Core-Shell Palladium/MOF Platforms as Diffusion-Controlled Nanoreactors in Living Cells and Tissue Models

التفاصيل البيبلوغرافية
العنوان: Core-Shell Palladium/MOF Platforms as Diffusion-Controlled Nanoreactors in Living Cells and Tissue Models
المؤلفون: Fernando López, José L. Mascareñas, Beatriz Pelaz, María Tomás-Gamasa, Carolina Carrillo-Carrión, Paolo Destito, Aitor Alvarez, Raquel Martínez, Pablo del Pino
المساهمون: Universidade de Santiago de Compostela. Centro de Investigación en Química Biolóxica e Materiais Moleculares, Universidade de Santiago de Compostela. Departamento de Física de Partículas, Universidade de Santiago de Compostela. Departamento de Química Inorgánica, Universidade de Santiago de Compostela. Departamento de Química Orgánica
المصدر: Minerva: Repositorio Institucional de la Universidad de Santiago de Compostela
Universidad de Santiago de Compostela (USC)
Cell Reports Physical Science, Vol 1, Iss 6, Pp 100076-(2020)
Minerva. Repositorio Institucional de la Universidad de Santiago de Compostela
instname
Cell Reports. Physical Science
بيانات النشر: Cell Press, 2020.
سنة النشر: 2020
مصطلحات موضوعية: Materials science, Bioorthogonal chemistry, Passivation, biocompatible organometallic catalyst, General Physics and Astronomy, chemistry.chemical_element, Nanotechnology, Nanoreactor, 010402 general chemistry, 01 natural sciences, Article, Catalysis, chemistry.chemical_compound, Imidazolate, core-shell nanocomposite, General Materials Science, Catalytic spheroid, Intracellular catalysis, diffusion-controlled reaction, MOF, 010405 organic chemistry, General Engineering, Core-shell nanocomposite, General Chemistry, Microporous material, palladium, bioorthogonal chemistry, lcsh:QC1-999, 3. Good health, 0104 chemical sciences, General Energy, chemistry, Diffusion-controlled reaction, intracellular catalysis, catalytic spheroid, nanoreactor, ZIF-8, lcsh:Physics, Palladium, Biocompatible organometallic catalyst
الوصف: Summary Translating the potential of transition metal catalysis to biological and living environments promises to have a profound impact in chemical biology and biomedicine. A major challenge in the field is the creation of metal-based catalysts that remain active over time. Here, we demonstrate that embedding a reactive metallic core within a microporous metal-organic framework-based cloak preserves the catalytic site from passivation and deactivation, while allowing a suitable diffusion of the reactants. Specifically, we report the fabrication of nanoreactors composed of a palladium nanocube core and a nanometric imidazolate framework, which behave as robust, long-lasting nanoreactors capable of removing propargylic groups from phenol-derived pro-fluorophores in biological milieu and inside living cells. These heterogeneous catalysts can be reused within the same cells, promoting the chemical transformation of recurrent batches of reactants. We also report the assembly of tissue-like 3D spheroids containing the nanoreactors and demonstrate that they can perform the reactions in a repeated manner.
Graphical Abstract
Highlights The MOF cloak allows diffusion of reactants while protecting the Pd catalytic chamber The MOF cloak provides for orthogonality (substrate selectivity) and biocompatibility The core-shell nanoreactors intracellularly process sequential batches of reactants Demonstration of a transition-metal promoted reaction in a living tissue model
Martínez et al. demonstrate the feasibility of using core-shell Pd/MOF nanoreactors as intracellular metallo-catalysts, which can be reused within the same cells with recurrent batches of reactants, both in adherent cell cultures and in spheroids. The MOF-based shell preserves the integrity of the catalytic chamber while providing for bio-orthogonality.
وصف الملف: application/pdf
اللغة: English
الوصول الحر: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::84541ae36e1f8ead3258d9039f43c804Test
https://hdl.handle.net/10347/23205Test
حقوق: OPEN
رقم الانضمام: edsair.doi.dedup.....84541ae36e1f8ead3258d9039f43c804
قاعدة البيانات: OpenAIRE