دورية أكاديمية

Poly(lactide-co-glycolide)-rifampicin nanoparticles efficiently clear Mycobacterium bovis BCG infection in macrophages and remain membrane-bound in phago-lysosomes.

التفاصيل البيبلوغرافية
العنوان: Poly(lactide-co-glycolide)-rifampicin nanoparticles efficiently clear Mycobacterium bovis BCG infection in macrophages and remain membrane-bound in phago-lysosomes.
المؤلفون: Kalluru, Raja, Fenaroli, Federico, Westmoreland, David, Ulanova, Lilia, Maleki, Atoosa, Roos, Norbert, Madsen, Marie Paulsen, Koster, Gerbrand, Egge-Jacobsen, Wolfgang, Wilson, Steven, Roberg-Larsen, Hanna, Khuller, Gopal K., Singh, Amandeep, Nyström, Bo, Griffiths, Gareth
المصدر: Journal of Cell Science; 7/15/2013, Vol. 126 Issue 14, p3043-3054, 12p
مصطلحات موضوعية: RIFAMPIN, DIAGNOSIS of bacterial diseases, ANTITUBERCULAR agents, MYCOBACTERIUM bovis, BIODEGRADABLE nanoparticles, BACTERIAL antigens, LYSOSOMES
مستخلص: Nanoparticles (NPs) are increasingly used as biodegradable vehicles to selectively deliver therapeutic agents such as drugs or antigens to cells. The most widely used vehicle for this purpose is based on copolymers of lactic acid and glycolic acid (PLGA) and has been extensively used in experiments aimed at delivering antibiotics against Mycobacterium tuberculosis in animal models of tuberculosis. Here, we describe fabrication of PLGA NPs containing either a high concentration of rifampicin or detectable levels of the green fluorescent dye, coumarin-6. Our goal here was twofold: first to resolve the controversial issue of whether, after phagocytic uptake, PLGA NPs remain membrane-bound or whether they escape into the cytoplasm, as has been widely claimed. Second, we sought to make NPs that enclosed sufficient rifampicin to efficiently clear macrophages of infection with Mycobacterium bovis BCG. Using fluorescence microscopy and immuno-electron microscopy, in combination with markers for lysosomes, we show that BCG bacteria, as expected, localized to early phagosomes, but that at least 90% of PLGA particles were targeted to, and remained in, low pH, hydrolaserich phago-lysosomes. Our data collectively argue that PLGA NPs remain membrane-enclosed in macrophages for at least 13 days and degrade slowly. Importantly, provided that the NPs are fabricated with sufficient antibiotic, one dose given after infection is sufficient to efficiently clear the BCG infection after 9-12 days of treatment, as shown by estimates of the number of bacterial colonies in vitro. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Cell Science is the property of Company of Biologists Ltd. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:00219533
DOI:10.1242/jcs.121814