يعرض 1 - 10 نتائج من 80 نتيجة بحث عن '"CHROMATIN"', وقت الاستعلام: 1.24s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المساهمون: Chapski, D. J., Cabaj, M., Morselli, M., Mason, R. J., Soehalim, E., Ren, S., Pellegrini, M., Wang, Y., Vondriska, T. M., Rosa-Garrido, M.

    العلاقة: info:eu-repo/semantics/altIdentifier/wos/WOS:000709428200007; volume:160; firstpage:73; lastpage:86; numberofpages:14; journal:JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY; http://hdl.handle.net/11381/2904308Test; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85110632094

  2. 2
    دورية أكاديمية

    المساهمون: Ministerio de Economía y Competitividad (España)

    العلاقة: #PLACEHOLDER_PARENT_METADATA_VALUE#; info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BFU2017-82805-C2-2-P; info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/FU2017-82805-C2-1-P; Preprint; http://dx.doi.org/10.1016/j.jmb.2020.166734Test; Sí; Journal of Molecular Biology 433(2): 166734 (2021); http://hdl.handle.net/10261/241515Test; http://dx.doi.org/10.13039/501100003329Test

  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5

    المساهمون: Association Française contre les Myopathies, Ministerio de Educación, Cultura y Deporte (España), Ministerio de Economía y Competitividad (España), Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España)

    وصف الملف: application/pdf

  6. 6
    دورية أكاديمية

    المساهمون: Ciccarone, Fabio, Zampieri, Michele, Caiafa, Paola

    وصف الملف: ELETTRONICO

    العلاقة: info:eu-repo/semantics/altIdentifier/pmid/27908606; info:eu-repo/semantics/altIdentifier/wos/WOS:000395504500015; volume:63; firstpage:123; lastpage:134; numberofpages:12; journal:SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY; http://hdl.handle.net/11573/928070Test; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85008951028; http://www.elsevier.com/inca/publications/store/6/2/2/9/4/4/index.httTest

  7. 7
    دورية أكاديمية

    وصف الملف: application/pdf

    العلاقة: Amemiya, Haley M; Goss, Thomas J; Nye, Taylor M; Hurto, Rebecca L; Simmons, Lyle A; Freddolino, Peter L (2022). "Distinct heterochromatin‐like domains promote transcriptional memory and silence parasitic genetic elements in bacteria." The EMBO Journal (3): n/a-n/a.; https://hdl.handle.net/2027.42/171627Test; The EMBO Journal; Salvatier J, Wiecki TV, Fonnesbeck C ( 2016 ) Probabilistic programming in Python using PyMC3. PeerJ Compu Sci 2: e55; Sanchez‐Torres V, Hu H, Wood TK ( 2011 ) GGDEF proteins YeaI, YedQ, and YfiN reduce early biofilm formation and swimming motility in Escherichia coli. Appl Microbiol Biotechnol 90: 651 – 658; Santos‐Zavaleta A, Pérez‐Rueda E, Sánchez‐Pérez M, Velázquez‐Ramírez DA, Collado‐Vides J ( 2019 ) Tracing the phylogenetic history of the Crl regulon through the bacteria and archaea genomes. BMC Genom 20: 299; Scholz SA, Diao R, Wolfe MB, Fivenson EM, Lin XN, Freddolino PL ( 2019 ) High‐resolution mapping of the Escherichia coli chromosome reveals positions of high and low transcription. Cell Syst 8: 212 – 225.e9; Schroeder JW, Simmons LA ( 2013 ) Complete genome sequence of Bacillus subtilis strain PY79. Genome Announc 1: e01085‐13; Shen BA, Landick R ( 2019 ) Transcription of bacterial chromatin. J Mol Biol 431: 4040 – 4066; Shin J‐E, Lin C, Lim HN ( 2016 ) Horizontal transfer of DNA methylation patterns into bacterial chromosomes. Nucleic Acids Res 44: 4460 – 4471; Singh K, Milstein JN, Navarre WW ( 2016 ) Xenogeneic silencing and its impact on bacterial genomes. Annu Rev Microbiol 70: 199 – 213; Singh SS, Singh N, Bonocora RP, Fitzgerald DM, Wade JT, Grainger DC ( 2014 ) Widespread suppression of intragenic transcription initiation by H‐NS. Genes Dev 28: 214 – 219; Smits WK, Grossman AD ( 2010 ) The transcriptional regulator Rok binds A+T‐Rich DNA and is involved in repression of a mobile genetic element in Bacillus subtilis. PLoS Genet 6: e1001207; Sullivan NL, Marquis KA, Rudner DZ ( 2009 ) Recruitment of SMC to the origin by ParB‐parS organizes the origin and promotes efficient chromosome segregation. Cell 137: 697; Thomason LC, Costantino N, Court DL ( 2007 ) E. coli genome manipulation by P1 transduction. Curr Protoc Mol Biol 1: 1.17.1 – 1.17.8; Ueguchi C, Mizuno T ( 1993 ) The Escherichia coli nucleoid protein H‐NS functions directly as a transcriptional repressor. EMBO J 12: 1039 – 1046; Updegrove TB, Zhang A, Storz G ( 2016 ) Hfq: the flexible RNA matchmaker. Curr Opin Microbiol 30: 133 – 138; Valentin‐Hansen P, Eriksen M, Udesen C ( 2004 ) The bacterial Sm‐like protein Hfq: a key player in RNA transactions. Mol Microbiol 51: 1525 – 1533; van der Valk RA, Vreede J, Qin L, Moolenaar GF, Hofmann A, Goosen N, Dame RT ( 2017 ) Mechanism of environmentally driven conformational changes that modulate H‐NS DNA‐bridging activity. Elife 6: e27369; Verma SC, Qian Z, Adhya SL ( 2020 ) Correction: architecture of the Escherichia coli nucleoid. PLoS Genet 16: e1009148; Verzani J ( 2011 ) Getting started with RStudio: an integrated development environment for R. Sebastopol, CA: O’Reilly Media, Inc; Vora T, Hottes AK, Tavazoie S ( 2009 ) Protein occupancy landscape of a bacterial genome. Mol Cell 35: 247 – 253; Walker DM, Freddolino PL, Harshey RM ( 2020 ) A well‐mixed E. coli genome: widespread contacts revealed by tracking mu transposition. Cell 180: 703 – 716.e18; Wang L, Reeves PR ( 1998 ) Organization of Escherichia coli O157 O antigen gene cluster and identification of its specific genes. Infect Immun 66: 3545 – 3551; Wang X, Kim Y, Ma Q, Hong SH, Pokusaeva K, Sturino JM, Wood TK ( 2010 ) Cryptic prophages help bacteria cope with adverse environments. Nat Commun 1: 147; Wang Z, Wang J, Ren G, Li Y, Wang X ( 2016 ) Deletion of the genes waaC, waaF, or waaG in Escherichia coli W3110 disables the flagella biosynthesis. J Basic Microbiol 56: 1021 – 1035; Wasim A, Gupta A, Mondal J ( 2021 ) Mapping the multiscale organisation of Escherichia coli chromosome in a Hi‐C‐integrated model. bioRxiv https://doi.org/10.1101/2020.06.29.178194Test [PREPRINT]; Wickham H ( 2009 ) ggplot2: Elegant graphics for data analysis. Springer Science & Business Media; Wilhelm L, Bürmann F, Minnen A, Shin H‐C, Toseland CP, Oh B‐H, Gruber S ( 2015 ) SMC condensin entraps chromosomal DNA by an ATP hydrolysis dependent loading mechanism in Bacillus subtilis. Elife 4: e6659; Moazed D ( 2011 ) Mechanisms for the inheritance of chromatin states. Cell 146: 510 – 518; Deatherage DE, Barrick JE ( 2014 ) Identification of mutations in laboratory‐evolved microbes from next‐generation sequencing data using breseq. Methods Mol Biol 1151: 165 – 188; Deng S, Stein RA, Higgins NP ( 2005 ) Organization of supercoil domains and their reorganization by transcription. Mol Microbiol 57: 1511 – 1521; Dillon SC, Dorman CJ ( 2010 ) Bacterial nucleoid‐associated proteins, nucleoid structure and gene expression. Nat Rev Microbiol 8: 185 – 195; Albano M, Smits WK, Ho LTY, Kraigher B, Mandic‐Mulec I, Kuipers OP, Dubnau D ( 2005 ) The Rok protein of Bacillus subtilis represses genes for cell surface and extracellular functions. J Bacteriol 187: 2010; Al‐Bassam MM, Moyne O, Chapin N, Zengler K ( 2021 ) Nucleoid openness profiling links bacterial genome structure to phenotype. bioRxiv https://doi.org/10.1101/2020.05.07.082990Test [PREPRINT]; Ali Azam T, Iwata A, Nishimura A, Ueda S, Ishihama A ( 1999 ) Growth phase‐dependent variation in protein composition of the Escherichia coli nucleoid. J Bacteriol 181: 6361 – 6370; Amemiya HM, Schroeder J, Freddolino PL ( 2021 ) Nucleoid‐associated proteins shape chromatin structure and transcriptional regulation across the bacterial kingdom. Transcription 12: 182 – 218; Anders S, Pyl PT, Huber W ( 2015 ) HTSeq–a Python framework to work with high‐throughput sequencing data. Bioinformatics 31: 166 – 169; Appleman JA, Ross W, Salomon J, Gourse RL ( 1998 ) Activation of Escherichia coli rRNA transcription by FIS during a growth cycle. J Bacteriol 180: 1525 – 1532; Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H ( 2006 ) Construction of Escherichia coli K‐12 in‐frame, single‐gene knockout mutants: the Keio collection. Mol Syst Biol 2: 2006.0008; Barh D, Azevedo V ( 2017 ) Omics technologies and bio‐engineering: volume 1: towards improving quality of life. Academic Press; Baumler A ( 2006 ) Faculty Opinions recommendation of Selective silencing of foreign DNA with low GC content by the H‐NS protein in Salmonella. Faculty Opinions – Post‐Publication Peer Review of the Biomedical Literature. https://doi.org/10.3410/f.1032929.492954Test; Bausch C, Peekhaus N, Utz C, Blais T, Murray E, Lowary T, Conway T ( 1998 ) Sequence analysis of the GntII (subsidiary) system for gluconate metabolism reveals a novel pathway for L‐idonic acid catabolism in Escherichia coli. J Bacteriol 180: 3704 – 3710; Bausch C, Ramsey M, Conway T ( 2004 ) Transcriptional organization and regulation of the L‐idonic acid pathway (GntII system) in Escherichia coli. J Bacteriol 186: 1388 – 1397; Bokal 4th AJ, Ross W, Gourse RL ( 1995 ) The transcriptional activator protein FIS: DNA interactions and cooperative interactions with RNA polymerase at the Escherichia coli rrnB P1 promoter. J Mol Biol 245: 197 – 207; Boudreau BA, Hron DR, Qin L, van der Valk RA, Kotlajich MV, Dame RT, Landick R ( 2018 ) StpA and Hha stimulate pausing by RNA polymerase by promoting DNA‐DNA bridging of H‐NS filaments. Nucleic Acids Res 46: 5525 – 5546; Cherepanov PP, Wackernagel W ( 1995 ) Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp‐catalyzed excision of the antibiotic‐resistance determinant. Gene 158: 9 – 14; Chintakayala K, Singh SS, Rossiter AE, Shahapure R, Dame RT, Grainger DCE ( 2013 ) coli Fis protein insulates the cbpA gene from uncontrolled transcription. PLoS Genet 9: e1003152; Cho B‐K, Knight EM, Barrett CL, Palsson BØ ( 2008 ) Genome‐wide analysis of Fis binding in Escherichia coli indicates a causative role for A‐/AT‐tracts. Genome Res 18: 900 – 910; Dorman CJ ( 2004 ) H‐NS: a universal regulator for a dynamic genome. Nat Rev Microbiol 2: 391 – 400; D’Souza JM, Wang L, Reeves P ( 2002 ) Sequence of the Escherichia coli O26 O antigen gene cluster and identification of O26 specific genes. Gene 297: 123 – 127; Faubladier M, Bouché JP ( 1994 ) Division inhibition gene dicF of Escherichia coli reveals a widespread group of prophage sequences in bacterial genomes. J Bacteriol 176: 1150 – 1156; Feng L, Han W, Wang Q, Bastin DA, Wang L ( 2005 ) Characterization of Escherichia coli O86 O‐antigen gene cluster and identification of O86‐specific genes. Vet Microbiol 106: 241 – 248; Francis NJ, Kingston RE ( 2001 ) Mechanisms of transcriptional memory. Nat Rev Mol Cell Biol 2: 409 – 421; Freddolino PL, Amemiya HM, Goss TJ, Tavazoie S ( 2021a ) Dynamic landscape of protein occupancy across the Escherichia coli chromosome. PLoS Biol 19: e3001306; Freddolino PL, Amini S, Tavazoie S ( 2012 ) Newly identified genetic variations in common Escherichia coli MG1655 stock cultures. J Bacteriol 194: 303 – 306; Freddolino PL, Goss TJ, Amemiya HM, Tavazoie S ( 2021b ) Dynamic landscape of protein occupancy across the Escherichia coli chromosome. bioRxiv https://doi.org/10.1101/2020.01.29.924811Test [PREPRINT]; Freddolino PL, Tavazoie S ( 2012 ) Beyond homeostasis: a predictive‐dynamic framework for understanding cellular behavior. Annu Rev Cell Dev Biol 28: 363 – 384; Frenkiel‐Krispin D, Levin‐Zaidman S, Shimoni E, Wolf SG, Wachtel EJ, Arad T et al ( 2001 ) Regulated phase transitions of bacterial chromatin: a non‐enzymatic pathway for generic DNA protection. EMBO J 20: 1184 – 1191; Gómez KM, Rodríguez A, Rodriguez Y, Ramírez AH, Istúriz T ( 2011 ) The subsidiary GntII system for gluconate metabolism in Escherichia coli: alternative induction of the gntV gene. Biol Res 44: 269 – 275; Goodarzi H, Elemento O, Tavazoie S ( 2009 ) Revealing global regulatory perturbations across human cancers. Mol Cell 36: 900 – 911; Grainger DC, Goldberg MD, Lee DJ, Busby SJW ( 2008 ) Selective repression by Fis and H‐NS at the Escherichia coli dps promoter. Mol Microbiol 68: 1366 – 1377; Graumann PL ( 2000 ) Bacillus subtilis SMC is required for proper arrangement of the chromosome and for efficient segregation of replication termini but not for bipolar movement of newly duplicated origin regions. J Bacteriol 182: 6463 – 6471; Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D et al ( 2020 ) Array programming with NumPy. Nature 585: 357 – 362; Hengge R ( 2009 ) Principles of c‐di‐GMP signalling in bacteria. Nat Rev Microbiol 7: 263 – 273; Hoa TT, Tortosa P, Albano M, Dubnau D ( 2002 ) Rok (YkuW) regulates genetic competence in Bacillus subtilis by directly repressing comK. Mol Microbiol 43: 15 – 26; Hong SH, Wang X, Wood TK ( 2010 ) Controlling biofilm formation, prophage excision and cell death by rewiring global regulator H‐NS of Escherichia coli. Microb Biotechnol 3: 344 – 356; Kahramanoglou C, Seshasayee ASN, Prieto AI, Ibberson D, Schmidt S, Zimmermann J, Benes V, Fraser GM, Luscombe NM ( 2011 ) Direct and indirect effects of H‐NS and Fis on global gene expression control in Escherichia coli. Nucleic Acids Res 39: 2073 – 2091; Kotlajich MV, Hron DR, Boudreau BA, Sun Z, Lyubchenko YL, Landick R ( 2015 ) Bridged filaments of histone‐like nucleoid structuring protein pause RNA polymerase and aid termination in bacteria. Elife 4: e4970; Kundu S, Horn PJ, Peterson CL ( 2007 ) SWI/SNF is required for transcriptional memory at the yeast GAL gene cluster. Genes Dev 21: 997 – 1004; Lagha M, Ferraro T, Dufourt J, Radulescu O, Mantovani M ( 2017 ) Transcriptional memory in the Drosophila embryo. Mech Dev 145: S137; Landick R, Wade JT, Grainger DC ( 2015 ) H‐NS and RNA polymerase: a love‐hate relationship? Curr Opin Microbiol 24: 53 – 59; Lim CJ, Whang YR, Kenney LJ, Yan J ( 2012 ) Gene silencing H‐NS paralogue StpA forms a rigid protein filament along DNA that blocks DNA accessibility. Nucleic Acids Res 40: 3316 – 3328; Link AJ, Phillips D, Church GM ( 1997 ) Methods for generating precise deletions and insertions in the genome of wild‐type Escherichia coli: application to open reading frame characterization. J Bacteriol 179: 6228 – 6237; Linkevicius M, Sandegren L, Andersson DI ( 2013 ) Mechanisms and fitness costs of tigecycline resistance in Escherichia coli. J Antimicrob Chemother 68: 2809 – 2819; Lioy VS, Cournac A, Marbouty M, Duigou S, Mozziconacci J, Espéli O, Boccard F, Koszul R ( 2018 ) Multiscale structuring of the E.coli chromosome by nucleoid‐associated and condensin proteins. Cell 172: 771 – 783.e18; Lucchini S, Rowley G, Goldberg MD, Hurd D, Harrison M, Hinton JCD ( 2006 ) H‐NS mediates the silencing of laterally acquired genes in bacteria. PLoS Pathog 2: e81; Luijsterburg MS, White MF, van Driel R, Dame RT ( 2008 ) The major architects of chromatin: architectural proteins in bacteria, archaea and eukaryotes. Crit Rev Biochem Mol Biol 43: 393 – 418; McQuail J, Switzer A, Burchell L, Wigneshweraraj S ( 2020 ) The RNA‐binding protein Hfq assembles into foci‐like structures in nitrogen starved. J Biol Chem 295: 12355 – 12367; Nagai K ( 2002 ) Faculty Opinions recommendation of Hfq: a bacterial Sm‐like protein that mediates RNA‐RNA interaction. Faculty Opinions – Post‐Publication Peer Review of the Biomedical Literature. https://doi.org/10.3410/f.1003709.40104Test; Nair S, Finkel SE ( 2004 ) Dps protects cells against multiple stresses during stationary phase. J Bacteriol 186: 4192 – 4198; Nakamura K, Ogura Y, Gotoh Y, Hayashi T ( 2021 ) Prophages integrating into prophages: a mechanism to accumulate type III secretion effector genes and duplicate Shiga toxin‐encoding prophages in Escherichia coli. bioRxiv https://doi.org/10.1101/2020.11.04.367953Test [PREPRINT]; Nakao R, Ramstedt M, Wai SN, Uhlin BE ( 2012 ) Enhanced biofilm formation by Escherichia coli LPS mutants defective in Hep biosynthesis. PLoS One 7: e51241; Navarre WW ( 2006 ) Selective silencing of foreign DNA with low GC content by the H‐NS protein in Salmonella. Science 313: 236 – 238; Navarre WW, McClelland M, Libby SJ, Fang FC ( 2007 ) Silencing of xenogeneic DNA by H‐NS—facilitation of lateral gene transfer in bacteria by a defense system that recognizes foreign DNA. Genes Dev 21: 1456 – 1471; Neeli‐Venkata R, Martikainen A, Gupta A, Gonçalves N, Fonseca J, Ribeiro AS ( 2016 ) Robustness of the process of nucleoid exclusion of protein aggregates in Escherichia coli. J Bacteriol 198: 898 – 906; Neidhardt FC, Bloch PL, Smith DF ( 1974 ) Culture medium for enterobacteria. J Bacteriol 119: 736 – 747; Orans J, Kovach AR, Hoff KE, Horstmann NM, Brennan RG ( 2020 ) Crystal structure of an Escherichia coli Hfq Core (residues 2–69)–DNA complex reveals multifunctional nucleic acid binding sites. Nucleic Acids Res 48: 3987 – 3997; Palozola KC, Lerner J, Zaret KS ( 2019 ) A changing paradigm of transcriptional memory propagation through mitosis. Nat Rev Mol Cell Biol 20: 55 – 64; Posfai G ( 2006 ) Emergent properties of reduced‐genome Escherichia coli. Science 312: 1044 – 1046; Postow L, Hardy CD, Arsuaga J, Cozzarelli NR ( 2004 ) Topological domain structure of the Escherichia coli chromosome. Genes Dev 18: 1766 – 1779; Remesh SG, Verma SC, Chen J‐H, Ekman AA, Larabell CA, Adhya S, Hammel M ( 2020 ) Nucleoid remodeling during environmental adaptation is regulated by HU‐dependent DNA bundling. Nat Commun 11: 2905; RStudio ( 2020 ) https://rstudio.comTest/; Rubirés X, Saigi F, Piqué N, Climent N, Merino S, Albertí S, Tomás JM, Regué M ( 1997 ) A gene (wbbL) from Serratia marcescens N28b (O4) complements the rfb‐50 mutation of Escherichia coli K‐12 derivatives. J Bacteriol 179: 7581 – 7586; Salgado H, Martínez‐Flores I, Bustamante VH, Alquicira‐Hernández K, García‐Sotelo JS, García‐Alonso D, Collado‐Vides J ( 2018 ) Using RegulonDB, the Escherichia coli K‐12 gene regulatory transcriptional network database. Curr Protoc Bioinformatics 61: 1.32.1–1.32.30

  8. 8
    دورية أكاديمية

    وصف الملف: application/pdf

    العلاقة: Bonefas, Katherine M.; Iwase, Shigeki (2022). "Soma-to-germline transformation in chromatin-linked neurodevelopmental disorders?." The FEBS Journal (8): 2301-2317.; https://hdl.handle.net/2027.42/172311Test; The FEBS Journal; Strahl BD & Allis CD ( 2000 ) The language of covalent histone modifications. Nature 403, 41 – 45.; Sterpka A & Chen X ( 2018 ) Neuronal and astrocytic primary cilia in the mature brain. Pharmacol Res 137, 114 – 121.; Kempeneers C & Chilvers MA ( 2018 ) To beat, or not to beat, that is question! The spectrum of ciliopathies. Pediatr Pulmonol 53, 1122 – 1129.; Porter ME & Sale WS ( 2000 ) The 9 + 2 axoneme anchors multiple inner arm dyneins and a network of kinases and phosphatases that control motility. J Cell Biol 151, F37 – F42.; Long H & Huang K ( 2019 ) Transport of ciliary membrane proteins. Front Cell Dev Biol 7, 381.; Yu X, Ng CP, Habacher H & Roy S ( 2008 ) Foxj1 transcription factors are master regulators of the motile ciliogenic program. Nat Genet 40, 1445 – 1453.; Ben Khelifa M, Coutton C, Zouari R, Karaouzène T, Rendu J, Bidart M, Yassine S, Pierre V, Delaroche J, Hennebicq S et al. ( 2014 ) Mutations in DNAH1, which encodes an inner arm heavy chain dynein, lead to male infertility from multiple morphological abnormalities of the sperm flagella. Am J Hum Genet 94, 95 – 104.; Ferkol TW & Leigh MW ( 2012 ) Ciliopathies: the central role of cilia in a spectrum of pediatric disorders. J Pediatr 160, 366 – 371.; Zhang Z, Sapiro R, Kapfhamer D, Bucan M, Bray J, Chennathukuzhi V, McNamara P, Curtis A, Zhang M, Blanchette-Mackie EJ et al. ( 2002 ) A sperm-associated WD repeat protein orthologous to Chlamydomonas PF20 associates with Spag6, the mammalian orthologue of Chlamydomonas PF16. Mol Cell Biol 22, 7993 – 8004.; Zhang Z, Tang W, Zhou R, Shen X, Wei Z, Patel AM, Povlishock JT, Bennett J & Strauss JF ( 2007 ) Accelerated mortality from hydrocephalus and pneumonia in mice with a combined deficiency of SPAG6 and SPAG16L reveals a functional interrelationship between the two central apparatus proteins. Cell Motil Cytoskeleton 64, 360 – 376.; Nagarkatti-Gude DR, Jaimez R, Henderson SC, Teves ME, Zhang Z & Strauss JF ( 2011 ) Spag16, an axonemal central apparatus gene, encodes a male germ cell nuclear speckle protein that regulates SPAG16 mRNA expression. PLoS One 6, e20625.; Zhang Z, Kostetskii I, Moss SB, Jones BH, Ho C, Wang H, Kishida T, Gerton GL, Radice GL & Strauss JF ( 2004 ) Haploinsufficiency for the murine orthologue of Chlamydomonas PF20 disrupts spermatogenesis. Proc Natl Acad Sci USA 101, 12946 – 12951.; Yan R, Hu X, Zhang Q, Song L, Zhang M, Zhang Y & Zhao S ( 2015 ) Spag6 negatively regulates neuronal migration during mouse brain development. J Mol Neurosci 57, 463 – 469.; Hu X, Yan R, Cheng X, Song L, Zhang W, Li K & Zhao S ( 2016 ) The function of sperm-associated antigen 6 in neuronal proliferation and differentiation. J Mol Histol 47, 531 – 540.; Sweatt JD ( 2003 ) Mechanisms of Memory, xvii, 400 p. Academic Press, San Diego, CA.; Fu X-F, Cheng S-F, Wang L-Q, Yin S, De Felici M & Shen W ( 2015 ) DAZ family proteins, key players for germ cell development. Int J Biol Sci 11, 1226 – 1235.; Rosario R, Crichton JH, Stewart HL, Childs AJ, Adams IR & Anderson RA ( 2019 ) Dazl determines primordial follicle formation through the translational regulation of Tex14. FASEB J 33, 14221 – 14233.; Chong JA, Tapia-Ramirez J, Kim S, Toledo-Aral JJ, Zheng Y, Boutros MC, Altshuller YM, Frohman MA, Kraner SD & Mandel G ( 1995 ) REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell 80, 949 – 957.; Chen ZF, Paquette AJ & Anderson DJ ( 1998 ) NRSF/REST is required in vivo for repression of multiple neuronal target genes during embryogenesis. Nat Genet 20, 136 – 142.; Hakimi M-A, Bochar DA, Chenoweth J, Lane WS, Mandel G & Shiekhattar R ( 2002 ) A core-BRAF35 complex containing histone deacetylase mediates repression of neuronal-specific genes. Proc Natl Acad Sci USA 99, 7420 – 7425.; Galea I, Bechmann I & Perry VH ( 2007 ) What is immune privilege (not)? Trends Immunol 28, 12 – 18.; Chakradhar S ( 2018 ) Puzzling over privilege: How the immune system protects-and fails-the testes. Nat Med 24, 2 – 5.; Nielsen AY & Gjerstorff MF ( 2016 ) Ectopic expression of testis germ cell proteins in cancer and its potential role in genomic instability. Int J Mol Sci 17, 890.; McCarthy SE, Gillis J, Kramer M, Lihm J, Yoon S, Berstein Y, Mistry M, Pavlidis P, Solomon R, Ghiban E et al. ( 2014 ) De novo mutations in schizophrenia implicate chromatin remodeling and support a genetic overlap with autism and intellectual disability. Mol Psychiatry 19, 652 – 658.; Najmabadi H, Hu H, Garshasbi M, Zemojtel T, Abedini SS, Chen W, Hosseini M, Behjati F, Haas S, Jamali P et al. ( 2011 ) Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature 478, 57 – 63.; De Rubeis S, He X, Goldberg AP, Poultney CS, Samocha K, Cicek AE, Kou Y, Liu L, Fromer M, Walker S et al. ( 2014 ) Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515, 209 – 215.; Pocklington AJ, O’Donovan M & Owen MJ ( 2014 ) The synapse in schizophrenia. Eur J Neurosci 39, 1059 – 1067.; Akbarian S ( 2014 ) Epigenetic mechanisms in schizophrenia. Dialogues Clin Neurosci 16, 405 – 417.; Ropers HH ( 2010 ) Genetics of early onset cognitive impairment. Annu Rev Genomics Hum Genet 11, 161 – 187.; Vallianatos CN & Iwase S ( 2015 ) Disrupted intricacy of histone H3K4 methylation in neurodevelopmental disorders. Epigenomics 7, 503 – 519.; Garay PM, Wallner MA & Iwase S ( 2016 ) Yin-yang actions of histone methylation regulatory complexes in the brain. Epigenomics 8, 1689 – 1708.; Iwase S, Bérubé NG, Zhou Z, Kasri NN, Battaglioli E, Scandaglia M & Barco A ( 2017 ) Epigenetic etiology of intellectual disability. J Neurosci 37, 10773 – 10782.; Iossifov I, O’Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, Stessman HA, Witherspoon KT, Vives L, Patterson KE et al. ( 2014 ) The contribution of de novo coding mutations to autism spectrum disorder. Nature 515, 216 – 221.; Gabriele M, Tobon AL, D’Agostino G & Testa G ( 2018 ) The chromatin basis of neurodevelopmental disorders: rethinking dysfunction along the molecular and temporal axes. Prog Neuropsychopharmacol Biol Psychiatry 84, 306 – 327.; Bagni C & Zukin RS ( 2019 ) A synaptic perspective of fragile X syndrome and autism spectrum disorders. Neuron 101, 1070 – 1088.; Nishiyama J ( 2019 ) Plasticity of dendritic spines: molecular function and dysfunction in neurodevelopmental disorders. Psychiatry Clin Neurosci 73, 541 – 550.; Noble D ( 2015 ) Conrad Waddington and the origin of epigenetics. J Exp Biol 218, 816 – 818.; Kassis JA, Kennison JA & Tamkun JW ( 2017 ) Polycomb and trithorax group genes in Drosophila. Genetics 206, 1699 – 1725.; Lewis EB ( 1978 ) A gene complex controlling segmentation in Drosophila. Nature 276, 565 – 570.; Kennison JA & Tamkun JW ( 1988 ) Dosage-dependent modifiers of polycomb and antennapedia mutations in Drosophila. Proc Natl Acad Sci USA 85, 8136 – 8140.; Lindroth AM, Shultis D, Jasencakova Z, Fuchs J, Johnson L, Schubert D, Patnaik D, Pradhan S, Goodrich J, Schubert I et al. ( 2004 ) Dual histone H3 methylation marks at lysines 9 and 27 required for interaction with CHROMOMETHYLASE3. EMBO J 23, 4286 – 4296.; Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, Levine SS, Wernig M, Tajonar A, Ray MK et al. ( 2006 ) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349 – 353.; Czermin B, Melfi R, McCabe D, Seitz V, Imhof A & Pirrotta V ( 2002 ) Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal polycomb sites. Cell 111, 185 – 196.; Milne TA, Briggs SD, Brock HW, Martin ME, Gibbs D, Allis CD & Hess JL ( 2002 ) MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell 10, 1107 – 1117.; Ingham PW ( 1981 ) Trithorax: a new homoeotic mutation of Drosophila melanogaster: II. The role of trx. Wilhelm Roux Arch Dev Biol 190, 365 – 369.; Ingham PW ( 1985 ) A clonal analysis of the requirement for the trithorax gene in the diversification of segments in Drosophila. J Embryol Exp Morphol 89, 349 – 365.; Hirabayashi Y, Suzki N, Tsuboi M, Endo TA, Toyoda T, Shinga J, Koseki H, Vidal M & Gotoh Y ( 2009 ) Polycomb limits the neurogenic competence of neural precursor cells to promote astrogenic fate transition. Neuron 63, 600 – 613.; Delgado RN, Mansky B, Ahanger SH, Lu C, Andersen RE, Dou Y, Alvarez-Buylla A & Lim DA ( 2020 ) Maintenance of neural stem cell positional identity by mixed-lineage leukemia 1. Science 368, 48 – 53.; Guarnieri FC, de Chevigny A, Falace A & Cardoso C ( 2018 ) Disorders of neurogenesis and cortical development. Dialogues Clin Neurosci 20, 255 – 266.; Lee TW & Katz DJ ( 2020 ) Hansel, Gretel, and the consequences of failing to remove histone methylation breadcrumbs. Trends Genet 36, 160 – 176.; Kwan KY, Sestan N & Anton ES ( 2012 ) Transcriptional co-regulation of neuronal migration and laminar identity in the neocortex. Development 139, 1535 – 1546.; Corley M & Kroll KL ( 2015 ) The roles and regulation of polycomb complexes in neural development. Cell Tissue Res 359, 65 – 85.; Iwase S, Brookes E, Agarwal S, Badeaux AI, Ito H, Vallianatos CN, Tomassy GS, Kasza T, Lin G, Thompson A et al. ( 2016 ) A mouse model of X-linked intellectual disability associated with impaired removal of histone methylation. Cell Rep 14, 1000 – 1009.; Vallianatos CN, Raines B, Porter RS, Bonefas KM, Wu MC, Garay PM, Collette KM, Seo YA, Dou Y, Keegan CE et al. ( 2020 ) Mutually suppressive roles of KMT2A and KDM5C in behaviour, neuronal structure, and histone H3K4 methylation. Commun Biol 3, 278.; Ben-Shachar S, Chahrour M, Thaller C, Shaw CA & Zoghbi HY ( 2009 ) Mouse models of MeCP2 disorders share gene expression changes in the cerebellum and hypothalamus. Hum Mol Genet 18, 2431 – 2442.; Scandaglia M, Lopez-Atalaya JP, Medrano-Fernandez A, Lopez-Cascales MT, del Blanco B, Lipinski M, Benito E, Olivares R, Iwase S, Shi Y et al. ( 2017 ) Loss of Kdm5c causes spurious transcription and prevents the fine-tuning of activity-regulated enhancers in neurons. Cell Rep 21, 47 – 59.; Velasco G, Hube F, Rollin J, Neuillet D, Philippe C, Bouzinba-Segard H, Galvani A, Viegas-Pequignot E & Francastel C ( 2010 ) Dnmt3b recruitment through E2F6 transcriptional repressor mediates germ-line gene silencing in murine somatic tissues. Proc Natl Acad Sci USA 107, 9281 – 9286.; Samaco RC, Mandel-Brehm C, McGraw CM, Shaw CA, McGill BE & Zoghbi HY ( 2012 ) Crh and Oprm1 mediate anxiety-related behavior and social approach in a mouse model of MECP2 duplication syndrome. Nat Genet 44, 206 – 211.; Gill ME, Hu Y-C, Lin Y & Page DC ( 2011 ) Licensing of gametogenesis, dependent on RNA binding protein DAZL, as a gateway to sexual differentiation of fetal germ cells. Proc Natl Acad Sci USA 108, 7443 – 7448.; Fujiwara Y, Komiya T, Kawabata H, Sato M, Fujimoto H, Furusawa M & Noce T ( 1994 ) Isolation of a DEAD-family protein gene that encodes a murine homolog of Drosophila vasa and its specific expression in germ cell lineage. Proc Natl Acad Sci USA 91, 12258 – 12262.; Alciaturi J, Anesetti G, Irigoin F, Skowronek F & Sapiro R ( 2019 ) Distribution of sperm antigen 6 (SPAG6) and 16 (SPAG16) in mouse ciliated and non-ciliated tissues. J Mol Histol 50, 189 – 202.; Deaton AM & Bird A ( 2011 ) CpG islands and the regulation of transcription. Genes Dev 25, 1010 – 1022.; Weber M, Hellmann I, Stadler MB, Ramos L, Pääbo S, Rebhan M & Schübeler D ( 2007 ) Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 39, 457 – 466.; Shen L, Kondo Y, Guo YI, Zhang J, Zhang LI, Ahmed S, Shu J, Chen X, Waterland RA & Issa J-P ( 2007 ) Genome-wide profiling of DNA methylation reveals a class of normally methylated CpG island promoters. PLoS Genet 3, 2023 – 2036.; Walton EL, Francastel C & Velasco G ( 2014 ) Dnmt3b prefers germ line genes and centromeric regions: lessons from the ICF syndrome and cancer and implications for diseases. Biology (Basel) 3, 578 – 605.; Hagleitner MM, Lankester A, Maraschio P, Hultén M, Fryns JP, Schuetz C, Gimelli G, Davies EG, Gennery A, Belohradsky BH et al. ( 2008 ) Clinical spectrum of immunodeficiency, centromeric instability and facial dysmorphism (ICF syndrome). J Med Genet 45, 93 – 99.; Kiaee F, Zaki-Dizaji M, Hafezi N, Almasi-Hashiani A, Hamedifar H, Sabzevari A, Shirkani A, Zian Z, Jadidi-Niaragh F, Aghamahdi F et al. ( 2020 ) Clinical, immunologic, and molecular spectrum of patients with immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome: a systematic review. Endocr Metab Immune Disord Drug Targets 21, 664 – 672.; Velasco G, Walton EL, Sterlin D, Hédouin S, Nitta H, Ito Y, Fouyssac F, Mégarbané A, Sasaki H, Picard C et al. ( 2014 ) Germline genes hypomethylation and expression define a molecular signature in peripheral blood of ICF patients: implications for diagnosis and etiology. Orphanet J Rare Dis 9, 56.; Lewis JD, Meehan RR, Henzel WJ, Maurer-Fogy I, Jeppesen P, Klein F & Bird A ( 1992 ) Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69, 905 – 914.; Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U & Zoghbi HY ( 1999 ) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23, 185 – 188.; Lyst MJ & Bird A ( 2015 ) Rett syndrome: a complex disorder with simple roots. Nat Rev Genet 16, 261 – 275.; Van Esch H ( 2012 ) MECP2 duplication syndrome. Mol Syndromol 2, 128 – 136.; Lagger S, Connelly JC, Schweikert G, Webb S, Selfridge J, Ramsahoye BH, Yu M, He C, Sanguinetti G, Sowers LC et al. ( 2017 ) MeCP2 recognizes cytosine methylated tri-nucleotide and di-nucleotide sequences to tune transcription in the mammalian brain. PLoS Genet 13, e1006793.; Gabel HW, Kinde B, Stroud H, Gilbert CS, Harmin DA, Kastan NR, Hemberg M, Ebert DH & Greenberg ME ( 2015 ) Disruption of DNA-methylation-dependent long gene repression in Rett syndrome. Nature 522, 89 – 93.; Liu KE, Xu C, Lei M, Yang A, Loppnau P, Hughes TR & Min J ( 2018 ) Structural basis for the ability of MBD domains to bind methyl-CG and TG sites in DNA. J Biol Chem 293, 7344 – 7354.; Sperlazza MJ, Bilinovich SM, Sinanan LM, Javier FR & Williams DC ( 2017 ) Structural basis of MeCP2 distribution on non-CpG methylated and hydroxymethylated DNA. J Mol Biol 429, 1581 – 1594.; Tillotson R, Cholewa-Waclaw J, Chhatbar K, Connelly JC, Kirschner SA, Webb S, Koerner MV, Selfridge J, Kelly DA, De Sousa D et al. ( 2021 ) Neuronal non-CG methylation is an essential target for MeCP2 function. Mol Cell 81, 1260 – 1275.e12.; Tudor M, Akbarian S, Chen RZ & Jaenisch R ( 2002 ) Transcriptional profiling of a mouse model for Rett syndrome reveals subtle transcriptional changes in the brain. Proc Natl Acad Sci USA 99, 15536 – 15541.; Horvath PM & Monteggia LM ( 2018 ) MeCP2 as an activator of gene expression. Trends Neurosci 41, 72 – 74.; Chahrour M, Jung SY, Shaw C, Zhou X, Wong STC, Qin J & Zoghbi HY ( 2008 ) MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320, 1224 – 1229.; Chen Z & Zhang Y ( 2020 ) Role of mammalian DNA methyltransferases in development. Annu Rev Biochem 89, 135 – 158.; Tachibana M, Sugimoto K, Nozaki M, Ueda J, Ohta T, Ohki M, Fukuda M, Takeda N, Niida H, Kato H et al. ( 2002 ) G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev 16, 1779 – 1791.; Tachibana M, Ueda J, Fukuda M, Takeda N, Ohta T, Iwanari H, Sakihama T, Kodama T, Hamakubo T & Shinkai Y ( 2005 ) Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes & Development 19, 815 – 826. http://dx.doi.org/10.1101/gad.1284005Test; Shinkai Y & Tachibana M ( 2011 ) H3K9 methyltransferase G9a and the related molecule GLP. Genes Dev 25, 781 – 788.; Kleefstra T, Smidt M, Banning MJG, Oudakker AR, Esch HV, de Brouwer APM, Nillesen W, Sistermans EA, Hamel BCJ, Bruijn DD et al. ( 2005 ) Disruption of the gene euchromatin histone methyl transferase1 (Eu-HMTase1) is associated with the 9q34 subtelomeric deletion syndrome. J Med Genet 42, 299 – 306.; Kleefstra T, Brunner HG, Amiel J, Oudakker AR, Nillesen WM, Magee A, Geneviève D, Cormier-Daire V, van Esch H, Fryns J-P et al. ( 2006 ) Loss-of-function mutations in euchromatin histone methyl transferase 1 (EHMT1) cause the 9q34 subtelomeric deletion syndrome. Am J Hum Genet 79, 370 – 377.; Schaefer A, Sampath SC, Intrator A, Min A, Gertler TS, Surmeier DJ, Tarakhovsky A & Greengard P ( 2009 ) Control of cognition and adaptive behavior by the GLP/G9a epigenetic suppressor complex. Neuron 64, 678 – 691.; Koubova J, Hu Y-C, Bhattacharyya T, Soh YQS, Gill ME, Goodheart ML, Hogarth CA, Griswold MD & Page DC ( 2014 ) Retinoic acid activates two pathways required for meiosis in mice. PLoS Genet 10, e1004541.; Li H, Liang Z, Yang J, Wang D, Wang H, Zhu M, Geng B & Xu EY ( 2019 ) DAZL is a master translational regulator of murine spermatogenesis. Natl Sci Rev 6, 455 – 468.; Ruggiu M, Speed R, Taggart M, McKay SJ, Kilanowski F, Saunders P, Dorin J & Cooke HJ ( 1997 ) The mouse Dazla gene encodes a cytoplasmic protein essential for gametogenesis. Nature 389, 73 – 77.; Cenik BK & Shilatifard A ( 2021 ) COMPASS and SWI/SNF complexes in development and disease. Nat Rev Genet 22, 38 – 58.; Iwase S, Lan F, Bayliss P, de la Torre-Ubieta L, Huarte M, Qi HH, Whetstine J, Bonni A, Roberts TM & Shi Y ( 2007 ) The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases. Cell 128, 1077 – 1088.; Vermeulen M, Mulder KW, Denissov S, Pijnappel WWMP, van Schaik FMA, Varier RA, Baltissen MPA, Stunnenberg HG, Mann M & Timmers HTM ( 2007 ) Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 131, 58 – 69.; Tahiliani M, Mei P, Fang R, Leonor T, Rutenberg M, Shimizu F, Li J, Rao A & Shi Y ( 2007 ) The histone H3K4 demethylase SMCX links REST target genes to X-linked mental retardation. Nature 447, 601 – 605.; Claes S, Devriendt K, Goethem GV, Roelen L, Meireleire J, Raeymaekers P, Cassiman JJ & Fryns JP ( 2000 ) Novel syndromic form of X-linked complicated spastic paraplegia. Am J Med Genet 94, 1 – 4.; Jensen LR, Amende M, Gurok U, Moser B, Gimmel V, Tzschach A, Janecke AR, Tariverdian G, Chelly J, Fryns J et al. ( 2005 ) Mutations in the JARID1C gene, which is involved in transcriptional regulation and chromatin remodeling, cause X-linked mental retardation. Am J Hum Genet 76, 227 – 236.; Belalcazar HM, Hendricks EL, Zamurrad S, Liebl FLW & Secombe J ( 2021 ) The histone demethylase KDM5 is required for synaptic structure and function at the Drosophila neuromuscular junction. Cell Rep 34, 108753.; Chen K, Luan X, Liu Q, Wang J, Chang X, Snijders AM, Mao J-H, Secombe J, Dan Z, Chen J-H et al. ( 2019 ) Drosophila histone demethylase KDM5 regulates social behavior through immune control and gut microbiota maintenance. Cell Host Microbe 25, 537 – 552.e8.; Drelon C, Rogers MF, Belalcazar HM & Secombe J ( 2019 ) The histone demethylase KDM5 controls developmental timing in Drosophila by promoting prothoracic gland endocycles. Development 146, dev182568.; Hatch HAM, Belalcazar HM, Marshall OJ & Secombe J ( 2021 ) A KDM5-Prospero transcriptional axis functions during early neurodevelopment to regulate mushroom body formation. Elife 10, e63886.; Liu X & Secombe J ( 2015 ) The histone demethylase KDM5 activates gene expression by recognizing chromatin context through its PHD reader motif. Cell Rep 13, 2219 – 2231.; Secombe J, Li L, Carlos L & Eisenman RN ( 2007 ) The Trithorax group protein Lid is a trimethyl histone H3K4 demethylase required for dMyc-induced cell growth. Genes Dev 21, 537 – 551.; Zamurrad S, Hatch HAM, Drelon C, Belalcazar HM & Secombe J ( 2018 ) A Drosophila model of intellectual disability caused by mutations in the histone demethylase KDM5. Cell Rep 22, 2359 – 2369.; Magnúsdóttir E & Surani MA ( 2014 ) How to make a primordial germ cell. Development 141, 245 – 252.; Günesdogan U, Magnúsdóttir E & Surani MA ( 2014 ) Primordial germ cell specification: a context-dependent cellular differentiation event [corrected]. Philos Trans R Soc Lond B Biol Sci 369, 20130543.; Kurimoto K, Yabuta Y, Hayashi K, Ohta H, Kiyonari H, Mitani T, Moritoki Y, Kohri K, Kimura H, Yamamoto T et al. ( 2015 ) Quantitative dynamics of chromatin remodeling during germ cell specification from mouse embryonic stem cells. Cell Stem Cell 16, 517 – 532.; Borgel J, Guibert S, Li Y, Chiba H, Schübeler D, Sasaki H, Forné T & Weber M ( 2010 ) Targets and dynamics of promoter DNA methylation during early mouse development. Nat Genet 42, 1093 – 1100.; Zylicz JJ, Dietmann S, Günesdogan U, Hackett JA, Cougot D, Lee C & Surani MA ( 2015 ) Chromatin dynamics and the role of G9a in gene regulation and enhancer silencing during early mouse development. Elife 4, e09571.; Liu M, Zhu Y, Xing F, Liu S, Xia Y, Jiang Q & Qin J ( 2020 ) The polycomb group protein PCGF6 mediates germline gene silencing by recruiting histone-modifying proteins to target gene promoters. J Biol Chem 295, 9712 – 9724.; Gao Z, Zhang J, Bonasio R, Strino F, Sawai A, Parisi F, Kluger Y & Reinberg D ( 2012 ) PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol Cell 45, 344 – 356.; Qin J, Whyte W, Anderssen E, Apostolou E, Chen H-H, Akbarian S, Bronson R, Hochedlinger K, Ramaswamy S, Young R et al. ( 2012 ) The polycomb group protein L3mbtl2 assembles an atypical PRC1-family complex that is essential in pluripotent stem cells and early development. Cell Stem Cell 11, 319 – 332.; Endoh M, Endo TA, Shinga J, Hayashi K, Farcas A, Ma K, Ito S, Sharif J, Endoh T, Onaga N et al. ( 2017 ) PCGF6-PRC1 suppresses premature differentiation of mouse embryonic stem cells by regulating germ cell-related genes. Elife 6, e21064.; Huang Y, Zhao W, Wang C, Zhu Y, Liu M, Tong H, Xia Y, Jiang Q & Qin J ( 2018 ) Combinatorial control of recruitment of a variant PRC1.6 complex in embryonic stem cells. Cell Rep 22, 3032 – 3043.; Stielow B, Finkernagel F, Stiewe T, Nist A & Suske G ( 2018 ) L3MBTL2 and E2F6 determine genomic binding of the non-canonical polycomb repressive complex PRC1.6. PLoS Genet 14, e1007193.; Maeda I, Okamura D, Tokitake Y, Ikeda M, Kawaguchi H, Mise N, Abe K, Noce T, Okuda A & Matsui Y ( 2013 ) Max is a repressor of germ cell-related gene expression in mouse embryonic stem cells. Nat Commun 4, 1754.; Pohlers M, Truss M, Frede U, Scholz A, Strehle M, Kuban R-J, Hoffmann B, Morkel M, Birchmeier C & Hagemeier C ( 2005 ) A role for E2F6 in the restriction of male-germ-cell-specific gene expression. Curr Biol 15, 1051 – 1057.; Leseva M, Santostefano KE, Rosenbluth AL, Hamazaki T & Terada N ( 2013 ) E2f6-mediated repression of the meiotic Stag3 and Smc1β genes during early embryonic development requires Ezh2 and not the de novo methyltransferase Dnmt3b. Epigenetics 8, 873 – 884.; van den Heuvel S & Dyson NJ ( 2008 ) Conserved functions of the pRB and E2F families. Nat Rev Mol Cell Biol 9, 713 – 724.; Korenjak M, Taylor-Harding B, Binné UK, Satterlee JS, Stevaux O, Aasland R, White-Cooper H, Dyson N & Brehm A ( 2004 ) Native E2F/RBF complexes contain Myb-interacting proteins and repress transcription of developmentally controlled E2F target genes. Cell 119, 181 – 193.; Lewis PW, Beall EL, Fleischer TC, Georlette D, Link AJ & Botchan MR ( 2004 ) Identification of a Drosophila Myb-E2F2/RBF transcriptional repressor complex. Genes Dev 18, 2929 – 2940.; Litovchick L, Sadasivam S, Florens L, Zhu X, Swanson SK, Velmurugan S, Chen R, Washburn MP, Liu XS & DeCaprio JA ( 2007 ) Evolutionarily conserved multisubunit RBL2/p130 and E2F4 protein complex represses human cell cycle-dependent genes in quiescence. Mol Cell 26, 539 – 551.; Burkhart DL & Sage J ( 2008 ) Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat Rev Cancer 8, 671 – 682.; Wang D, Kennedy S, Conte D Jr, Kim JK, Gabel HW, Kamath RS, Mello CC & Ruvkun G ( 2005 ) Somatic misexpression of germline P granules and enhanced RNA interference in retinoblastoma pathway mutants. Nature 436, 593 – 597.; Wu X, Shi Z, Cui M, Han M & Ruvkun G ( 2012 ) Repression of germline RNAi pathways in somatic cells by retinoblastoma pathway chromatin complexes. PLoS Genet 8, e1002542.; Janic A, Mendizabal L, Llamazares S, Rossell D & Gonzalez C ( 2010 ) Ectopic expression of germline genes drives malignant brain tumor growth in Drosophila. Science 330, 1824 – 1827.; Sowpati DT, Ramamoorthy S & Mishra RK ( 2015 ) Expansion of the polycomb system and evolution of complexity. Mech Dev 138 ( Pt 2 ), 97 – 112.; Roelofs PA, Goh CY, Chua BH, Jarvis MC, Stewart TA, McCann JL, McDougle RM, Carpenter MA, Martens JW, Span PN et al. ( 2020 ) Characterization of the mechanism by which the RB/E2F pathway controls expression of the cancer genomic DNA deaminase APOBEC3B. Elife 9, e61287.; Morris EJ & Dyson NJ ( 2001 ) Retinoblastoma protein partners. Adv Cancer Res 82, 1 – 54.; Luger K, Mäder AW, Richmond RK, Sargent DF & Richmond TJ ( 1997 ) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251 – 260.; Li B, Qing T, Zhu J, Wen Z, Yu Y, Fukumura R, Zheng Y, Gondo Y & Shi L ( 2017 ) A comprehensive mouse transcriptomic BodyMap across 17 tissues by RNA-seq. Sci Rep 7, 4200.; GTEx Consortium ( 2015 ) Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648 – 660.; Baudat F, Imai Y & de Massy B ( 2013 ) Meiotic recombination in mammals: localization and regulation. Nat Rev Genet 14, 794 – 806.; Zickler D, Kleckner N ( 2015 ) Recombination, pairing, and synapsis of homologs during meiosis. Cold Spring Harb Perspect Biol 7, a016626.; Soh YQS, Junker JP, Gill ME, Mueller JL, van Oudenaarden A & Page DC ( 2015 ) A gene regulatory program for meiotic prophase in the fetal ovary. PLoS Genet 11, e1005531.; Suzuki A, Hirasaki M, Hishida T, Wu J, Okamura D, Ueda A, Nishimoto M, Nakachi Y, Mizuno Y, Okazaki Y et al. ( 2016 ) Loss of MAX results in meiotic entry in mouse embryonic and germline stem cells. Nat Commun 7, 11056.; Folco HD, Chalamcharla VR, Sugiyama T, Thillainadesan G, Zofall M, Balachandran V, Dhakshnamoorthy J, Mizuguchi T & Grewal SIS ( 2017 ) Untimely expression of gametogenic genes in vegetative cells causes uniparental disomy. Nature 543, 126 – 130.; Volpe TA, Kidner C, Hall IM, Teng G, Grewal SIS & Martienssen RA ( 2002 ) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833 – 1837.; Volpe T, Schramke V, Hamilton GL, White SA, Teng G, Martienssen RA & Allshire RC ( 2003 ) RNA interference is required for normal centromere function in fission yeast. Chromosome Res 11, 137 – 146.; Lee J, Iwai T, Yokota T & Yamashita M ( 2003 ) Temporally and spatially selective loss of Rec8 protein from meiotic chromosomes during mammalian meiosis. J Cell Sci 116 ( Pt 13 ), 2781 – 2790.; Engel E & DeLozier-Blanchet CD ( 1991 ) Uniparental disomy, isodisomy, and imprinting: probable effects in man and strategies for their detection. Am J Med Genet 40, 432 – 439.; Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, Calcar SV, Qu C, Ching KA et al. ( 2007 ) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39, 311 – 318.; Barski A, Cuddapah S, Cui K, Roh T, Schones DE, Wang Z, Wei G, Chepelev I & Zhao K ( 2007 ) High-resolution profiling of histone methylations in the human genome. Cell 129, 823 – 837.; Powers NR, Parvanov ED, Baker CL, Walker M, Petkov PM & Paigen K ( 2016 ) The meiotic recombination activator PRDM9 trimethylates both H3K36 and H3K4 at recombination hotspots in vivo. PLoS Genet 12, e1006146.; D’Gama AM & Walsh CA ( 2018 ) Somatic mosaicism and neurodevelopmental disease. Nat Neurosci 21, 1504 – 1514.; Zylka MJ, Simon JM & Philpot BD ( 2015 ) Gene length matters in neurons. Neuron 86, 353 – 355.; Wei P-C, Chang A, Kao J, Du Z, Meyers R, Alt F & Schwer B ( 2016 ) Long neural genes harbor recurrent DNA break clusters in neural stem/progenitor cells. Cell 164, 644 – 655.; Guemez-Gamboa A, Coufal NG & Gleeson JG ( 2014 ) Primary cilia in the developing and mature brain. Neuron 82, 511 – 521.

  9. 9
  10. 10
    كتاب

    العلاقة: https://www.sciencedirect.com/science/article/pii/B9780128179642000046Test; Schmolka N, Silva-Santos B, Gomes AQ. Epigenetic mechanisms in the regulation of lymphocyte differentiation. In: Kabelitz D, Bhat J, editors. Epigenetics of the immune system. San Diego: Academic Press; 2020. p. 77-116.; http://hdl.handle.net/10400.21/12109Test