دورية أكاديمية

Urban greenhouse gas emissions from the Berlin area: A case study using airborne CO2 and CH4 in situ observations in summer 2018

التفاصيل البيبلوغرافية
العنوان: Urban greenhouse gas emissions from the Berlin area: A case study using airborne CO2 and CH4 in situ observations in summer 2018
المؤلفون: T. Klausner, M. Mertens, H. Huntrieser, M. Galkowski, G. Kuhlmann, R. Baumann, A. Fiehn, P. Jöckel, M. Pühl, A. Roiger
المصدر: Elementa: Science of the Anthropocene, Vol 8, Iss 1 (2020)
بيانات النشر: BioOne, 2020.
سنة النشر: 2020
المجموعة: LCC:Environmental sciences
مصطلحات موضوعية: urban, greenhouse gas, carbon dioxide, methane, airborne mass balance approach, in-situ, Environmental sciences, GE1-350
الوصف: Urban areas are recognised as a significant source of greenhouse gas emissions (GHG), such as carbon dioxide (CO2) and methane (CH4). The total amount of urban GHG emissions, especially for CH4, however, is not well quantified. Here we report on airborne in situ measurements using a Picarro G1301-m analyser aboard the DLR Cessna Grand Caravan to study GHG emissions downwind of the German capital Berlin. In total, five aircraft-based mass balance experiments were conducted in July 2018 within the Urban Climate Under Change [UC]2 project. The detection and isolation of the Berlin plume was often challenging because of comparatively small GHG signals above variable atmospheric background concentrations. However, on July 20th enhancements of up to 4 ppm CO2 and 21 ppb CH4 were observed over a horizontal extent of roughly 45 to 65 km downwind of Berlin. These enhanced mixing ratios are clearly distinguishable from the background and can partly be assigned to city emissions. The estimated CO2 emission flux of 1.39 ± 0.76 t s–1 is in agreement with current inventories, while the CH4 emission flux of 5.20 ± 1.70 kg s–1 is almost two times larger than the highest reported value in the inventories. We localized the source area with HYSPLIT trajectory calculations and the global/regional nested chemistry climate model MECO(n) (down to ~1 km), and investigated the contribution from sewage-treatment plants and waste deposition to CH4, which are treated differently by the emission inventories. Our work highlights the importance of strong CH4 sources in the vicinity of Berlin and shows, that there is limited understanding of CH4 emissions from urban regions, even for major cities in highly developed countries like Germany. Furthermore, we show that a detailed knowledge of GHG inflow mixing ratios is necessary to suitably estimate emission rates for Berlin.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2325-1026
العلاقة: https://www.elementascience.org/articles/411Test; https://doaj.org/toc/2325-1026Test
DOI: 10.1525/elementa.411
الوصول الحر: https://doaj.org/article/50f610044c0f404fa789e68c38f94462Test
رقم الانضمام: edsdoj.50f610044c0f404fa789e68c38f94462
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:23251026
DOI:10.1525/elementa.411