يعرض 1 - 4 نتائج من 4 نتيجة بحث عن '"Th17 Cell"', وقت الاستعلام: 0.90s تنقيح النتائج
  1. 1
  2. 2
    دورية أكاديمية

    وصف الملف: application/pdf

    العلاقة: Dai, Jinlu; Lu, Yi; Roca, Hernan; Keller, Jill M.; Zhang, Jian; McCauley, Laurie K.; Keller, Evan T. (2017). "Immune mediators in the tumor microenvironment of prostate cancer." Cancer Communications 36(1): 1-8.; http://hdl.handle.net/2027.42/152631Test; Cancer Communications; Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997; 89 2: 309 – 319. 10.1016/S0092‐8674(00)80209‐3; Soki FN, Cho SW, Kim YW, Jones JD, Park SI, Koh AJ. Bone marrow macrophages support prostate cancer growth in bone. Oncotarget. 2015; 6 34: 35782 – 35796 4742141; Ershler WB, Harman SM, Keller ET. Immunologic aspects of osteoporosis. Dev Comp Immunol. 1997; 21 6: 487 – 499. 10.1016/S0145‐305X(97)00029‐3; Yasuda H, Shima N, Nakagawa N, Mochizuki SI, Yano K, Fujise N. Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology. 1998; 139 3: 1329 – 1337.; Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998; 93 2: 165 – 176. 10.1016/S0092‐8674(00)81569‐X; Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T. RANK is essential for osteoclast and lymph node development. Genes Dev. 1999; 13 18: 2412 – 2424. 10.1101/gad.13.18.2412 317030; Kong YY, Boyle WJ, Penninger JM. Osteoprotegerin ligand: a common link between osteoclastogenesis, lymph node formation and lymphocyte development. Immunol Cell Biol. 1999; 77 2: 188 – 193. 10.1046/j.1440‐1711.1999.00815.x; Yang Y, Ma Y, Sheng J, Huang Y, Zhao Y, Fang W. A multicenter, retrospective epidemiologic survey of the clinical features and management of bone metastatic disease in China. Chin J Cancer. 2016; 35: 40. 10.1186/s40880‐016‐0102‐6 4845386; Atkins GJ, Haynes DR, Graves SE, Evdokiou A, Hay S, Bouralexis S. Expression of osteoclast differentiation signals by stromal elements of giant cell tumors. J Bone Miner Res. 2000; 15 4: 640 – 649. 10.1359/jbmr.2000.15.4.640; Brown JM, Corey E, Lee ZD, True LD, Yun TJ, Tondravi M. Osteoprotegerin and rank ligand expression in prostate cancer. Urology. 2001; 57 4: 611 – 616. 10.1016/S0090‐4295(00)01122‐5; Chen G, Sircar K, Aprikian A, Potti A, Goltzman D, Rabbani SA. Expression of RANKL/RANK/OPG in primary and metastatic human prostate cancer as markers of disease stage and functional regulation. Cancer. 2006; 107 2: 289 – 298. 10.1002/cncr.21978; Perez‐Martinez FC, Alonso V, Sarasa JL, Manzarbeitia F, Vela‐Navarrete R, Calahorra FJ. Receptor activator of nuclear factor‐kappaB ligand (RANKL) as a novel prognostic marker in prostate carcinoma. Histol Histopathol. 2008; 23 6: 709 – 715.; Zhang J, Dai J, Qi Y, Lin DL, Smith P, Strayhorn C. Osteoprotegerin inhibits prostate cancer‐induced osteoclastogenesis and prevents prostate tumor growth in the bone. J Clin Invest. 2001; 107 10: 1235 – 1244. 10.1172/JCI11685 209296; Morrissey C, Kostenuik PL, Brown LG, Vessella RL, Corey E. Host‐derived RANKL is responsible for osteolysis in a C4‐2 human prostate cancer xenograft model of experimental bone metastases. BMC Cancer. 2007; 7: 148. 10.1186/1471‐2407‐7‐148 2034387; Zhang J, Dai J, Yao Z, Lu Y, Dougall W, Keller ET. Soluble receptor activator of nuclear factor kappaB Fc diminishes prostate cancer progression in bone. Cancer Res. 2003; 63 22: 7883 – 7890.; Luger NM, Honore P, Sabino MA, Schwei MJ, Rogers SD, Mach DB. Osteoprotegerin diminishes advanced bone cancer pain. Cancer Res. 2001; 61 10: 4038 – 4047.; Honore P, Luger NM, Sabino MA, Schwei MJ, Rogers SD, Mach DB. Osteoprotegerin blocks bone cancer‐induced skeletal destruction, skeletal pain and pain‐related neurochemical reorganization of the spinal cord. Nat Med. 2000; 6 5: 521 – 528. 10.1038/74999; Armstrong AP, Miller RE, Jones JC, Zhang J, Keller ET, Dougall WC. RANKL acts directly on RANK‐expressing prostate tumor cells and mediates migration and expression of tumor metastasis genes. Prostate. 2008; 68 1: 92 – 104. 10.1002/pros.20678; Holen I, Croucher PI, Hamdy FC, Eaton CL. Osteoprotegerin (OPG) is a survival factor for human prostate cancer cells. Cancer Res. 2002; 62 6: 1619 – 1623.; Fizazi K, Lipton A, Mariette X, Body JJ, Rahim Y, Gralow JR. Randomized phase II trial of denosumab in patients with bone metastases from prostate cancer, breast cancer, or other neoplasms after intravenous bisphosphonates. J Clin Oncol. 2009; 27 10: 1564 – 1571. 10.1200/JCO.2008.19.2146; Muir VJ, Scott LJ. Denosumab: in cancer treatment‐induced bone loss. BioDrugs Clin Immunother Biopharm Gene Ther. 2010; 24 6: 379 – 386.; Smith MR, Egerdie B, Hernandez Toriz N, Feldman R, Tammela TL, Saad F. Denosumab in men receiving androgen‐deprivation therapy for prostate cancer. N Engl J Med. 2009; 361 8: 745 – 755. 10.1056/NEJMoa0809003 3038121; Fizazi K, Carducci M, Smith M, Damiao R, Brown J, Karsh L. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration‐resistant prostate cancer: a randomised, double‐blind study. Lancet. 2011; 377 9768: 813 – 822. 10.1016/S0140‐6736(10)62344‐6 3090685; Ignatoski KM, Escara‐Wilke JF, Dai JL, Lui A, Dougall W, Daignault S. RANKL inhibition is an effective adjuvant for docetaxel in a prostate cancer bone metastases model. Prostate. 2008; 68 8: 820 – 829. 10.1002/pros.20744; Zhang J, Lu Y, Dai J, Yao Z, Kitazawa R, Kitazawa S. In vivo real‐time imaging of TGF‐beta‐induced transcriptional activation of the RANK ligand gene promoter in intraosseous prostate cancer. Prostate. 2004; 59 4: 360 – 369. 10.1002/pros.20019; Kim J, Lahl K, Hori S, Loddenkemper C, Chaudhry A, de Roos P. Cutting edge: depletion of Foxp3 + cells leads to induction of autoimmunity by specific ablation of regulatory T cells in genetically targeted mice. J Immunol. 2009; 183 12: 7631 – 7634. 10.4049/jimmunol.0804308; Lissbrant IF, Stattin P, Wikstrom P, Damber JE, Egevad L, Bergh A. Tumor associated macrophages in human prostate cancer: relation to clinicopathological variables and survival. Int J Oncol. 2000; 17 3: 445 – 451.; Nonomura N, Takayama H, Nakayama M, Nakai Y, Kawashima A, Mukai M. Infiltration of tumour‐associated macrophages in prostate biopsy specimens is predictive of disease progression after hormonal therapy for prostate cancer. BJU Int. 2010.; Soki FN, Koh AJ, Jones JD, Kim YW, Dai J, Keller ET. Polarization of prostate cancer‐associated macrophages is induced by milk fat globule‐EGF factor 8 (MFG‐E8)‐mediated efferocytosis. J Biol Chem. 2014; 289 35: 24560 – 24572. 10.1074/jbc.M114.571620 4148880; Wong CP, Bray TM, Ho E. Induction of proinflammatory response in prostate cancer epithelial cells by activated macrophages. Cancer Lett. 2009; 276 1: 38 – 46. 10.1016/j.canlet.2008.10.025; Keller ET, Li LY. The first Tianjin, China forum on tumor microenvironment. Cancer Res. 2011; 71 2: 310 – 313. 10.1158/0008‐5472.CAN‐10‐2930 3075440; Huang Y, Yuan J, Righi E, Kamoun WS, Ancukiewicz M, Nezivar J. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc Natl Acad Sci USA. 2012; 109 43: 17561 – 17566. 10.1073/pnas.1215397109 3491458; Keller ET, Zhang J, Cooper CR, Smith PC, McCauley LK, Pienta KJ. Prostate carcinoma skeletal metastases: cross‐talk between tumor and bone. Cancer Metastasis Rev. 2001; 20 3–4: 333 – 349. 10.1023/A:1015599831232; Niu YN, Xia SJ. Stroma‐epithelium crosstalk in prostate cancer. Asian J Androl. 2009; 11 1: 28 – 35. 10.1038/aja.2008.39; Yoneda T, Hiraga T. Crosstalk between cancer cells and bone microenvironment in bone metastasis. Biochem Biophys Res Commun. 2005; 328 3: 679 – 687. 10.1016/j.bbrc.2004.11.070; Omabe M, Ezeani M. Infection, inflammation and prostate carcinogenesis. Infect Genet Evol. 2011.; Vasto S, Carruba G, Candore G, Italiano E, Di Bona D, Caruso C. Inflammation and prostate cancer. Future Oncol. 2008; 4 5: 637 – 645. 10.2217/14796694.4.5.637; Teng MW, Ritchie DS, Neeson P, Smyth MJ. Biology and clinical observations of regulatory T cells in cancer immunology. Curr Top Microbiol Immunol. 2010.; Miller AM, Lundberg K, Ozenci V, Banham AH, Hellstrom M, Egevad L. CD4+ CD25high T cells are enriched in the tumor and peripheral blood of prostate cancer patients. J Immunol. 2006; 177 10: 7398 – 7405. 10.4049/jimmunol.177.10.7398; Sfanos KS, Bruno TC, Maris CH, Xu L, Thoburn CJ, DeMarzo AM. Phenotypic analysis of prostate‐infiltrating lymphocytes reveals TH17 and Treg skewing. Clin Cancer Res. 2008; 14 11: 3254 – 3261. 10.1158/1078‐0432.CCR‐07‐5164 3082357; Kiniwa Y, Miyahara Y, Wang HY, Peng W, Peng G, Wheeler TM. CD8+ Foxp3+ regulatory T cells mediate immunosuppression in prostate cancer. Clin Cancer Res. 2007; 13 23: 6947 – 6958. 10.1158/1078‐0432.CCR‐07‐0842; Degl’Innocenti E, Grioni M, Capuano G, Jachetti E, Freschi M, Bertilaccio MT. Peripheral T‐cell tolerance associated with prostate cancer is independent from CD4+ CD25+ regulatory T cells. Can Res. 2008; 68 1: 292 – 300. 10.1158/0008‐5472.CAN‐07‐2429; Yokokawa J, Cereda V, Remondo C, Gulley JL, Arlen PM, Schlom J. Enhanced functionality of CD4+ CD25(high)FoxP3+ regulatory T cells in the peripheral blood of patients with prostate cancer. Clin Cancer Res. 2008; 14 4: 1032 – 1040. 10.1158/1078‐0432.CCR‐07‐2056; Culig Z, Puhr M. Interleukin‐6: a multifunctional targetable cytokine in human prostate cancer. Mol Cell Endocrinol. 2011.; George DJ, Halabi S, Shepard TF, Sanford B, Vogelzang NJ, Small EJ. The prognostic significance of plasma interleukin‐6 levels in patients with metastatic hormone‐refractory prostate cancer: results from cancer and leukemia group B 9480. Clin Cancer Res. 2005; 11 5: 1815 – 1820. 10.1158/1078‐0432.CCR‐04‐1560; Alcover J, Filella X, Luque P, Molina R, Izquierdo L, Auge JM. Prognostic value of IL‐6 in localized prostatic cancer. Anticancer Res. 2010; 30 10: 4369 – 4372.; Stark JR, Li H, Kraft P, Kurth T, Giovannucci EL, Stampfer MJ. Circulating prediagnostic interleukin‐6 and C‐reactive protein and prostate cancer incidence and mortality. Int J Cancer. 2009; 124 11: 2683 – 2689. 10.1002/ijc.24241 2667697; Chung TD, Yu JJ, Spiotto MT, Bartkowski M, Simons JW. Characterization of the role of IL‐6 in the progression of prostate cancer. Prostate. 1999; 38 3: 199 – 207. 10.1002/(SICI)1097‐0045(19990215)38:33.0.CO;2‐H; Alberti C. Neuroendocrine differentiation in prostate carcinoma: focusing on its pathophysiologic mechanisms and pathological features. Il Giornale di chirurgia. 2010; 31 11–12: 568 – 574.; Lee GT, Kwon SJ, Lee JH, Jeon SS, Jang KT, Choi HY. Macrophages induce neuroendocrine differentiation of prostate cancer cells via BMP6‐IL6 Loop. Prostate. 2011.; Smith ND, Schulze‐Hoepfner FT, Veliceasa D, Filleur S, Shareef S, Huang L. Pigment epithelium‐derived factor and interleukin‐6 control prostate neuroendocrine differentiation via feed‐forward mechanism. J Urol. 2008; 179 6: 2427 – 2434. 10.1016/j.juro.2008.01.081 2849797; Okamoto M, Lee C, Oyasu R. Autocrine effect of androgen on proliferation of an androgen‐responsive prostatic carcinoma cell line, LNCaP: role of interleukin‐6. Endocrinology. 1997; 138: 5071 – 5074. 10.1210/endo.138.11.5653; Qiu Y, Ravi L, Kung HJ. Requirement of ErbB2 for signalling by interleukin‐6 in prostate carcinoma cells. Nature. 1998; 393 6680: 83 – 85. 10.1038/30012; Wallner L, Dai J, Escara‐Wilke J, Zhang J, Yao Z, Lu Y. Inhibition of interleukin‐6 with CNTO328, an anti‐interleukin‐6 monoclonal antibody, inhibits conversion of androgen‐dependent prostate cancer to an androgen‐independent phenotype in orchiectomized mice. Cancer Res. 2006; 66 6: 3087 – 3095. 10.1158/0008‐5472.CAN‐05‐3447; Culig Z, Steiner H, Bartsch G, Hobisch A. Interleukin‐6 regulation of prostate cancer cell growth. J Cell Biochem. 2005; 95 3: 497 – 505. 10.1002/jcb.20477; Chung TD, Yu JJ, Kong TA, Spiotto MT, Lin JM. Interleukin‐6 activates phosphatidylinositol‐3 kinase, which inhibits apoptosis in human prostate cancer cell lines. Prostate. 2000; 42 1: 1 – 7. 10.1002/(SICI)1097‐0045(20000101)42:13.0.CO;2‐Y; Lee SO, Lou W, Johnson CS, Trump DL, Gao AC. Interleukin‐6 protects LNCaP cells from apoptosis induced by androgen deprivation through the Stat3 pathway. Prostate. 2004; 60 3: 178 – 186. 10.1002/pros.20045; Corey E, Quinn JE, Buhler KR, Nelson PS, Macoska JA, True LD. LuCaP 35: a new model of prostate cancer progression to androgen independence. Prostate. 2003; 55 4: 239 – 246. 10.1002/pros.10198; Smith PC, Keller ET. Anti‐interleukin‐6 monoclonal antibody induces regression of human prostate cancer xenografts in nude mice. Prostate. 2001; 48: 47 – 53. 10.1002/pros.1080; Rojas A, Liu G, Coleman I, Nelson PS, Zhang M, Dash R. IL‐6 promotes prostate tumorigenesis and progression through autocrine cross‐activation of IGF‐IR. Oncogene. 2011 3112005; Roca H, Varsos ZS, Sud S, Craig MJ, Ying C, Pienta KJ. CCL2 and interleukin‐6 promote survival of human CD11b + peripheral blood mononuclear cells and induce M2‐type macrophage polarization. J Biol Chem. 2009; 284 49: 34342 – 34354. 10.1074/jbc.M109.042671 2797202; Dorff TB, Goldman B, Pinski JK, Mack PC, Lara PN Jr, Van Veldhuizen PJ Jr. Clinical and correlative results of SWOG S0354: a phase II trial of CNTO328 (siltuximab), a monoclonal antibody against interleukin‐6, in chemotherapy‐pretreated patients with castration‐resistant prostate cancer. Clin Cancer Res. 2010; 16 11: 3028 – 3034. 10.1158/1078‐0432.CCR‐09‐3122 2898710; Cavarretta IT, Neuwirt H, Zaki MH, Steiner H, Hobisch A, Nemeth JA. Mcl‐1 is regulated by IL‐6 and mediates the survival activity of the cytokine in a model of late stage prostate carcinoma. Adv Exp Med Biol. 2008; 617: 547 – 555. 10.1007/978‐0‐387‐69080‐3_56; Walsh MC, Choi Y. Biology of the RANKL‐RANK‐OPG system in immunity, bone, and beyond. Front Immunol. 2014; 5: 511. 10.3389/fimmu.2014.00511 4202272; O’Brien CA, Nakashima T, Takayanagi H. Osteocyte control of osteoclastogenesis. Bone. 2013; 54 2: 258 – 263. 10.1016/j.bone.2012.08.121; Sabbota AL, Kim HR, Zhe X, Fridman R, Bonfil RD, Cher ML. Shedding of RANKL by tumor‐associated MT1‐MMP activates Src‐dependent prostate cancer cell migration. Can Res. 2010; 70 13: 5558 – 5566. 10.1158/0008‐5472.CAN‐09‐4416; Akins EJ, Moore ML, Tang S, Willingham MC, Tooze JA, Dubey P. In situ vaccination combined with androgen ablation and regulatory T‐cell depletion reduces castration‐resistant tumor burden in prostate‐specific pten knockout mice. Can Res. 2010; 70 9: 3473 – 3482. 10.1158/0008‐5472.CAN‐09‐2490; Rakebrandt N, Littringer K, Joller N. Regulatory T cells: balancing protection versus pathology. Swiss Med Wkly. 2016; 146: w14343.; Young MR. Th17 Cells in protection from tumor or promotion of tumor progression. J Clin Cell Immunol. 2016; 7 3: 431. 10.4172/2155‐9899.1000431 4955851; Kottke T, Sanchez‐Perez L, Diaz RM, Thompson J, Chong H, Harrington K. Induction of hsp70‐mediated Th17 autoimmunity can be exploited as immunotherapy for metastatic prostate cancer. Can Res. 2007; 67 24: 11970 – 11979. 10.1158/0008‐5472.CAN‐07‐2259; Derhovanessian E, Adams V, Hahnel K, Groeger A, Pandha H, Ward S. Pretreatment frequency of circulating IL‐17+ CD4+ T‐cells, but not Tregs, correlates with clinical response to whole‐cell vaccination in prostate cancer patients. Int J Cancer. 2009; 125 6: 1372 – 1379. 10.1002/ijc.24497; Gabrilovich DI, Nagaraj S. Myeloid‐derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009; 9 3: 162 – 174. 10.1038/nri2506 2828349; Gao D, Mittal V. The role of bone‐marrow‐derived cells in tumor growth, metastasis initiation and progression. Trends Mol Med. 2009; 15 8: 333 – 343. 10.1016/j.molmed.2009.06.006; Herroon MK, Rajagurubandara E, Rudy DL, Chalasani A, Hardaway AL, Podgorski I. Macrophage cathepsin K promotes prostate tumor progression in bone. Oncogene. 2013; 32 12: 1580 – 1593. 10.1038/onc.2012.166; Park SI, Liao J, Berry JE, Li X, Koh AJ, Michalski ME. Cyclophosphamide creates a receptive microenvironment for prostate cancer skeletal metastasis. Cancer Res. 2012; 72 10: 2522 – 2532. 10.1158/0008‐5472.CAN‐11‐2928 3457788; Park SI, Soki FN, McCauley LK. Roles of bone marrow cells in skeletal metastases: no longer bystanders. Cancer Microenviron. 2011; 4 3: 237 – 246. 10.1007/s12307‐011‐0081‐8 3234319; Richardsen E, Uglehus RD, Due J, Busch C, Busund LT. The prognostic impact of M‐CSF, CSF‐1 receptor, CD68 and CD3 in prostatic carcinoma. Histopathology. 2008; 53 1: 30 – 38. 10.1111/j.1365‐2559.2008.03058.x; Li X, Loberg R, Liao J, Ying C, Snyder LA, Pienta KJ. A destructive cascade mediated by CCL2 facilitates prostate cancer growth in bone. Cancer Res. 2009; 69 4: 1685 – 1692. 10.1158/0008‐5472.CAN‐08‐2164 2698812; Hume DA. Differentiation and heterogeneity in the mononuclear phagocyte system. Mucosal Immunol. 2008; 1 6: 432 – 441. 10.1038/mi.2008.36; Danilin S, Merkel AR, Johnson JR, Johnson RW, Edwards JR, Sterling JA. Myeloid‐derived suppressor cells expand during breast cancer progression and promote tumor‐induced bone destruction. Oncoimmunology. 2012; 1 9: 1484 – 1494. 10.4161/onci.21990 3525604; Murdoch C, Muthana M, Coffelt SB, Lewis CE. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer. 2008; 8 8: 618 – 631. 10.1038/nrc2444; Mevorach D, Trahtemberg U, Krispin A, Attalah M, Zazoun J, Tabib A. What do we mean when we write “senescence,” “apoptosis,” “necrosis,” or “clearance of dying cells”?. Ann NY Acad Sci. 2010; 1209: 1 – 9. 10.1111/j.1749‐6632.2010.05774.x; Rothlin CV, Lemke G. TAM receptor signaling and autoimmune disease. Curr Opin Immunol. 2010; 22 6: 740 – 746. 10.1016/j.coi.2010.10.001 2997887; Aziz M, Jacob A, Matsuda A, Wang P. Review: milk fat globule‐EGF factor 8 expression, function and plausible signal transduction in resolving inflammation. Apoptosis. 2011; 16 11: 1077 – 1086. 10.1007/s10495‐011‐0630‐0; Hanayama R, Tanaka M, Miwa K, Shinohara A, Iwamatsu A, Nagata S. Identification of a factor that links apoptotic cells to phagocytes. Nature. 2002; 417 6885: 182 – 187. 10.1038/417182a; Selvarajan K, Moldovan L, Chandrakala AN, Litvinov D, Parthasarathy S. Peritoneal macrophages are distinct from monocytes and adherent macrophages. Atherosclerosis. 2011; 219 2: 475 – 483. 10.1016/j.atherosclerosis.2011.09.014; Nakatani H, Aoki N, Nakagawa Y, Jin‐No S, Aoyama K, Oshima K. Weaning‐induced expression of a milk‐fat globule protein, MFG‐E8, in mouse mammary glands, as demonstrated by the analyses of its mRNA, protein and phosphatidylserine‐binding activity. Biochem J. 2006; 395 1: 21 – 30. 10.1042/BJ20051459 1409693; Yang C, Hayashida T, Forster N, Li C, Shen D, Maheswaran S. The integrin alpha(v)beta(3‐5) ligand MFG‐E8 is a p63/p73 target gene in triple‐negative breast cancers but exhibits suppressive functions in ER(+) and erbB2(+) breast cancers. Cancer Res. 2011; 71 3: 937 – 945. 10.1158/0008‐5472.CAN‐10‐1471

  3. 3
  4. 4