دورية أكاديمية

Synthesis, pharmacological assessment, and molecular modeling of acetylcholinesterase/butyrylcholinesterase inhibitors: Effect against amyloid-β-induced neurotoxicity

التفاصيل البيبلوغرافية
العنوان: Synthesis, pharmacological assessment, and molecular modeling of acetylcholinesterase/butyrylcholinesterase inhibitors: Effect against amyloid-β-induced neurotoxicity
المؤلفون: Silva, Daniel, Chioua, Mourad, Samadi, Abdelouahid, Agostinho, Paula, Garção, Pedro, Lajarín-Cuesta, Rocío, Ríos, Cristobal de los, Iriepa, Isabel, Moraleda, Ignacio, González-Lafuente, Laura, Mendes, Eduarda, Pérez, Concepción, Rodríguez-Franco, María Isabel, Marco-Contelles, José, Carreiras, M. Carmo
بيانات النشر: American Chemical Society
سنة النشر: 2013
المجموعة: Digital.CSIC (Consejo Superior de Investigaciones Científicas / Spanish National Research Council)
مصطلحات موضوعية: neuroprotection, Aβ peptide, AChE/BuChE inhibitors, Ca2+ dyshomeostasis, Alzheimer’s disease, quinolinodonepezils, Pyridonepezils
الوصف: The synthesis, molecular modeling, and pharmacological analysis of phenoxyalkylamino-4-phenylnicotinates (2-7), phenoxyalkoxybenzylidenemalononitriles (12, 13), pyridonepezils (14-18), and quinolinodonepezils (19-21) are described. Pyridonepezils 15-18 were found to be selective and moderately potent regarding the inhibition of hAChE, whereas quinolinodonepezils 19-21 were found to be poor inhibitors of hAChE. The most potent and selective hAChE inhibitor was ethyl 6-(4-(1-benzylpiperidin-4-yl) butylamino)-5-cyano-2-methyl-4-phenylnicotinate (18) [IC50 (hAChE) = 0.25 ± 0.02 μM]. Pyridonepezils 15-18 and quinolinodonepezils 20-21 are more potent selective inhibitors of EeAChE than hAChE. The most potent and selective EeAChE inhibitor was ethyl 6-(2-(1-benzylpiperidin-4-yl)ethylamino)-5- cyano-2-methyl-4-phenylnicotinate (16) [IC50 (EeAChE) = 0.0167 ± 0.0002 μM], which exhibits the same inhibitory potency as donepezil against hAChE. Compounds 2, 7, 13, 17, 18, 35, and 36 significantly prevented the decrease in cell viability caused by Aβ1-42. All compounds were effective in preventing the enhancement of AChE activity induced by Aβ1-42. Compounds 2-7 caused a significant reduction whereas pyridonepezils 17 and 18, and compound 16 also showed some activity. The pyrazolo[3,4-b]quinolines 36 and 38 also prevented the upregulation of AChE induced by Aβ1-42. Compounds 2, 7, 12, 13, 17, 18, and 36 may act as antagonists of voltage sensitive calcium channels, since they significantly prevented the Ca2+ influx evoked by KCl depolarization. Docking studies show that compounds 16 and 18 adopted different orientations and conformations inside the active-site gorges of hAChE and hBuChE. The structural and energetic features of the 16-AChE and 18-AChE complexes compared to the 16-BuChE and 18-BuChE complexes account for a higher affinity of the ligand toward AChE. The present data indicate that compounds 2, 7, 17, 18, and 36 may represent attractive multipotent molecules for the potential treatment of Alzheimer's disease. ...
نوع الوثيقة: article in journal/newspaper
اللغة: unknown
تدمد: 1948-7193
العلاقة: e-issn: 1948-7193; ACS Chemical Neuroscience 4: 547- 565 (2013); http://hdl.handle.net/10261/103634Test
DOI: 10.1021/cn300178k
الإتاحة: https://doi.org/10.1021/cn300178kTest
http://hdl.handle.net/10261/103634Test
حقوق: none
رقم الانضمام: edsbas.225C2BFD
قاعدة البيانات: BASE
الوصف
تدمد:19487193
DOI:10.1021/cn300178k