دورية أكاديمية

Vegetable oil basestocks for lubricants ; Bases de aceite vegetal para lubricantes

التفاصيل البيبلوغرافية
العنوان: Vegetable oil basestocks for lubricants ; Bases de aceite vegetal para lubricantes
المؤلفون: Garcés, Rafael, Martínez-Force, Enrique, Salas, Joaquín J.
المصدر: Grasas y Aceites; Vol. 62 No. 1 (2011); 21-28 ; Grasas y Aceites; Vol. 62 Núm. 1 (2011); 21-28 ; 1988-4214 ; 0017-3495 ; 10.3989/gya.2011.v62.i1
بيانات النشر: Consejo Superior de Investigaciones Científicas
سنة النشر: 2011
المجموعة: Grasas y Aceites (E-Journal)
مصطلحات موضوعية: Biodegradable, Lubricant additives, Lubricant, Monounsaturaed fatty acids, Vegetable basestocks, Ácido graso monoinsaturado, Aditivos de lubricantes, Base vegetal, Lubricante
الوصف: The use of vegetable biodegradable basestocks for lubricant oils present several advantages over the much more extended mineral bases. These advantages refer to biodegradability, a renewable feedstock of local production, lubricant and viscosity index and lower costs than synthetic lubricant bases. Despite these benefits, their use in industry and motor vehicles is not yet extensive due their lower stability and higher pour points. Vegetable oils are esters of fatty acids and glycerol, and their physicochemical properties rely mainly on the composition of their acyl moieties. Thus, to assure the maximum levels of stability while maintaining acceptable behavior at low temperatures, monounsaturated fatty acids are preferred for this purpose. The presence of natural antioxidants also improves the properties of these vegetable based stocks as lubricants. These oils usually require additives to improve their viscosity value, oxidative stability and properties at low temperatures. In the present work, the different sources of vegetable oils appropriate for biolubricant production were reviewed. Their properties and the future improvement of the oil bases, oil based stock production, uses and additives are discussed. ; El uso de bases vegetales biodegradables para aceites lubricantes presenta varias ventajas sobre las mucho más extendidas bases minerales. Estas ventajas se centran sobre todo en su biodegradabilidad, en ser un recurso renovable de producción local, en su lubricidad y en su índice de viscosidad, presentando además costes más bajos que las bases sintéticas. Sin embargo, estas ventajas no han extendido el uso de bases vegetales ni en industria ni en automoción debido a su menor estabilidad y sus mayores puntos críticos de fluidez. Los aceites vegetales son ésteres de ácidos grasos y glicerol y sus propiedades físico-químicas dependen principalmente de su composición acílica. Así, para asegurar los máximos niveles de estabilidad manteniendo un comportamiento aceptable a bajas temperaturas los ácidos grasos ...
نوع الوثيقة: article in journal/newspaper
وصف الملف: application/pdf
اللغة: English
العلاقة: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1294/1293Test; Adhvaryu A, Biresaw G, Sahrma BK, Erhan SZ. 2006. Friction behavior of some seed oils: biobased lubricant applications. Ind. Eng. Chem. Res. 45, 3735-3740. doi:10.1021/ie051259z; Arnsek A, Vizintin, J. 1999. Scuffing load capacity of rapeseed-based oils. Lubr. Eng. 55, 11-18.; Asadauskas S, Erhan SZ. 1999. Depression of Pour Points of Vegetable Oils by Blending with Diluents Used for Biodegradable Lubricants. J. Am. Oil Chem. Soc. 73, 313-316. doi:10.1007/s11746-999-0237-6; Asadauskas S, Pérez JM, Duda JL. 1996. Oxidative stability and antiwear properties of high oleic vegetable oils. Lubr. Eng. 52, 877-882.; Asadauskas S, Pérez JM, Duda JL. 1997. Lubrication properties of castor oil-potential basestock for biodegradable lubricants. Lubr. Eng. 53, 35-41.; Badami RC, Patil KB. 1980. Structure and occurrence of unusual fatty acids in minor seed oils. Progress Lipid Res. 19, 119-153. doi:10.1016/0163-7827(80)90002-8; Battersby NS. 2000. The biodegradability and microbial toxicity testing of lubricants: some recommendations. Chemosphere 41, 1011-1027. doi:10.1016/S0045-6535(99)00517-2; Becker R, Knorr A. 1996. An evaluation of antioxidants for vegetable oils at elevated temperatures. Lubr. Sci. 8, 95-117. doi:10.1002/ls.3010080202; Belluco W, De Chifre l. 2000. Testing of vegetable-based cutting fluids by hole making operations. Lubr. Eng. 57, 12-16.; Biresaw G, Adhvaryu A, Erhan SZ. 2003. Friction properties of vegetable oils. J. Am. Oil Chem. Soc. 80, 697-704. doi:10.1007/s11746-003-0760-7; Biresaw G, Adhvaryu A, Erhan SZ, Carriere CJ. 2002. Friction and Adsorption Properties of Normal and High-Oleic Soybean Oils. J. Am. Oil Chem. Soc. 79, 53–58. doi:10.1007/s11746-002-0434-5; Cahoon EB, Coughlan SJ, Shanklin J. 2004. Characterization of a structurally and functionally diverged acyl-acyl carrier protein desaturase from milkweed seed. Plant Mol. Biol. 33, 1105-1110. doi:10.1023/A:1005821007291 PMid:9154992; Campanella A, Rustoy E, Baldessari A, Baltanás MA. 2010. Lubricants from chemically modified vegetable oils. Bioresource Technology 101, 245–254. doi:10.1016/j.biortech.2009.08.035 PMid:19716696; Cermak SC, Isbell TA. 2001. Synthesis of estolides from oleic and saturated fatty acids. J. Am. Oil Chem. Soc. 78, 557–565. doi:10.1007/s11746-001-0304-1; Dierig D, Ray DT. 2009. New Crops Breeding: Lesquerella. In: Handbook of Plant Breeding vol. 4. Vollmann J and Rajcan I Eds. New York, USA, Springer, pp 507-516.; Erhan SZ, Asadauskas, S. 2000. Lubricant basestocks from vegetable oils. Ind. Crops Products 11, 277-282. doi:10.1016/S0926-6690(99)00061-8; Fasina OO, Hallman H, Craig-Schmidt H, Clements C. 2006. Predicting temperature-dependence viscosity of vegetable oils from fatty acid composition. J. Am. Oil Chem. Soc. 83, 899-903. doi:10.1007/s11746-006-5044-8; Fernández-Martínez JM, Mancha M, Osorio J, Garcés R. 1997. Sunflower mutant containing high levels of palmitic acid in high oleic background. Euphytica 97, 113-116. doi:10.1023/A:1003045726610; Fox NJ, Stachowiak GW. 2007. Vegetable oil-based lubricants – A review of oxidation. Trib. Int. 40, 1035-1046. doi:10.1016/j.triboint.2006.10.001; Frankel EN. 1996. Antioxidants in lipid foods and their impact on food quality. Food Chem. 57, 51-55. doi:10.1016/0308-8146(96)00067-2; García-Zapateiro LA, Delgado MA, Franco JM, Valencia C, Ruiz-Méndez MV, Garcés R, Gallegos C, 2010. Oleins as a source of estolides for biolubricant applications. Grasas y Aceites 61, 171-174, doi:10.3989/gya.075209; Gunstone FD, Harwood JL, Dijkstra DJ. 2007. The lipid handbook. Boca Raton, Florida, USA: CRC Press.; Gunstone FD. 2004. Oxidation through reaction with oxygen. In Gunstone FD (Ed.) The Chemistry of Fats and Oils. Blackwell Publishing, Oxford, pp. 150–168.; Hagemann JW. 1988. Thermal Behavior and Polymorphism of Acylglycerols. In Garti N, sato K (Ed.) Crystallization and Polymorphism of Fats and Fatty Acids. Marcel Dekker, New York, pp 9–95.; Hamblin P. 1999. Oxidative stabilisation of synthetic fluids and vegetable oils. J. Synth. Lubr. 16, 157-181. doi:10.1002/jsl.3000160206; Hongtrakul V, Slabaugh MB, Knapp SJ. 1998. A seed specific Δ-12 oleate desaturase gene is duplicated, rearranged, and weakly expressed in high oleic acid sunflower lines. Crop Sci. 38: 1245–1249. doi:10.2135/cropsci1998.0011183X003800050022x; Hohn BR, Michaelis K, Dobereiner R. 1999. Load carrying capacity properties of fast biodegradable gear lubricants. Lubr. Eng. 55, 15-36.; Huang SW, Frankel EN, Bruce German J. 1994. Antioxidant activity of alpha and gamma tocopherols in bulk oils and in oil-in-water emulsions. J. Agric. Food Chem. 1994 42, 2108–2114. doi:10.1021/jf00046a007; Isbell TA, Lowery BA, De Keyser SS, Winchell ML, Cermak, SC. 2006. Physical properties of triglyceride estolides from lesquerella and castor oils. Ind. Crops Products 23: 256-263. doi:10.1016/j.indcrop.2005.08.001; Lilon I, Merrill O, Pike A, Ogden LV, Michael LD. 2008. Oxidative Stability of Conventional and High-Oleic Vegetable Oils with Added Antioxidants. J. Am. Oil Chem. Soc. 85, 771–776. doi:10.1007/s11746-008-1256-4; Mang T, Dresel W. 2001. Lubricants and lubrication. Wiley-VCH. Weinheim. Germany.; Marmesat S, Mancha M, Ruiz-Méndez MV, Dobarganes MC. 2005. Performance of sunflower oil with high levels of oleic and palmitic acids during industrial frying of almonds, peanuts, and sunflower seeds. J. Am. Oil Chem. Soc. 82, 505–510. doi:10.1007/s11746-005-1101-6; Marmesat S, Morales A, Velasco J, Ruiz-Méndez MV, Dobarganes MC. 2009. Relationship between changes in peroxide value and conjugated dienes during oxidation of sunflower oils with different degree of unsaturation. Grasas y Aceites 60, 155-160. doi:10.3989/gya.096908; Márquez-Ruiz G, Garcés R, León-Camacho M, Mancha M. 1999. Thermoxidative stability of triacylglycerols from mutant sunflower seeds. J. Am. Oil Chem. Soc. 76, 1169–1174. doi:10.1007/s11746-999-0091-6; Murakami T, Sakamoto H. 2003. Lubricating Properties of Vegetable Oils and Paraffinic Oils with Unsaturated Fatty Acids under High-Contact-Pressure Conditions in Four-Ball Tests. J. Synth. Lubr. 20, 183-201. doi:10.1002/jsl.3000200302; Noureddini, H, Teoh BC, Clements LD. 1992. Viscosities of vegetable oils and fatty acids. J. Am. Oil. Chem. Soc. 12, 1189-1191. doi:10.1007/BF02637678; Ohlrogge J, Browse J. 1995. Lipid biosynthesis. Plant Cell. 7, 957-970. PMid:7640528 PMCid:160893; Quinchia LA, Delgado MA, Valencia C, Franco JM, Gallegos C. 2009. Viscosity modification of high-oleic sunflower oil with polymeric additives for the design of new biolubricant formulations. Environ. Sci. Technol. 43, 2060-2065. doi:10.1021/es803047m; Remmele E, Widmann B. 1999. Suitability and Environmental Compatibility of Rapeseed Oil Based Hydraulic Fluids for Agricultural Machinery. J. Synth. Lubr. 16, 129-145. doi:10.1002/jsl.3000160204; Rojas-Barros P, de Haro A, Munoz J, Fernandez-Martinez JM. 2004. Isolation of a natural mutant in castor with high oleic/low ricinoleic acid content in the oil. Crop Science 44, 76-80.; Rudnik LR. 2005. Synthetics, Mineral Oils, and Bio-Based Lubricants: Chemistry and Technology. CRC Press, New York, USA. doi:10.1201/9781420027181; Salas JJ, Moreno-Pérez AJ, Martínez-Force E, Garcés R. 2007. Characterization of the glycerolipid composition of a high-palmitoleic acid sunflower mutant. Eur. J. Lipid Sci. Technol. 109, 591-599. doi:10.1002/ejlt.200600285; Soldatov KI. 1976. Chemical mutagenesis in sunflower breeding In: Proc. 7th Int. Sunflower Association. Vlaardingen, The Netherlands. p. 352-357.; Zubr J. 1997. Oil-seed crop: Camelina sativa. Ind. Crops Products 6, 113-119. doi:10.1016/S0926-6690(96)00203-8; https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1294Test
DOI: 10.3989/gya.045210
الإتاحة: https://doi.org/10.3989/gya.045210Test
https://doi.org/10.3989/gya.2011.v62.i1Test
https://doi.org/10.1021/ie051259zTest
https://doi.org/10.1007/s11746-999-0237-6Test
https://doi.org/10.1016/0163-7827Test(80)90002-8
https://doi.org/10.1016/S0045-6535Test(99)00517-2
https://doi.org/10.1002/ls.3010080202Test
https://doi.org/10.1007/s11746-003-0760-7Test
https://doi.org/10.1007/s11746-002-0434-5Test
https://doi.org/10.1023/A:1005821007291Test
حقوق: Copyright (c) 2011 Consejo Superior de Investigaciones Científicas (CSIC) ; https://creativecommons.org/licenses/by/4.0Test
رقم الانضمام: edsbas.1D8CA22E
قاعدة البيانات: BASE