2), pp. 236-244.; Gu, Simeng; Wang, Fushun; Patel, Nithes P.; Bourgeois, James A. y Huang, Jason H. (2019). A model for basic emotions using observations of behavior in Drosophila. Frontiers in Psychology, 10, article 781.; Gu, Simeng; Wang, Fushun; Cao, Caiyun; Wu, Erxi; Tang, Yi-Yuan y Huang, Jason H. (2019). An integrative way for studying neural basis of basic emotions with fMRI. Frontiers in Neuroscience, 13, article 628.; Hailstone, Julia C.; Omar, Rohani; Henley, Susie M. D.; Frost, Chris; Kenward, Michael G. y Warren, Jason D. (2009). It’s not what you play, it’s how you play it: Timbre affects perception of emotion in music. Quarterly Journal of Experimental Psychology, 62(11), pp. 2141-2155.; Haynes, Alice C.; Lawry, Jonathan; Kent, Christophery y Rossiter, Jonathan (2021). Feel Music: Enriching our emotive experience of music through audio-tactile mappings. Multimodal Technologies and Interaction, 5 (6), 29.; Hopkins, Carl; Maté-Cid, Saúl; Fulford, Robert; Seiffert, Gary y Ginsborg, Jane (2016). Vibrotactile presentation of musical notes to the glabrous skin for adults with normal hearing or a hearing impairment: Thresholds, dynamic range and high-frequency perception. Plos One, 11(5), e0155807.; Hopkins, Carl; Maté-Cid, Saúl; Fulford, Robert; Seiffert, Gary y Ginsborg, Jane (2023). Perception and learning of relative pitch by musicians using the vibrotactile mode. Musicae Scientiae, 27(1), pp. 3-26.; Huron, David (2006). Sweet anticipation. Music and the psychology of expectation. Cambridge, Massachusetts: The MIT Press.; Huron, David (2008). A comparison of average pitch height and interval size in major- and minor-key themes: evidence consistent with affect-related pitch prosody. Empirical Musicology Review, 3 (2), pp. 59-63.; Huang, Juan; Gamble, Darik; Sarnlertsophon, Kristine; Wang, Xiaoqin y Hsiao, Steven (2012). Feeling music: Integration of auditory and tactile inputs in musical meter perception. PloS One, 7(10), e48496.; Jack, Rachael; Garrod, Oliver B. y Schyns, Philippe (2014). Dynamic facial expressions of emotion transmit an evolving hierarchy of signals over time. Current Biology, 24 (2), pp. 187-192.; Jack, Robert; McPherson, Andrew y Stockman, Tony (2015). Designing tactile musical devices with and for deaf users: a case study. En Renee Timmers et al. (eds.) Proceedings of the International Conference on the Multimodal Experience of Music. 23-25 March 2015. Sheffield, UK, pp. 23-25.; Jack, Rachel E.; Sun, Wei; Delis, Ioannis; Garrod, Oliver G. y Schyns, Philippe G. (2016). Four not six: Revealing culturally common facial expressions of emotion. Journal of Experimental Psychology: General, 145(6), 708.; Jones, Lynette A. y Lederman, Susan J. (2007). Human Hand Function. Oxford: Oxford University Press.; Jones, Lynette A. y Singhal, Anshul (2018). Perceptual dimensions of vibrotactile actuators. En Katherine J. Kuchenbecker, Gregory J. Gerling y Yon Visell (eds.). Proceedings of the IEEE Haptics Symposium 2018, 25-28 March 2018. San Francisco, USA. IEEE, pp. 307-312.; Juslin, Patrik N. y Lindström, Erik. (2010). Musical expression of emotions: Modelling listeners’ judgements of composed and performed features. Music Analysis, 29(1-3), pp. 334-364.; Juslin, Patrik N. (2000). Cue utilization in communication of emotion in music performance: Relating performance to perception. Journal of Experimental Psychology: Human Perception and Performance, 26(6), pp. 1797-1812.; Juslin, Patrik N. (2013a). From everyday emotions to aesthetic emotions: Towards a unified theory of musical emotions. Physics of life reviews, 10(3), pp. 235-266.; Juslin, Patrik N. (2013b). What does music express? Basic emotions and beyond. Frontiers in psychology, 4, article 596.; Kayser, Christoph; Petkov, Christopher I.; Augath, Mark y Logothetis, Nikos K. (2005). Integration of touch and sound in auditory cortex. Neuron, 48(2), pp. 373-384.; Koelsch, Stefen; Skouras, Stavros; Fritz, Thomas; Herrera, Perfecti; Bonhage, Corinna; Küssner, Mats B. y Jacobs, Arthur M. (2013). The roles of superficial amygdala and auditory cortex in music-evoked fear and joy. NeuroImage, 81, pp. 49-60.; Koelsch, Stefan (2014). Brain correlates of music-evoked emotions. Nature Reviews Neuroscience, 15(3), pp. 170-180.; Koelsch, Stefan y Skouras, Stavros (2014). Functional centrality of amygdala, striatum and hypothalamus in a “small-world” network underlying joy: An fMRI study with music. Human brain mapping, 35(7), pp. 3485-3498.; Koelsch, Stefan; Skouras, Stavros y Lohmann, Gabriele (2018). The auditory cortex hosts network nodes influential for emotion processing: An fMRI study on music-evoked fear and joy. PloS one, 13(1), e0190057.; Kosonen, Katri y Raisamo, Roope (2006). Rhythm perception through different modalities. En Peter Leškovský, Theresa Cooke, Marc Ernst y Matthias Harders (eds.). Proceedings of the EuroHaptics 2006, July 3-6, Paris, France. EuroHaptics Society, pp. 365-370.; Kragel, Philip y LaBar, Kevin (2016). Decoding the Nature of Emotion in the Brain. Trends in Cognitive Sciences, 20(6): pp. 444-455.; Lang, Peter y Bradley, Margaret (2010). Emotion and the motivational brain. Biological Psychology, 84(3):437-50.; Lang, Peter; Bradley, Margaret y Cuthbert, Bruce (1997). Motivated attention: Affect, activation, and action. En Peter J. Lang, Robert F. Simons y Marie. T. Balaban (ed.). Attention and orienting: Sensory and motivational processes. Nueva York: Taylor & Francis Group, pp. 97-135.; Lindquist, Kristeb; Wager, Tor; Kober, Hedy; Bliss-Moreau, Eliza y Barrett, Lisa (2012). The brain basis of emotion: A meta-analytic review. The Behavioural and Brain Sciences, 35(3), pp. 121-143.; Lonsdale, Adam y North, Adrian (2011) Why do we listen to Music? A Uses and Gratifications Analysis. British Journal of Psycholy, 102 (1), pp. 108-134.; Mariscal Rock. Redacción (12 de julio 2017). La “Plataforma Musical” Feel the Music! para personas con discapacidad auditiva llega al Garage Sound Festival. Mariscal Rock. Disponible en: https://mariskalrock.com/noticias/la-plataforma-musical-feel-the-music-para-personas-con-incapacidad-auditiva-llega-al-garage-sound-festivalTest/; McDermott, Josh y Oxenham, Andrew (2008). Music perception, pitch, and the auditory system. Current Opinion in Neurobiology, 18(4):452-63.; Menninghaus, Winfried; Wagner, Valentin; Wassiliwizky, Eugen; Schindler, Ines; Hanich, Julian; Jacobsen, Thomas y Koelsch, Stefan (2019) What are aesthetic emotions? Psychological Review, 126(2): pp. 171-195.; Merchel, Sebastian y Altinsoy, M.Ercan (2018). Auditory-Tactile Experience of Music. En Stefano Papetti y Charalampos Saitis (eds.). Musical Haptics. Springer Series on Touch and Haptic Systems. Springer. Cham.; Mohn, Christine; Argstatter, Heike y Wilker, Friedrich-Wilhelm (2011). Perception of six basic emotions in music. Psychology of Music, 39(4), pp. 503-517.; Montagu, Jeremy (2017). How music and instruments began: A brief overview of the origin and entire development of music, from its earliest stages. Frontiers in Sociology, 2, article 8.; Mosabbir, AbdullahA.; Janzen, Thenile B.; Al Shirawi, Maryam; Rotzinger, Susan; Kennedy, Sidney H.; Farzan, Faranak; Meltzer, Jed y Bartel, Lee (2022). Investigating the effects of auditory and vibrotactile rhythmic sensory stimulation on depression: an EEG Pilot Study. Cureus, 14 (2), e22557.; Ortony, Andrew (2022). Are all “basic emotions” emotions? A problem for the (basic) emotions construct. Perspectives on psychological science, 17(1), pp. 41-61.; Papetti, Stefano; Järveläinen, Hanna y Schiesser, Sebastien (2021). Interactive vibrotactile feedback enhances the perceived quality of a surface for musical expression and the playing experience. IEEE Transactions on Haptics, 14 (3), pp. 635-645.; Paquette, Sébastien; Peretz, Isabel y Belin, Pascal (2013). The “Musical emotional bursts”: A validated set of musical affect bursts to investigate auditory affective processing. Frontiers in Psychology, 4, article 509.; Pehrs, Corinna; Deserno, Lorenzo; Bakels, Jan-Hendrik et al. (2014). How music alters a kiss: Superior temporal gyrus controls fusiform-amygdalar effective connectivity. Social Cognitive and Affective Neuroscience, 9(11), pp. 1770-1778.; Peretz, Isabelle; Aubé, William y Armony, Jorge L. (2013). Toward a neurobiology of musical emotions. En Ekart Altenmüller, Sabine Schmidt y Elke Zimmermann (eds.): Evolution of Emotional Communication. From Sounds in Nonhuman Mammals to speech and Music in Man. Oxford: Oxford University Press, pp. 277-299.; Polo, Nuria (8 de marzo de 2019). Las voces femeninas y su investigación. Sottovoce. Espacio virtual de divulgación científica sobre la voz humana. Disponible en: https://sottovoce.hypotheses.org/1656Test (fecha de consulta: 31 de octubre de 2023).; Posner, Jonathan; Russell, James A. y Peterson, Bradley S. (2005). The circumplex model of affect: An integrative approach to affective neuroscience, cognitive development, and psychopathology. Development and Psychopathology, 17(3), pp. 715-734.; Rahman, Md SHoaubur; Barnes, Kelly Aanne; Crommett, Lexi E.; Tommerdahl, Mark y Yau, Jeffrey M. (2020). Auditory and tactile frequency representations are co-embedded in modality-defined cortical sensory systems. NeuroImage, 215, 116837.; Reybrouck, Mark; Vuust, Peter y Brattico, Elvira (2018). Brain connectivity networks and the aesthetic experience of music. Brain Sciences, 8(6), p. 107.; Remache-Vinueza, Byron et al. (2022). Mapping Monophonic MIDI Tracks to Vibrotactile Stimuli Using Tactile Illusions. En Charalampos Saitis, Ildar Farkhatdinov y Stefano Papetti (eds.). Haptic and Audio Interaction Design. HAID 2022. Lecture Notes in Computer Science, vol 13417. Springer.; Robinson, Jenefer (2020). Aesthetic emotions. The Monist, 103(2), pp. 205-222.; Rovan, Joseph y Hayward, Vinvcent (2000). Typology of tactile sounds and their synthesis in gesture-driven computer music performance. En M. Wanderley y Marc Battier (eds). Trends in gestural control of music. Paris: IRCAM, 297-320.; Russo, Frank A.; Ammirante, Paolo y Fels, Deborah I. (2012). Vibrotactile discrimination of musical timbre. Journal of Experimental Psychology: Human Perception and Performance, 38(4), pp. 822-826.; Sachs, Matthew; Ellis, Robert; Schlaug, Gottfried y Loui, Psyche (2016). Brain connectivity reflects human aesthetic responses to music. Social Cognitive and Affective Neuroscience, 11(6), pp. 884-891.; Saarimäki, Heini; Gotsopoulos, Athanasios; Jääskeläinen, Iiro P. et al. (2016). Discrete neural signatures of basic emotions. Cerebral cortex, 26(6), pp. 2563-2573.; Salimpoor, Valorie N.; Benovoy, Mitchel; Larcher, Kevin; Dagher, Alain y Zatorre, Robert J. (2011). Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nature Neuroscience, 14(2), pp. 257-262.; Salimpoor, Valorie N.; van den Bosch, Iris; Kovacevic, Natasa; McIntosh, Anthony Randal, Dagher, Alain y Zatorre Robert J. (2013). Interactions between the nucleus accumbens and auditory cortices predict music reward value. Science, 340 (6129), pp. 216-219.; Sachs, Matthew E.; Damasio, Antonio y Habibi, Assal (2015). The pleasures of sad music: a systematic review. Frontiers in human neuroscience, 9, article 404.; Schmitz, Anastasia; Holloway, Catherine y Cho, Youngjun (2020). Hearing through vibrations: Perception of musical emotions by profoundly deaf people. arXiv preprint arXiv:2012.13265.; Schürmann, Martin; Caetano, Gina; Hlushchuk, Yevhen; Jousmäki, Veikko y Hari, Riita (2006). Touch activates human auditory cortex. NeuroImage, 30 (4), pp. 1325-1331.; Senabre, Marc (28 de mayo 2018). Breve historia de los sistemas de afinación. El Rincón Musicológico. Un blog sobre Musicología Empírica en español. Disponible en: https://musicologiaempirica.wordpress.com/2018/05/28/breve-historia-de-los-sistemas-de-afinacionTest/; Shany, Ofir; Singer, Neomi; Gold, Benjamin Paul; Jacoby, Nori; Tarrasch, Ricardo; Hendler, Talma y Granot, Roni (2019). Surprise-related activation in the nucleus accumbens interacts with music-induced pleasantness. Social Cognitive and Affective Neuroscience, 14(4), pp. 459-470.; Sierra, Miguel C.; Brunskog, Jonas y Marozeau, Jeremy (2021). An audio-tactile artinstallation for hearing impaired people. En Prithvi Ravi Kantan, Razvan Paisa y Silvin Willemsen (eds.). Proceedings of the 2nd Nordic Sound and Music Conference. November 11th - 12th, 2021. Zenodo, pp. 127-132.; Šimić Goran; Tkalčić Mladenka; Vukić, Vana; Mulc, Damir; Španić, Ena; Šagud, Marina; Olucha-Bordonau, Francisco; Vukšić, Mario y Hof, Patrik R. (2021). Understanding Emotions: Origins and Roles of the Amygdala. Biomolecules, 11(6), p. 823.; Sun, Qirui; Li, Shugin; Yao, Zhihao; Feng, Yuan-Ling y Mi, Haipeng (2021). PalmBeat: A Kinesthetic Way to Feel Groove With Music. En François Boyer, Jean-Marc Seigneur, Amine Choukou, Redha Taiar (eds.). AH 2021: 12th Augmented Human International Conference. Geneva Switzerland, May 27-28, 2021. Nueva York: Association for Computing Machinery, pp. 1-8.; Teie, David (2016). A comparative analysis of the universal elements of music and the fetal environment. Frontiers in Psychology, 7, article 758.; Touroutoglou, Alexandra; Lindquist, Kristen A.; Dickerson, Bradford C. y Barrett, Lisa Feldman (2015). Intrinsic connectivity in the human brain does not reveal networks for ‘basic’emotions. Social cognitive and affective neuroscience, 10(9), pp. 1257-1265.; Trainor Laurel; Tsang, Christine y Cheung, Vivian (2002). Preference for sensory consonance in 2- and 4-month-old infants. Music Perception, 20 (2), pp. 187-194.; Tranchant, Pauline; Shiell, Martha M.; Giordano, Marcello; Nadeau, Alexis; Peretz, Isabelle y Zatorre, Robert J. (2017). Feeling the beat: Bouncing synchronization to vibrotactile music in hearing and early deaf people. Frontiers in Neuroscience, 11, p. 507.; Trivedi, Urvish; Alqasemi, Redwan y Dubey, Rajiv (2019). Wearable musical haptic sleeves for people with hearing impairment. En Fillia Makedon (ed.). Proceedings of the 12th ACM International Conference on PErvasive Technologies Related to Assistive Environments. Nueva York: Association for Computing Machinery, pp. 146-151.; Turchet, Luca; West, Travis y Wanderley, Marcelo M. (2021). Touching the audience: musical haptic wearables for augmented and participatory live music performances. Personal and Ubiquitous Computing, 25, pp. 749-769.; Verma, Tushar; Aker, Scott C. y Marozeau, Jeremy (2023). Effect of vibrotactile stimulation on auditory timbre perception for normal-hearing listeners and cochlear-implant users. Trends in Hearing, 27, 23312165221138390.; Vieillard, Sandrine y Gilet, Anne-Laure. (2013). Age-related differences in affective responses to and memory for emotions conveyed by music: A cross-sectional study. Frontiers in Psychology, 4, p. 711.; Vieillard, Sandrine; Peretz, Isabelle; Gosselin, Nathalie; Khalfa, Stéphanie; Gagnon, Lise y Bouchard, Bernard (2008). Happy, sad, scary and peaceful musical excerpts for research on emotions. Cognition and Emotion, 22(4), pp. 720-752.; Vuust, Peter; Heggli, Ole A.; Friston, Karl J. y Kringelbach, Morten L. (2022). Music in the brain. Nature Reviews Neuroscience, 23(5), pp. 287-305.; Wang, Fushun; Yang, Jiongjiong.; Pan, Fang; Ho, Roger C. y Huang, Jason H. (2020). Editorial: Neurotransmitters and emotions. Frontiers in psychology, 11, p. 21.; Wang, Tianyan (2015). A hypothesis on the biological origins and social evolution of music and dance. Frontiers in Neuroscience, 9, 30.; West, Travis J.; Bachmayer, Alexandra; Bhagwati, Sandeep; Berzowska, Joanna y Wanderley, Marcelo M. (2019). The Design of the Body: Suit: Score, a Full-Body Vibrotactile Musical Score. En Sakae Yamamoto y Hirohiko Mori (eds.). Human Interface and the Management of Information. Information in Intelligent Systems Lecture Notes in Computer Science. Thematic Area, HIMI 2019, Held as Part of the 21st HCI International Conference, HCII 2019, Orlando, FL, USA, July 26-31, 2019, Proceedings, Part II. Nueva York: Springer Cham, pp. 70-89.; Wong, Patrick C. M.; Skoe, Erika;, Russo, Nicole et al. (2007). Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nat Neuroscience 10, pp. 420-422.; Yamazaki, Yusuke; Mitake, Hironori y Hasegawa, Shoichi (2016). Tension-based wearable vibroacoustic device for music appreciation. En Fernando Bello, Hiroyuki Kajimoto y Yon Visell (eds.). Haptics: Perception, Devices, Control, and Applications: 10 th International Conference, EuroHaptics 2016, London, UK, July 4-7, Part II 10. Springer International Publishing, pp. 273-283.; Yamazaki, Yusuke; Mitake, Hironori y Hasegawa, Shoichi (2022). Implementation of Tension-Based Compact Necklace-Type Haptic Device Achieving Widespread Transmission of Low-Frequency Vibrations. IEEE Transactions on Haptics, 15(3), pp. 535-546.; Yoo, Yongjae; Hwang, Inwooky y Choi, Seungmoon (2014). Consonance of vibrotactile chords. IEEE Transactions on Haptics, 7(1), pp. 3-13.; Young, Gareth W.; Murphy, Davidy y Weeter, Jeffrey (2015). Vibrotactile discrimination of pure and complex waveforms. En Joseph Timoney y Thomas Lysaght (eds.). Proceedings of the 12 th Sound and Music Computing Conference, 26 July-1 August, 2015, Maynooth, Co. Kildare, Ireland. Zenodo, pp. 359-362.; Zioga, Ioanna; Di Bernardi Luft, Caroline y Bhattacharya, Joydeep (2016). Musical training shapes neural responses to melodic and prosodic expectation. Brain Research, 1650, pp. 267-282.; https://arbor.revistas.csic.es/index.php/arbor/article/view/2575Test

  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية

    المصدر: Scientia Marina; Vol. 83 No. S1 (2019); 235-256 ; Scientia Marina; Vol. 83 Núm. S1 (2019); 235-256 ; 1886-8134 ; 0214-8358 ; 10.3989/scimar.2019.83S1

    وصف الملف: text/html; application/pdf; application/xml

    العلاقة: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1837/2638Test; https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1837/2639Test; https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1837/2640Test; Anonymous. 2016. MEDITS-Handbook. Version n. 8, MEDITS Working Group, 177 pp. http://www.sibm.it/MEDITS%202011/principaledownload.htmTest; Alarcón C., Cubillos L., Oyarzún C. 2004. Influencia del tamaño de la hembra en la duración e intensidad de la actividad reproductiva de Merluccius gayi gayi en la zona centro-sur de Chile. Invest. Mar. Valparaiso 32: 59-69. https://doi.org/10.4067/S0717-71782004000200005Test; Agus B. 2015. Studio sui calamari Loligo vulgaris (Lamarck, 1798) e Loligo forbesii (Streenstrup, 1856) delle acque della Sardegna. PhD thesis, Univ. Cagliari.; Arkhipkin A.I. 1992. Reproductive system structure, development and function in Cephalopods with a new general scale for maturity stages. J. Northwest Atl. Fish. Sci. 12: 63-74. https://doi.org/10.2960/J.v12.a7Test; Botsford L.W., Brumbaugh D.R., Grimes C., et al. 2009. Connectivity, sustainability, and yield: bridging the gap between conventional fisheries management and marine protected areas. Rev. Fish Biol. Fish. 19: 69-95. https://doi.org/10.1007/s11160-008-9092-zTest; Brown-Peterson N., Wyanski D.M., Saborido-Rey F., et al. 2011. A standardized terminology for describing reproductive development in fishes. Mar. Coast. Fish. 3: 52-70. https://doi.org/10.1080/19425120.2011.555724Test; Carbonara P., Intini S., Modugno E., et al. 2015. Reproductive biology characteristics of red mullet (Mullus barbatus L., 1758) in Southern Adriatic Sea and management implications. Aquat. Living Resour. 28: 21-31. https://doi.org/10.1051/alr/2015005Test; Carbonell A., Grau A., Lauronce V., et al. 2006. Ovary development of the red shrimp, Aristeus antennatus (Risso, 1816) from the Northwestern Mediterranean Sea. Crustaceana 79: 727-743. https://doi.org/10.1163/156854006778026807Test; Cardinale M., Arrhenius F. 2000. The influence of stock structure and environmental conditions on the recruitment process of Baltic cod estimated using a generalized additive model. Can. J. Fish. Aquat. Sci. 57: 2402-2409. https://doi.org/10.1139/f00-221Test; Casciaro L., Leonori I., Bitetto I., et al. 2012. GSA 10 - Mare Adriatico meridionale. In Mannini A. and Relini G. (eds). Rapporto annuale sullo stato delle risorse biologiche dei mari circostanti d'Italia: anno 2009. Biol. Mar. Mediterr. 19: 138-161.; Cerri P.S., Sasso-Cerri E. 2003. Staining methods applied to glycol methacrylate embedded tissue sections. Micron 34: 365-372. https://doi.org/10.1016/S0968-4328Test(03)00098-2; Cuccu D., Mereu M., Porcu C., et al. 2013. Development of sexual organs and fecundity in Octopus vulgaris Cuvier, 1797 from the Sardinian waters (Mediterranean Sea). Medit. Mar. Sci. 14: 270-277. https://doi.org/10.12681/mms.412Test; D'Onghia G., Capezzuto F., Mytilineou Ch., et al. 2005. Comparison of the population structure and dynamics of Aristeus antennatus (Risso, 1816) between exploited and unexploited areas in the Mediterranean Sea. Fish. Res. 76: 22-38. https://doi.org/10.1016/j.fishres.2005.05.007Test; Dominguez-Petit R. 2007. Study of reproductive potential of Merluccius merluccius in the Galician Shelf. Ph.D. thesis. Univ. Vigo.; Follesa M.C., Carbonara P. 2019. Atlas of the maturity stages of Mediterranean fishery resources. Studies and Reviews No. 99, FAO, Rome. 268 pp.; Follesa M.C., Cuccu D., Murenu M., et al. 1998. Aspetti riproduttivi negli aristeidi Aristaeomorpha foliacea (Risso, 1827) e Aristeus antennatus (Risso, 1816) della classe di età 0+ e 1+. Biol. Mar. Mediterr. 5: 232-238.; Hamlett W.C. 2005. Reproductive biology and phylogeny of Chondrichthyes: sharks, batoids and chimaeras. Sci. Publ. Inc., New Hampshire, USA.; Huret M., Runge J., Chen C., et al. 2007. Dispersal modeling of fish early life stages: sensitivity with application to Atlantic cod in the western Gulf of Maine. Mar. Ecol. Prog. Ser. 347: 261-274. https://doi.org/10.3354/meps06983Test; ICES 2007. Report of the Workshop on sexual maturity sampling (WKMAT). ICES, CM 2007/ ACOM:03, Copenhagen, Denmark.; ICES 2008. Report of the Workshop on Maturity Ogive Estimation for Stock Assessment (WKMOG), 3-6 June 2008, Lisbon, Portugal. ICES CM2008/ACOM:33: 72 pp.; ICES 2009a. Report of the Planning Group on Commercial Catches, Discards and Biological Sampling (PGCCDBS), 2-6 March 2009, Montpellier, France. ICES CM 2009/ACOM:39: 160 pp.; ICES 2009b. Report of the Workshop on crustaceans (Aristeus antennatus, Aristaeomorpha foliacea, Parapenaeus longirostris, Nephrops norvegicus) maturity stages (WKMSC). ICES CM 2009/ACOM:46, 19-23 October 2009, Messina, Italy. 77 pp.; ICES 2010. Report of the Workshop on Sexual Maturity Staging of Cephalopods. ICES CM 2010/ACOM:49. 8-11 November 2010, Livorno, Italy. 97 pp.; ICES 2013. Report of the Workshop on Sexual Maturity Staging of Elasmobranchs (WKMSEL2) ICES CM 2012/ACOM:59. 11- 14 December 2012, Lisbon, Portugal. 113 pp.; ICES 2015. Report of the Workshop on Maturity Staging of Mackerel and Horse Mackerel (WKMSMAC2), 28 September-2 October 2015, Lisbon, Portugal. ICES CM 2015/SSGIEOM:17. 93 pp.; Juanicó M. 1983. Squid maturity scales for population analysis. In: Caddy J.F. (ed.), Advances in assessment of world Cephalopod resources, FAO Fish. Tech. Pap. 231: 341-348.; Junquera S., Saborido-Rey F. 1996. Histological assessment of sexual maturity of the Flemish Cap Cod in 1995. NAFO Sci. Coun. Studies 27: 63-67.; Kennedy J., Witthames P.R., Nash R. 2007. The concept of fecundity regulation in place (Pleuronectess platessa) tested on three Irish Sea spawning populations. Can. J. Fish. Aquat. Sci. 64: 587-601. https://doi.org/10.1139/f07-034Test; Kjesbu O.S. 1994. Time of start of spawning in Atlantic cod (Gadus morhua) females in relation to vitellogenic oocyte diameter, temperature, fish length and condition. J. Fish Biol. 45: 719-735. https://doi.org/10.1111/j.1095-8649.1994.tb00939.xTest; Kjesbu O.S. 2009. Applied fish reproductive biology: contribution of individual reproductive potential to recruitment and fisheries management. In: Jakobsen T., Fogarty M.J., et al. (eds), Fish Reproductive Biology: Implications for Assessment and Mangement, Wiley-Blackwell, Chichester, U.K., pp. 293-332. https://doi.org/10.1002/9781444312133.ch8Test; Lipinski M. 1979. Universal maturity scale for the commercially-important squids (Cephalopoda: Teuthoidea). The results of maturity classification of the Illex illecebrosus Leseur, (1821) population for years 1973-1977. International Commission for the Northwest Atlantic Fisheries, ICNAF Res. Doc. 79/II/38, 40 pp.; Lowerre-Barbieri S.K. 2009. Reproduction in relation to conservation and exploitation of marine fishes. In: Jameson B.G.M. (ed), Reproductive biology and phylogeny of fishes (agnathans and bony fishes). Science Publishers, Enfield, New Hampshire, pp. 371-394. https://doi.org/10.1201/b10257-11Test; Marongiu M.F., Bellodi A., Cau A.l., et al. 2013. Reproductive biology of the blackmouth catshar Galeus melastomus Rafinesque, 1810 in Sardinian seas (central western Mediterranean). Biol. Mar. Mediterr. 20: 190-191.; Marshall C.T., O'Brien L., Tomkiewicz J. 2003. Developing alternative indices of reproductive potential for use in fisheries management: case studies for stocks spanning an information gradient. J. Northwest Atl. Fish. Sci. 33: 161-190. https://doi.org/10.2960/J.v33.a8Test; Mazzi V. 1977. Tecniche istologiche e istochimiche. Piccin Ed., Padova: 750 pp.; Morrison C.M. 1990. Histology of the Atlantic cod, Gadus morhua: an atlas. Part three. reproductive tract . Can. Spec. Publ. Fish. Aquat.Sci. 110.; Murua H., Saborido-Rey F. 2003. Female reproductive strategies of marine fish species of the North Atlantic. J. Northwest Atl. Fish. Sci. 33: 23-31. https://doi.org/10.2960/J.v33.a2Test; Murua H., Kraus G., Saborido-Rey F., et al. 2003. Procedures to estimate fecundity of wild collected marine fish in relation to fish reproductive strategy. J. Northwest Atl. Fish. Sci. 33: 33-54. https://doi.org/10.2960/J.v33.a3Test; Nuñez J., Duponchelle F. 2009. Towards a universal scale to assess sexual maturation and related life history traits in oviparous teleost fishes. Fish Physil. Biochem. 35: 167-180. https://doi.org/10.1007/s10695-008-9241-2Test PMid:18668334; Pecquerie L., Petitgas P., Kooijman S. 2009. Modeling fish growth and reproduction in the context of the dynamic energy budget theory to predict environmental impact on anchovy spawning duration. J. Sea Res. 62: 93-105. https://doi.org/10.1016/j.seares.2009.06.002Test; Pesci P. 2006. Ecologia, biologia e struttura di popolazione delle triglie Mullus barbatus Linneo, 1758 e Mullus surmuletus Linneo, 1758 nei mari circostanti la Sardegna. Ph. D. thesis. Univ. Cagliari, Italy.; Porcu C., Marongiu M.F., Follesa M.C., et al. 2014. Reproductive aspects of the velvet belly Etmopterus spinax (Chondrichthyes: Etmopteridae), from the central western Mediterranean Sea. Notes on gametogenesis and oviducal gland microstructure. Medit. Mar. Sci. 15: 313-326. https://doi.org/10.12681/mms.559Test; Ragonese S., Nardone G., Ottonello D., et al. 2009. Distribution and biology of the blackmouth catshark Galeus melastomus in the Strait of Sicily (central Mediterranean Sea). Medit. Mar. Sci. 1081: 55-72. https://doi.org/10.12681/mms.122Test; Rocha F., Guerra Á., González Á.F. 2001. A review of reproductive strategies in Cephalopods. Biol. Rev. 76: 291-304. https://doi.org/10.1017/S1464793101005681Test PMid:11569786; Saborido-Rey F. 2016. Fish Reproduction. In: Cochran J.K., Bokuniewicz J., et al. (eds), Encyclopedia of Ocean Sciences (Third edition), Reference Module in Earth Systems and Environmental Sciences. Academic Press, Oxford, pp. 232-245. https://doi.org/10.1016/B978-0-12-409548-9.09708-6Test; Tomkiewicz J., Morgan M.J., Burnett J., et al. 2003. Available Information for estimating reproductive potential of Northwest Atlantic groundfish stocks. J. Northwest Atl. Fish. Sci. 33: 1-21. https://doi.org/10.2960/J.v33.a1Test; Trippel E. 1999. Estimation of stock reproductive potential: history and challenges for Canadian Atlantic gadoid stock assessments. J. Northwest Atl. Fish. Sci. 25: 61-82. https://doi.org/10.2960/J.v25.a6Test; Tursi A., D'Onghia G., Matarrese A., et al. 1993. Observations on population biology of the blackmouth catshark Galeus melastomus (Chondrichthyes, Scyliorhinidae) in the Ionian Sea. Cybium 17: 187-196.; https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1837Test

  7. 7
    دورية أكاديمية

    المصدر: Scientia Marina; Vol. 83 No. S1 (2019); 81-100 ; Scientia Marina; Vol. 83 Núm. S1 (2019); 81-100 ; 1886-8134 ; 0214-8358 ; 10.3989/scimar.2019.83S1

    وصف الملف: text/html; application/pdf; application/xml

    العلاقة: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1833/2612Test; https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1833/2613Test; https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1833/2614Test; Abella A.J., Serena F. 2005. Comparison of Elasmobranch Catches from Research Trawl Surveys and Commercial Landings at Port of Viareggio, Italy, in the Last Decade. J. Northw. Atl. Fish. Sci. 35: 345-356. https://doi.org/10.2960/J.v35.m526Test; Anastasopoulou I., Mytilineou C., Makantasi P., et al. 2018. Life history aspects of two species of the Squalus genus in the Eastern Ionian Sea. J. Mar. Biol. Ass. U.K. 98: 937-948. https://doi.org/10.1017/S0025315416001818Test; Anonymous. 2017. MEDITS Handbook. Version n. 8, MEDITS Working Group, 177 pp.; Baino R., Serena F., Ragonese S., et al. 2001. Catch composition and abundance of elasmobranchs based on the MEDITS program. Rapp. Comm. Int. Mer Médit. 36: 234.; Barría C., Navarro J., Coll M., et al. 2015. Morphological parameters of abundant and threatened chondrichthyans of the northwestern Mediterranean Sea. J. Appl. Ichthyol. 31: 114-119. https://doi.org/10.1111/jai.12499Test; Bellodi A., Porcu C., Cau A., et al. 2018. Investigation on the genus Squalus in the Sardinian waters (Central-Western Mediterranean) with implications on its management. Medit. Mar. Sci. 19: 256-272. https://doi.org/10.12681/mms.15426Test; Bertrand J.A., Gil de Sola L., Papaconstantinou C., et al. 2000. An international bottom trawl survey in the Mediterranean: the Medits programme. In Bertrand J.A., Relini G. (eds). Demersal resources in the Mediterranean. Proceedings of the symposium held in Pisa, 18-21 March 1998. Actes de Colloques 26: 76- 93. Ifremer, Plouzané.; Bertrand J.A., Gil De Sola L., Papaconstantinou C., et al. 2002. The general specifications of the Medits surveys. Sci. Mar. 66: 9-17. https://doi.org/10.3989/scimar.2002.66s29Test; Bonello J., Bonnici L., Ferrari A., et al. 2016. Not all that clear cut: Intraspecific morphological variability in Squalus blainville (Risso, 1827) and implications for identification of the species. J. Mar. Biol. Assoc. U.K. 96: 1585-1596. https://doi.org/10.1017/S0025315415001915Test; Bornatowski H., Braga R.R., Vitule J.R.S. 2013. Shark mislabeling threatens biodiversity. Science 340: 923. https://doi.org/10.1126/science.340.6135.923-aTest PMid:23704548; Bottari T., Busalacchi B., Profeta A., et al. 2014. Elasmobranch Distribution and Assemblages in the Southern Tyrrhenian Sea (Central Mediterranean). J. Aquac. Res. Develop. 5: 216.; Bradai N.M, Saidi B., Enajjar S. 2018. Overview on Mediterranean Shark's Fisheries: Impact on the Biodiversity. In: Türko?lu M., Önal U., Ismen A. (eds). Marine Ecology - Biotic and Abiotic Interactions. pp. 211-230. https://doi.org/10.5772/intechopen.74923Test; Camhi M.D., Fowler S.L., Musick J.A., et al. 1998. Sharks and their relatives: ecology and conservation. IUCN/SSC Shark Specialist Group, Gland, Switzerland and Cambridge, UK. iv + 39 pp.; Carbonell A., Alemany F., Merella P., et al. 2003. The by-catch of sharks in the western Mediterranean (Balearic Islands) trawl fishery. Fish. Res. 61: 7-18. https://doi.org/10.1016/S0165-7836Test(02)00242-4; Cariani A., Messinetti S., Ferrari A., et al. 2017. Improving the Conservation of Mediterranean Chondrichthyans: The ELASMOMED DNA Barcode Reference Library. PLoS ONE 12: e0170244. https://doi.org/10.1371/journal.pone.0170244Test PMid:28107413 PMCid:PMC5249125; Cavanagh R.D., Gibson C. 2007. Overview of the conservation status of cartilaginous fishes (Chondrichthyans) in the Mediterranean Sea. IUCN, 42 pp. https://doi.org/10.2305/IUCN.CH.2007.MRA.3.enTest; Clarke S.C., McAllister M.K., Milner-Gulland E.J., et al. 2006. Global estimates of shark catches using trade records from commercial markets. Ecol. Lett. 9: 1115-1126. https://doi.org/10.1111/j.1461-0248.2006.00968.xTest PMid:16972875; Coll M., Santojanni A., Palomera I., et al. 2009. Food-web changes in the Adriatic Sea over the last three decades. Mar. Ecol. Progr. Ser. 381: 17-37. https://doi.org/10.3354/meps07944Test; Colloca F., Enea M., Ragonese S., et al. 2017. A century fishery data documenting the collapse of smooth-hounds (Mustelus spp.) in Mediterranean Sea. Aquat. Conserv. 27: 1145-1155. https://doi.org/10.1002/aqc.2789Test; Compagno L.J.V. 1990. Alternative life-history styles of cartilaginous fishes in time and space. Env. Biol. Fish. 28: 33-75. https://doi.org/10.1007/978-94-009-2065-1_3Test; Damalas D., Vassilopoulou V. 2011. Chondrichthyan by-catch and discards in the demersal trawl fishery of the central Aegean Sea (Eastern Mediterranean). Fish. Res. 108: 142-152. https://doi.org/10.1016/j.fishres.2010.12.012Test; Davidson L.N.K., Krawchuk M.A., Dulvy N.K. 2016. Why have global shark and ray landings declined: Improved management or overfishing? Fish Fish. 17: 438-458. https://doi.org/10.1111/faf.12119Test; Dent F., Clarke S. 2015. State of the global market for shark products. FAO Fisheries and Aquaculture Technical Paper No. 590. Rome, FAO. 187 pp.; Dulvy N.K., Fowler S.L., Musick J.A., et al. 2014. Extinction risk and conservation of the world's sharks and rays. eLife 3: e00590. https://doi.org/10.7554/eLife.00590Test PMid:24448405 PMCid:PMC3897121; Dulvy N.K., Allen D.J., Ralph G.M., et al. 2016. The conservation status of Sharks, Rays and Chimaeras in the Mediterranean Sea. IUCN, Malaga, Spain.; El Kamel-Moutalibi O., Mnasri-Sioudi N., Rafrafi-Nouira S., et al. 2014. Additional records of a rare elasmobranch species, sharpnose seven-gill shark Heptranchias perlo (Hexanchidae) off the northern Tunisian coast (Central Mediterranean). Ann. Ser. Hist. Nat. 2: 99-106.; Eschmeyer W.N., Fricke R., van der Laan R. (eds). 2018. Catalog of fishes: Genera, Species. http://researcharchive.calacademy.org/research/ichthyologyTest/ catalog/fishcatmain.asp; FAO. 2010. The state of world fisheries and Aquaculture 2010. Food and Agriculture organization of the United Nations. Rome, 197 pp.; FAO. 2016. The State of Mediterranean and Black Sea Fisheries. General Fisheries Commission for the Mediterranean. Rome, 134 pp.; Farrugio H., Oliver P., Biagi F. 1993. An overview of the history, knowledge, recent and future research trends in Mediterranean fisheries. Sci. Mar. 57: 105-119.; Ferretti F., Myers R.A., Serena F., et al. 2005. Long term dynamics of chondrichthyan fish community in the upper Tyrrhenian Sea. ICES CM Documents 25: 1-34.; Ferretti F., Worm B., Britten G.L., et al. 2010. Patterns and ecosystem consequences of shark declines in the ocean. Ecol. Lett. 13: 1055-1071. https://doi.org/10.1111/j.1461-0248.2010.01489.xTest PMid:20528897; Ferretti F., Osio G.C., Jenkins C.J., et al. 2013. Long-term change in a meso-predator community in response to prolonged and heterogeneous human impact. Sci. Rep. 3: 1057. https://doi.org/10.1038/srep01057Test PMid:23308344 PMCid:PMC3541648; Follesa M.C., Porcu C., Cabiddu S., et al. 2011. Deep-water fish assemblages in the central-western Mediterranean (south Sardinian deep-waters). J. Appl. Ichthyol. 27: 129-135. https://doi.org/10.1111/j.1439-0426.2010.01567.xTest; Fortibuoni T., Borme D., Franceschini G., et al. 2016. Common, rare or extirpated? Shifting baselines for common angelshark, Squatina squatina (Elasmobranchii: Squatinidae), in the Northern Adriatic Sea (Mediterranean Sea). Hydrobiologia 772: 247-259. https://doi.org/10.1007/s10750-016-2671-4Test; Fowler S.L., Reed T.M., Dipper F.A. 2002. Elasmobranch Biodiversity, Conservation and Management. Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997. IUCN SSC Shark Specialist Group, Gland, Switzerland and Cambridge, UK. 258 pp.; Frodella N., Cannas R., VelonàA., et al. 2016. Population connectivity and phylogeography of the Mediterranean endemic skate Raja polystigma and evidence of its hybridization with the parapatric sibling R. montagui. Mar. Ecol. Prog. Ser. 554: 99-113. https://doi.org/10.3354/meps11799Test; General Fisheries Commission for the Mediterranean (GFCM). 2014. Report of the Workshop on elasmobranch conservation in the Mediterranean and Black Sea. Scientific Advisory Committee (SAC) of the General Fisheries Commission for the Mediterranean (GFCM). Sète, France, 10-12 December 2014. 26 pp.; Gouraguine A., Hidalgo M., Moranta J., et al. 2011. Elasmobranch spatial segregation in the western. Mediterr. Sci. Mar. 75: 653-664. https://doi.org/10.3989/scimar.2011.75n4653Test; Gu C., Wahba G. 1991. Minimizing GCV/GML Scores with Multiple Smoothing Parameters via the Newton Method. SIAM J. Sci. Stat. Comput. 12: 383-398. https://doi.org/10.1137/0912021Test; Guijarro B., Quetglas A., Moranta J., et al. 2012. Inter- and intra-annual trends and status indicators of nektobenthic elasmobranchs off the Balearic Islands (northwestern Mediterranean). Sci. Mar. 76: 87-96. https://doi.org/10.3989/scimar.03432.22ATest; Hair J.F., Black W.C., Babin B.J., et al. 2010. Multivariate Data Analysis. Vectors. Pearson Ed. Ltd, Edinburgh.; Heithaus M.R., Wirsing A.J., Dill L.M. 2012. The ecological importance of intact top-predator populations: a synthesis of 15 years of research in a seagrass ecosystem. Mar. Freshw. Res. 63: 1039-1050. https://doi.org/10.1071/MF12024Test; Iglésias S.P., Toulhout L., Sellos D.P. 2010. Taxonomic confusion and market mislabelling of threatened skates: Important consequences for their conservation status. Aquat. Conserv. 20: 319-333. https://doi.org/10.1002/aqc.1083Test; Juki?-Peladi? S., Vrgo? N., Krstulovi?-?ifner S., et al. 2001. Long-term changes in demersal resources of the Adriatic Sea. Comparison between trawl surveys carried out in 1948 and 1998. Fish. Res. 53: 95-104. https://doi.org/10.1016/S0165-7836Test(00)00232-0; Kavadas S., Maina I., Damalas D., et al. 2015. Multi-Criteria Decision Analysis as a tool to extract fishing footprints and estimate fishing pressure: application to small scale coastal fisheries and implications for management in the context of the Maritime Spatial Planning Directive. Mediterr. Mar. Sci. 16: 294-304. https://doi.org/10.12681/mms.1087Test; Kriwet J., Witzmann F., Klug S., et al. 2008. First direct evidence of a vertebrate three-level trophic chain in the fossil record. Proc. R. Soc. Lond, B. Biol. Sci. 275: 181-186. https://doi.org/10.1098/rspb.2007.1170Test PMid:17971323 PMCid:PMC2596183; Lack M., Sant G. 2009. Trends in global shark catch and recent developments in management. TRAFFIC International. Cambridge, 33 pp.; Ligas A., Osio G.C., Sartor P., et al. 2013. Long-term trajectory of some elasmobranch species off the Tuscany coasts (NW Mediterranean) from 50 years of catch data. Sci. Mar. 77: 119-127. https://doi.org/10.3989/scimar.03654.21CTest; Maravelias C.D., Tserpes G., Pantazi M., et al. 2012. Habitat Selection and Temporal Abundance Fluctuations of Demersal Cartilaginous Species in the Aegean Sea (Eastern Mediterranean). PLoS ONE 7: e35474. https://doi.org/10.1371/journal.pone.0035474Test PMid:22536389 PMCid:PMC3335001; Marongiu M.F., Porcu C., Bellodi A., et al. 2017. Temporal dynamics of demersal chondrichthyan species in the central western Mediterranean Sea: The case study in Sardinia Island. Fish. Res. 193: 81-94. https://doi.org/10.1016/j.fishres.2017.04.001Test; Massutí E., Moranta J. 2003. Demersal assemblages and depth distribution of elasmobranchs from the continental shelf and slope off the Balearic Islands (western Mediterranean). ICES J. Mar. Sci. 60: 753-766. https://doi.org/10.1016/S1054-3139Test(03)00089-4; Megalofonou P., Damalas D., Yannopoulos C. 2005. Composition and abundance of pelagic shark by-catch in the eastern Mediterranean Sea. Cybium 29: 135-140.; Melendez M.J., Baez J.C., Serna-Quintero J.M., et al. 2017. Historical and ecological drivers of the spatial pattern of Chondrichthyes species richness in the Mediterranean Sea. PLoS ONE 12: e0175699. https://doi.org/10.1371/journal.pone.0175699Test PMid:28406963 PMCid:PMC5391105; Moranta J., Massutí E., Stefanescu C., et al. 2008a. Short-term temporal variability in fish community structure at two western Mediterranean slope locations. Deep-Sea Res. Pt. I. 55: 866-880. https://doi.org/10.1016/j.dsr.2008.04.001Test; Moranta J., Quetglas A., Massutí E., et al. 2008b. Spatio-temporal variations in deep-sea demersal communities off the Balearic Islands (western Mediterranean). J. Mar. Syst. 71: 346-366. https://doi.org/10.1016/j.jmarsys.2007.02.029Test; Nieto A., Ralph G.M., Comeros-Raynal M.T., et al. 2015. European Red List of marine fishes. Publ. Off. Eur. Union, Luxembourg, 84 pp.; Notarbartolo Di Sciara G. 2014. Sperm whales, Physeter macrocephalus, in the Mediterranean Sea: a summary of status, threats, and conservation recommendations. Aquat. Conserv. Mar. Freshw. Ecosyst. 24: 4-10. https://doi.org/10.1002/aqc.2409Test; Osio G.C., Orio A., Millar C.P. 2015. Assessing the vulnerability of Mediterranean demersal stocks and predicting exploitation status of un-assessed stocks. Fish. Res. 171: 110-121. https://doi.org/10.1016/j.fishres.2015.02.005Test; Ordines F., Massutí E., Moranta J. et al. 2011. Balearic Islands vs Algeria: two nearby western Mediterranean elasmobranch assemblages with different oceanographic scenarios and fishing histories. Sci. Mar. 75: 707-717. https://doi.org/10.3989/scimar.2011.75n4707Test; Peristeraki P., Kypraios N., Lazarakis G., et al. 2008. By-catches and discards of the Greek swordfish fishery. Col. Vol. Sci. Pap. ICCAT 62: 1070-1073.; Polidoro B.A, Livingstone S.R., Carpenter K.E., et al. 2008. Status of the world's marine species. In: Vié J.C., Hilton-Taylor C., Stuart S.N. (eds). Wildlife in a changing world: an analysis of the 2008 IUCN Red List of threatened species. Int. Union Conserv. Nat., Gland, Switzerland, pp. 55-65.; Polidoro B.A., Brooks T., Carpenter K.E., et al. 2012. Patterns of extinction risk and threat for marine vertebrates and habitat-forming species in the Tropical Eastern Pacific. Mar. Ecol. Progr. Ser. 448: 93-104. https://doi.org/10.3354/meps09545Test; QGIS Development Team. 2017. Geographic Information System. Open Source Geospatial Foundation Project. http://www.qgis.orgTest/; R Development Core Team. 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.orgTest/; Ramírez-Amaro S., Ordines F., Terrasa B., et al. 2015. Demersal chondrichthyans in the western Mediterranean: assemblages and biological parameters of their main species. Mar. Freshw. Res. 67: 636-652. https://doi.org/10.1071/MF15093Test; Relini G., Biagi F., Serena F., et al. 2000. I Selaci pescati con lo strascico nei mari italiani. Biol. Mar. Mediterr. 7: 347- 384.; Rodríguez-Cabello C., González-Pola C., Rodríguez A., et al. 2018. Insights about depth distribution, occurrence and swimming behavior of Hexanchus griseus in the Cantabrian Sea (NE Atlantic). Reg. Stud. Mar. Sci. 23: 60-72. https://doi.org/10.1016/j.rsma.2017.10.015Test; Russo T., Bitetto I., Carbonara P., et al. 2017. A holistic approach to fishery management: evidence and insights from a Central Mediterranean Case Study (Western Ionian Sea). Front. Mar. Sci. 4: 193. https://doi.org/10.3389/fmars.2017.00193Test; Sbrana M., Mannini A., Sartor P. et al. 2013. D11 - Report geo- Referred information on the spatial and temporal distribution of fishing effort/grounds for the case studies. DG Mare MAREA Mediterranean Halieutic Resources Evaluation and Advice Specific Contract no 7 --STOCKMED: "Stock units: Identification of distinct biological units (stock units) for different fish and shellfish species and among different GFCM-GSAs. 157 pp.; Serena F., Papacostantinou C., Relini G., et al. 2009. Distribution and abundance of spiny dogfish in the Mediterranean sea based on the Mediterranean International Trawl Surveys Program. In: Gallucci V.F., McFarlane G.A., Bargmann G.C. (eds). Biology and management of dogfish sharks. Am. Fish. Soc., Bethesda, Maryland, pp. 139-149.; Sion L., Bozzano A., D'Onghia G., et al. 2004. Chondrichthyes species in deep waters of the Mediterranean Sea. Sci. Mar. 68: 153-162. https://doi.org/10.3989/scimar.2004.68s3153Test; Stevens J.D., Bonfil R., Dulvy N., et al. 2000. The effects of fishing on sharks, rays, and chimaeras (chondrichthyans), and the implications for marine ecosystems. ICES J. Mar. Sci. 57: 476-494. https://doi.org/10.1006/jmsc.2000.0724Test; Stevens J.D., Walker T.I., Cook S.F., et al. 2005. Threats Faced by Chondrichthyan Fish. In: Fowler S.L., Cavanagh R., et al. (eds). Sharks, Rays and Chimaeras: The Status of the Chondrichthyan Fishes. IUCN/SSC Shark Specialist Group, Gland, Switzerland and Cambridge, UK, pp. 48-57.; Tsagarakis K., Mytilineou C., Haralabous J., et al. 2013. Mesoscale spatio-temporal dynamics of demersal assemblages of the Eastern Ionian Sea in relationship with natural and fisheries factors. Aquat. Living Resour. 26: 381-397. https://doi.org/10.1051/alr/2013067Test; Tserpes G., Tatamanidis G., Peristeraki P. 2006. Oilfish and shark by-catches of the Greek swordfish fishery in the E. Mediterranean; a preliminary analysis applied to "presence-absence" data. Col. Vol. Sci. Pap. ICCAT 59: 987-991.; Tserpes G., Maravelias C.D., Pantazi M., et al. 2013. Distribution of relatively rare demersal elasmobranchs in the eastern Mediterranean. Estuar. Coast. Shelf. Sci. 117: 48-53. https://doi.org/10.1016/j.ecss.2012.09.020Test; Vasilakopoulos P., Maravelias C.D., Tserpes G. 2014. The Alarming Decline of Mediterranean Fish Stocks. Curr. Biol. 24: 1643-1648. https://doi.org/10.1016/j.cub.2014.05.070Test PMid:25017210; Wood S.N. 2006. Generalized additive models: an introduction with R. Chapman and Hall/CRC Press. Boca Raton, Florida. 392 pp.; Worm B., Davis B., Kettemer L., et al. 2013. Global catches, exploitation rates, and rebuilding options for sharks. Mar. Policy 40: 194-204. https://doi.org/10.1016/j.marpol.2012.12.034Test; Zuur A.F., Ieno E.N., Elphick C.S. 2010. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1: 3-14. https://doi.org/10.1111/j.2041-210X.2009.00001.xTest; https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1833Test

  8. 8
    دورية أكاديمية

    المصدر: Scientia Marina; Vol. 83 No. S1 (2019); 117-127 ; Scientia Marina; Vol. 83 Núm. S1 (2019); 117-127 ; 1886-8134 ; 0214-8358 ; 10.3989/scimar.2019.83S1

    وصف الملف: text/html; application/pdf; application/xml

    العلاقة: https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1796/2617Test; https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1796/2519Test; https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1796/2618Test; Abelló P., Carbonell A., Torres P. 2002. Biogeography of epibenthic crustaceans on the shelf and upper slope off the Iberian Peninsula Mediterranean coasts: implications for the establishment of natural management areas. Sci. Mar. 66: 183-198. https://doi.org/10.3989/scimar.2002.66s2183Test; Carney R.S. 2005. Zonation of deep biota on continental margins. Oceanogr. Mar. Biol. Annu. Rev. 43: 211-278. https://doi.org/10.1201/9781420037449.ch6Test; Carrassón M., Cartes J.E. 2002. Trophic relationships in a Mediterranean deep sea fish community: partition of food resources, dietary overlap and connections within the benthic boundary layer. Mar. Ecol. Prog. Ser. 241: 41-55. https://doi.org/10.3354/meps241041Test; Carrassón M., Matallanas J. 2002. Diets of deep-sea macrourid fishes in the Western Mediterranean. Mar. Ecol. Prog. Ser. 234: 215-228. https://doi.org/10.3354/meps234215Test; Cartes J.E. Carrassón M. 2004. Influence of trophic variables on the depth-range distributions and zonation rates of deep-sea megafauna: the case of the Western Mediterranean assemblages. Deep-Sea Res. I 51: 263-279. https://doi.org/10.1016/j.dsr.2003.10.001Test; Cartes J.E., Maynou F., Fanelli E., et al. 2009. Long-term changes in the composition and diversity of deep-slope megabenthos and trophic webs off Catalonia (western Mediterranean): Are trends related to climatic oscillations? Prog. Oceanogr. 82: 32-46. https://doi.org/10.1016/j.pocean.2009.03.003Test; Cartes J.E., Fanelli E., Lloris D., et al. 2013. Effect of environmental variations on sharks and other top predators in the deep Mediterranean Sea over the last 60 years. Clim. Res. 55: 239-251. https://doi.org/10.3354/cr01137Test; Devine J.A., Watling L., Cailliet G., et al. 2012. Evaluation of potential sustainability of deep-sea fisheries for grenadiers (Macrouridae). J. Ichthyol. 52: 709-721. https://doi.org/10.1134/S0032945212100062Test; Drazen J.C. 2002. Energy budgets and feeding rates of Coryphaenoides acrolepis and C. armatus. Mar. Biol. 140: 677-686. https://doi.org/10.1007/s00227-001-0747-8Test; Drazen J.C., Haedrich R.L. 2012. A continuum of life histories in deep-sea demersal fishes. Deep-Sea Res. I 61: 34-42. https://doi.org/10.1016/j.dsr.2011.11.002Test; D'Onghia G., Tursi A., Basanisi M. 1996. Reproduction of Macrourids in the Upper Slope of the NorthWestern Ionian Sea. J. Fish. Biol. 49sA: 311-317. https://doi.org/10.1111/j.1095-8649.1996.tb06084.xTest; D'Onghia G., Basanisi M., Matarrese A., et al. 1999. Reproductive strategies in macrourid fish: seasonality or not? Mar. Ecol. Prog. Ser. 184: 189-196. https://doi.org/10.3354/meps184189Test; D'Onghia G., Basanisi M., Tursi A. 2000. Population structure, age and growth of macrourid fish from the upper slope of the Eastern-Central Mediterranean. J. Fish. Biol. 56: 1217-1238. https://doi.org/10.1111/j.1095-8649.2000.tb02135.xTest; D'Onghia G., Carlucci R., Maiorano P., et al. 2003. Discards from deep-water bottom trawling in the Eastern-Central Mediterranean Sea and effects of mesh size changes. J. Northw. Atl. Fish. Sci. 31: 245-261. https://doi.org/10.2960/J.v31.a19Test; D'Onghia G., Politou C.Y., Bozzano A., et al. 2004a. Deep-water fish assemblages in the Mediterranean Sea. Sci. Mar. 68: 87-99. https://doi.org/10.3989/scimar.2004.68s387Test; D'Onghia G., Lloris D., Politou C.Y., et al. 2004b. New records of deep-water teleost fish in the Balearic Sea and Ionian Sea (Mediterranean Sea). Sci. Mar. 68(Suppl. 3): 171-183. https://doi.org/10.3989/scimar.2004.68s3171Test; D'Onghia G., Maiorano P., Sion L., et al. 2010. Effects of deep-water coral banks on the abundance and size structure of the megafauna in the Mediterranean Sea. Deep-Sea Res. II 57: 397-411. https://doi.org/10.1016/j.dsr2.2009.08.022Test; Emig C.C., Geistdoerfer P. 2004. The Mediterranean deep-sea fauna: historical evolution, bathymetric variations and geographical changes. Carnets Geol. 4: 2004/01. http://paleopolis.rediris.es/cg/04A01/CG04A01.pdfTest; Eschmeyer W.N., Fong J.D. 2017. Eschmeyer's Catalog of Fishes. Species by family/subfamily (Accesed May 2017) http://researcharchive.calacademy.org/research/ichthyologyTest/ catalog/SpeciesByFamily.asp; Fernandez-Arcaya U., Recanses L., Murua H., et al. 2012. Population structure and reproductive patterns of the NW Mediterranean deep-sea macrourid Trachyrincus scabrus (Rafinesque, 1810). Mar. Biol. 159: 1885-1896. https://doi.org/10.1007/s00227-012-1976-8Test; Fernandez-Arcaya U., Ramírez-Llodra E., Rotllant G., et al. 2013. Reproductive biology of two macrourid fish, Nezumia aequalis and Coelorinchus mediterraneus, inhabiting the NW Mediterranean continental margin (400-2000 m). Deep Sea Res. I 92: 63-72. https://doi.org/10.1016/j.dsr2.2013.03.003Test; Follesa M.C., Porcu C., Cabiddu S., et al. 2011. Deep water fish assemblages in the central-western Mediterranean (south Sardinian deep-waters). J. Appl. Ichthyol. 27: 129-135. https://doi.org/10.1111/j.1439-0426.2010.01567.xTest; Froese R., Pauly D. (eds). 2017. FishBase. World Wide Web electronic publication (Accesed 05/2017). http://www.fishbase.orgTest; Gil de Sola L. 1993. Las pesquerías demersales del mar del Alboran (Sur Mediterráneo ibérico). Evolución en los últimos decenios. Inf. Téc. I.E.O. 142: 1-179.; Granger V., Fromentin J.M., Bez N., et al. 2015. Large-scale spatio-temporal monitoring highlights hotspots of demersal fish diversity in the Mediterranean Sea. Prog. Oceanogr. 130: 65-74. https://doi.org/10.1016/j.pocean.2015.08.002Test; Grassle J.F., Sanders H.L., Smith V. 1979. Faunal changes with depth in the deep sea benthos. Amb. Sp. Rep. 6: 47-50.; Hopkins T.S. 1985. Physics of the sea. In: Margalef R. (ed.), Key environments. Western Mediterranean. Pergamon Press, New York, pp. 100-125.; Keller S., Quetglas A., Puerta P., et al. 2017. Environmentally driven synchronies of Mediterranean cephalopod populations. Prog. Oceanogr. 152: 1-14. https://doi.org/10.1016/j.pocean.2016.12.010Test; Lloris D. 2015. Ictiofauna Marina. Manual de identificación de los peces marinos de la Península Ibérica y Baleares. Ed. Omega, Barcelona, 674 pp.; Macpherson E. 1979. Ecological overlap between macrourids in the western Mediterranean Sea. Mar. Biol. 53: 149-159. https://doi.org/10.1007/BF00389186Test; Madurell T., Cartes J.E. 2006. Trophic relationships and food consumption of slope dwelling macrourids from bathyal Ionian Sea (eastern Mediterranean). Mar. Biol. 148: 1325-1338. https://doi.org/10.1007/s00227-005-0158-3Test; Massutí E., Moranta J. 2003. Demersal assemblages and depth distribution of elasmobranchs from the continental shelf and slope off the Balearic Islands (western Mediterranean). ICES J. Mar. Sci. 60: 753-766. https://doi.org/10.1016/S1054-3139Test(03)00089-4; Massutí E., Morales-Nin B., Stefanescu C. 1995. Distribution and biology of five grenadier fish (Pisces: Macrouridae) from the upper and middle slope of the northwestern Mediterranean. Deep-Sea Res. I 42: 307-330. https://doi.org/10.1016/0967-0637Test(95)00003-O; Mauchline J., Gordon J.D.M. 1984. Diets and bathymetric distributions of the macrourid fish of the Rockall Trough, northeastern Atlantic Ocean. Mar. Biol. 81:107-121. https://doi.org/10.1007/BF00393109Test; Millot C. 2005. Circulation in the Mediterranean Sea: evidences, debates and unanswered questions. Sci. Mar. 69: 5-21. https://doi.org/10.3989/scimar.2005.69s15Test; Moranta J., Massutí E., Morales-Nin B. 2000. Fish catch composition of the deep-sea decapod crustacean fisheries in the Balearic Islands (western Mediterranean). Fish. Res. 45: 253-264. https://doi.org/10.1016/S0165-7836Test(99)00119-8; Moranta J., Massutí E., Palmer M., et al. 2007. Geographic and bathymetric trends in abundance, biomass and body size of four grenadier fishes along the Iberian coast in the western Mediterranean. Prog. Oceanogr. 72: 63-83. https://doi.org/10.1016/j.pocean.2006.09.003Test; Pearcy W.G., Ambler G.W. 1974. Food habits of deep-sea macrourid fishes off the Oregon coast. Deep-Sea Res. Oceanograph. Abstract 21: 745-759. https://doi.org/10.1016/0011-7471Test(74)90081-3; Rannou M. 1975. Données nouvelles sur l'activité reproductrice cyclique des poissons benthiques bathyaux et abyssaux. C.R. Acad. Sci. Paris. 281D: 1023-1025.; Rannou M. 1976. Age et croissance d'un poisson bathyal: Nezumia sclerorhynchus (Macrouridae, Gadiforme) de la Mer d'Alboran. Cah. Biol. Mar. 17: 413-421.; Rex M.A. 1977. Zonation in deep-sea gastropods: the importance of biological interactions to rates of zonation. In: Keegan B.F., Ceidigh P.O., Boaden J.S. (eds). Biology of benthic organisms. Pergamon Press, New York, pp. 521-530. https://doi.org/10.1016/B978-0-08-021378-1.50058-0Test; Rey J., Coelho R., Lloris D., et al. 2010. Distribution pattern of Galeus atlanticus in the Alboran Sea and some sexual character comparison with Galeus melastomus. Mar. Biol. Res. 6: 364-372. https://doi.org/10.1080/17451000903042487Test; Serrano A., Sánchez F., Punzón A., et al. 2011. Deep sea megafaunal assemblages off the northern Iberian slope related to environmental factors. Sci. Mar. 74: 425-437. https://doi.org/10.3989/scimar.2011.75n3425Test; Shi X., Tian P., Lin R., et al. 2016. Characterization of the Complete Mitochondrial Genome Sequence of the Globose Head Whiptail Cetonurus globiceps (Gadiformes: Macrouridae) and Its Phylogenetic Analysis. PLoS ONE 11: e0153666. https://doi.org/10.1371/journal.pone.0153666Test PMid:27093057 PMCid:PMC4836748; Sobrino I., González J., Hernández-González C.L., et al. 2012. Distribution and relative abundance of main species of grenadiers (Macrouridae, Gadiformes) from the African Atlantic coast. J. Ichthyol. 52: 690-699. https://doi.org/10.1134/S0032945212100128Test; Stefanescu D. 1991. Comunidades ictiológicas demersales del mar Catalán (Mediterráneo noroccidental) por debajo de los 1000 m de profundidad. Ph. D. thesis, Univ. Barcelona, 490 pp.; Tanhua T., Hainbucher D., Schroeder K., et al. 2013. The Mediterranean Sea system: a review and an introduction to the special issue, Ocean Sci. 9: 789-803. https://doi.org/10.5194/os-9-789-2013Test; Tecchio S., Ramírez-Llodra E., Sardà F., et al. 2011. Biodiversity of deep-sea demersal megafauna in western and central Mediterranean basins. Sci. Mar. 75: 341-350. https://doi.org/10.3989/scimar.201175n2341Test; Tecchio S., Ramírez-Llodra E., Aguzzi J., et al. 2013. Seasonal fluctuations of deep megabenthos: Finding evidence of standing stock accumulation in a flux-rich continental slope. Prog. Oceanogr. 118: 188-198. https://doi.org/10.1016/j.pocean.2013.07.015Test; Tselepides A., Lampadariou N., Hatziyanni E. 2004. Distribution of meiobenthos at bathyal depths in the Mediterranean Sea. A comparison between sites of contrasting productivity. Sci. Mar. 68: 39-51. https://doi.org/10.3989/scimar.2004.68s339Test; Tursi A., Mastrototaro F., Matarrese A., et al. 2004. Biodiversity of the white coral reefs in the Ionian Sea (Central Mediterranean). Chem. Ecol. 20: 107-116. https://doi.org/10.1080/02757540310001629170Test; Vargas-Yáñez M., García M.C., Moya F., et al. 2010. Cambio climático en el Mediterráneo español. Instituto Español de Oceanografía, Minist. Ciencia e Innovación, Madrid, 174 pp.; Wood S.N. 2006. Generalized Additive Models: An Introduction with R. Chapman and Hall, Florida, 391 pp. https://doi.org/10.1201/9781420010404Test; WoRMS Editorial Board. 2017. World Register of Marine Species (Accesed May 2017). http://www.marinespecies.orgTest; Zuur A.F., Tuck I.D., Bailey N. 2003. Dynamic factor analysis to estimate common trends in fisheries time series. Fish. Res. 60: 542-552 https://doi.org/10.1139/f03-030Test; https://scientiamarina.revistas.csic.es/index.php/scientiamarina/article/view/1796Test

  9. 9

    المساهمون: Maria Cristina Follesa, Blondine Agus, Andrea Bellodi, Rita Cannas, Francesca Capezzuto, Loredana Casciaro, Alessandro Cau, Danila Cuccu, Marilena Donnaloia, Ulla Fernandez-Arcaya, Vita Gancitano, Palma Gaudio, Martina Francesca Marongiu, Antonello Mulas, Paola Pesci, Cristina Porcu, Ilaria Rossetti, Letizia Sion, Maria Vallisneri, Pierluigi Carbonara

    المصدر: Scientia Marina, Vol 83, Iss S1, Pp 235-256 (2020)
    Scientia Marina, Vol 83, Iss S1, Pp 235-256 (2019)
    Scientia Marina; Vol. 83 No. S1 (2019); 235-256
    Scientia Marina; Vol. 83 Núm. S1 (2019); 235-256
    Scientia Marina
    Consejo Superior de Investigaciones Científicas (CSIC)

    وصف الملف: text/html; application/pdf; application/xml; ELETTRONICO

  10. 10
    دورية أكاديمية