يعرض 1 - 10 نتائج من 23 نتيجة بحث عن '"wave propagation"', وقت الاستعلام: 1.36s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المؤلفون: Lukkari, Teemu, Malinen, Jarmo

    وصف الملف: 941–961; application/pdf

    العلاقة: Journal of Mathematical Analysis and Applications; 427; Lukkari, T., & Malinen, J. (2015). A posteriori error estimates for Webster's equation in wave propagation. Journal of Mathematical Analysis and Applications , 427 (2), 941-961. https://doi.org/10.1016/j.jmaa.2015.02.074Test; CONVID_24646688; TUTKAID_65794; URN:NBN:fi:jyu-201509022786; http://urn.fi/URN:NBN:fi:jyu-201509022786Test

  2. 2
    دورية أكاديمية

    وصف الملف: application/pdf

    العلاقة: Radpour, Hamed; Pourziad, Ali; Sarabandi, Kamal (2021). "Four‐dimensional relativistic scattering of electromagnetic waves from an arbitrary collection of moving lossy dielectric spheres." IET Microwaves, Antennas & Propagation 15(2): 180-191.; https://hdl.handle.net/2027.42/166345Test; IET Microwaves, Antennas & Propagation; Zheng, K.S., et al.: Electromagnetic properties from moving dielectric in high speed with Lorentz‐FDTD. IEEE Antennas Wirel. Propag. Lett. 15, 934 – 937 ( 2016 ); Rosa, G.S., Nicolini, J.L., Hasselman, F.J.V.: Relativistic aspects of plane wave scattering by a perfectly conducting half‐plane with uniform velocity along an arbitrary direction. IEEE Trans. Antennas Propag. 65 ( 9 ), 4759 – 4767 ( 2017 ); Garner, T.J., et al.: Lorentz invariance of absorption and extinction cross sections of a uniformly moving object. Phys. Rev. 96 ( 5 ), 053839 ( 2017 ); Garner, T.J., et al.: Scattering characteristics of relativistically moving concentrically layered spheres. Phys. Lett. 382 ( 5 ), 362 – 366 ( 2018 ); Garner, T.J., et al.: Time‐domain electromagnetic scattering by a sphere in uniform translational motion. JOSA A. 34 ( 2 ), 270 – 279 ( 2017 ); Harfoush, F., Taflove, A., Kriegsman, G.A.: A numerical technique for analyzing electromagnetic wave scattering from moving surfaces in one and two dimensions. IEEE Trans. Antennas Propag. 37, 55 – 63 ( 1989 ); Ho, M.: Numerical simulation of scatting of electromagnetic waves from traveling and/or vibrating perfect conducting planes. IEEE Trans. Antennas Propag. 54 ( 1 ), 152 – 156 ( 2006 ); Kuang, L., et al.: Relativistic FDTD analysis of far‐field scattering of a high‐speed moving object. IEEE Antennas Wirel. Propag. Lett. 14, 879 – 882 ( 2015 ); Shao, J.H., Ma, X.K., Kang, Z.: Numerical analysis of electromagnetic scattering from a moving target by the Lorentz precise integration time‐domain method. IEEE Trans. Antennas Propag. 65 ( 10 ), 5649 – 5653 ( 2017 ); Zheng, K.S., et al.: Analysis of scattering fields from moving multi‐layered dielectric slab illuminated by an impulse source. IEEE Antennas Wirel. Propag. Lett. 16, 2130 – 2133 ( 2017 ); Shao, J., Ma, X., Wang, J.: A numerical method without coordinate transformations to the electromagnetic problem involving objects in arbitrary translational motion. IEEE Trans. Antennas Propag. 66 ( 8 ), 4158 – 4169 ( 2018 ); van de Hulst, H.C.: Light Scattering by Small Particles. Dover, New York ( 1981 ); Bohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by Small Particles ( 1983 ); Kong, J., Tsang, L., Ding, K.: Scattering of Electromagnetic Waves: Theories and Applications, vol. 1. Wiley, New York ( 2000 ); Kerker, M.: The Scattering of Light. Academic, New York ( 1969 ); De Zutter, D.: Scattering by a rotating dielectric sphere. IEEE Trans. Antennas Propag. AP‐28, 643 – 651 ( 1980 ); Tanaka, K.: Scattering of electromagnetic waves by a rotating perfectly conducting cylinder with arbitrary cross section: Point‐matching method. IEEE Trans. Antennas Propag. 28 ( 6 ), 796 – 803 ( 1980 ); Zutter, D.D.: Scattering by a rotating circular cylinder with finite conductivity. IEEE Trans. Antennas Propag. 31 ( 1 ), 166 – 169 ( 1983 ); De Zutter, D., Goethals, D.: Scattering by a rotating conducting sphere. IEEE Trans. Antennas Propagat. 32, 95 – 98 ( 1984 ); Kleinman, R.E., Mack, R.B.: Scattering by linearly vibrating objects. IEEE Trans. Antennas Propag. 27 ( 3 ), 344 – 352 ( 1979 ); Van Bladel, J., De Zutter, D.: Reflections from linearly vibrating objects: Plane mirror at normal incidence. IEEE Trans. Antennas Propag. AP‐ 29, 629 – 636 ( 1981 ); De Zutter, D.: Reflections from linearly vibrating objects: plane mirror at oblique incidence. IEEE Trans. Antennas Propag. 30 ( 5 ), 898 – 903 ( 1982 ); Lawrence, D.E., Sarabandi, K.: Electromagnetic scattering from vibrating penetrable objects using a general class of time‐varying sheet boundary conditions. IEEE Trans. Antennas Propag. 54 ( 7 ), 2054 – 2061 ( 2006 ); Hoang, T., Lazarian, A., Schlickeiser, R.: On origin and destruction of relativistic dust and its implication for ultrahigh energy cosmic rays. Astrophys. J. 806, 255 ( 2015 ); Messiaen, A.M., Vandenplas, P.E.: High‐frequency effect due to the axial drift velocity of a plasma column. Phys. Rev. 149 ( 1 ), 131 – 140 ( 1966 ); Yeh, C.: Scattering obliquely incident microwaves by a moving plasma column. J. Appl. Phys. 40 ( 13 ), 5066 – 5075 ( 1969 ); Shiozawa, T., Seikai, S.: Scattering of electromagnetic waves from an inhomogeneous magnetoplasma column moving in the axial direction. IEEE Trans. Antennas Propag. AP‐ 20 ( 4 ), 455 – 463 ( 1972 ); Yan, Y.: Mass flow measurement of bulk solids in pneumatic pipelines. Meas. Sci. Technol. 7 ( 12 ), 1687 – 1706 ( 1996 ); Einstein, A.: Zur Elektrodynamik bewegter Körper. Annalen der Physik. 322 ( 10 ), 891 – 921 ( 1905 ); Sommerfeld, A.: Electrodynamics. Academic Press, New York ( 1952 ); Pauli, W.: Theory of Relativity. Macmillan, New York ( 1958 ); Yeh, C.: Reflection and transmission of electromagnetic waves by a moving dielectric medium. J. Appl. Phys. 36 ( 11 ), 3513 – 3517 ( 1965 ); Van, B.J.: Relativity and Engineering. Springer‐Verlag, Berlin ( 1984 ); Lee, S.W., Mittra, R.: Scattering of electromagnetic waves by a moving cylinder in free space. Canadian J. Phys. 45, 2999 – 3007 ( 1967 ); Censor, D.: Scattering of electromagnetic waves by a cylinder moving along its axis. Microw. Theory Techn. 17, 154 – 158 ( 1969 ); Le Vine, D.M.: Scattering from a moving cylinder, oblique incidence. Radio Sci. 15, 497 – 504 ( 1973 ); Freni, A., Mias, C., Ferrari, R.L.: Finite element analysis of electromagnetic wave scattering by a cylinder moving along its axis surrounded by a longitudinal corrugated structure. IEEE Trans. Magnetics. 32 ( 3 ), 874 – 877 ( 1996 ); Pastorino, M., Raffetto, M.: Scattering of electromagnetic waves from a multilayer elliptic cylinder moving in the axial direction. IEEE Trans. Antennas Propag. 61 ( 9 ), 4741 – 4753 ( 2013 ); Restrick, R.C.: 111, Electromagnetic scattering by a moving conducting sphere. Radio ScL. 3 ( 12 ), 1144 – 1157 ( 1968 ). new series; Lakhtakia, A., Varadan, V.V., Varadan, V.K.: Plane wave scattering response of a simply moving electrically small, chiral sphere. J. Mod. Opt. 38, 1841 – 1847 ( 1991 ); Shiozawa, T.: Electromagnetic scattering by a moving small panicle. J. Appl. Phys. 39, 293 – 297 ( 1968 ); Cooper, J.: Scattering of electromagnetic fields by a moving boundary: The one‐dimensional case. IEEE Trans. Antennas Propag. 28 ( 6 ), 791 – 795 ( 1980 ); Chrissoulidis, D., Kriezis, E.: The scattering behavior of a slightly rough surface moving parallel to its mean plane with uniform velocity. IEEE Trans. Antennas Propag. 33 ( 7 ), 793 – 796 ( 1985 ); Tzikas, A.A., Chrissoulidis, D.P., Kriezis, E.E.: Relativistic bistatic scatering by a uniformly moving random rough surface. IEEE Trans. Antennas Propag. AP‐ 34, 1046 – 1052 ( 1986 ); Ott, R.H., Hufford, G.: Scattering by an arbitrarily shaped conductor in uniform motion relative to the source of an incident spherical wave. Radio Sci. 3, 857 – 861 ( 1968 ); Twersky, V.: Relativistic scattering of electromagnetic waves by moving obstacles. J. Math Phys. 12 ( 11 ), 2328 – 2341 ( 1971 ); Abdelazeez, M., Peach, L.C., Borkar, S.R.: Scattering of electromagnetic waves from moving surfaces. IEEE Trans. Antennas Propag. 27 ( 5 ), 679 – 684 ( 1979 ); De Zutter, D.: Fourier analysis of the signal scattered by objects in translational motion, part I and II. Appl. Sci. Res. 36, 169 – 241 ( 1980 ); Michielsen, B.L., et al.: Three‐dimensional relativistic scattering of electromagnetic waves by an object in uniform translation motion. J. Math. Phys. 22, 2716 – 2722 ( 1981 ); De Cupis, P., Gerosa, G., Schettini, G.: Electromagnetic scattering by an object in relativistic translational motion. J. Electromagn. Waves Appl. 14, 1037 – 1062 ( 2000 ); De Cupis, P., et al.: Electromagneticwave scattering by a perfectly conducting wedge in uniform translational motion. J. Electromagn. Waves Appl. 16, 345 – 364 ( 2002 ); Ciarkowski, A.: Scattering of an electromagnetic pulse by a moving wedge. IEEE Trans. Antennas Propag. 57, 688 – 693 ( 2009 ); Idemen, M., Alkumru, A.: Relativistic scattering of a plane‐wave by a uniformly moving half‐plane. IEEE Trans. Antennas Propag. 13, 3429 – 3440 ( 2006 ); Ciarkowski, A.: Electromagnetic pulse diffraction by a moving halfplane. PIER. 64, 53 – 67 ( 2006 )

  3. 3

    المساهمون: Oestges, Claude, Quitin, François, Claude Oestges and François Quitin, Katsuyuki Haneda, Richard Rudd, Enrico M. Vitucci, Danping He, Pekka Kyösti, Fredrik Tufvesson, Sana Salous, Yang Miao, Wout Joseph, Emmeric Tanghe

    المصدر: Inclusive radio communications for 5G and beyond

    وصف الملف: application/pdf; STAMPA

  4. 4
  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية
  7. 7
  8. 8
  9. 9
  10. 10