يعرض 1 - 10 نتائج من 18 نتيجة بحث عن '"Di Santo, James P"', وقت الاستعلام: 1.79s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية

    المؤلفون: Cossarizza, Andrea, Chang, Hyun-Dong, Radbruch, Andreas, Acs, Andreas, Adam, Dieter, Adam-Klages, Sabine, Agace, William W, Aghaeepour, Nima, Akdis, Mübeccel, Allez, Matthieu, Almeida, Larissa Nogueira, Alvisi, Giorgia, Anderson, Graham, Andrä, Immanuel, Annunziato, Francesco, Anselmo, Achille, Bacher, Petra, Baldari, Cosima T, Bari, Sudipto, Barnaba, Vincenzo, Barros-Martins, Joana, Battistini, Luca, Bauer, Wolfgang, Baumgart, Sabine, Baumgarth, Nicole, Baumjohann, Dirk, Baying, Bianka, Bebawy, Mary, Becher, Burkhard, Beisker, Wolfgang, Benes, Vladimir, Beyaert, Rudi, Blanco, Alfonso, Boardman, Dominic A, Bogdan, Christian, Borger, Jessica G, Borsellino, Giovanna, Boulais, Philip E, Bradford, Jolene A, Brenner, Dirk, Brinkman, Ryan R, Brooks, Anna ES, Busch, Dirk H, Büscher, Martin, Bushnell, Timothy P, Calzetti, Federica, Cameron, Garth, Cammarata, Ilenia, Cao, Xuetao, Cardell, Susanna L, Casola, Stefano, Cassatella, Marco A, Cavani, Andrea, Celada, Antonio, Chatenoud, Lucienne, Chattopadhyay, Pratip K, Chow, Sue, Christakou, Eleni, Čičin-Šain, Luka, Clerici, Mario, Colombo, Federico S, Cook, Laura, Cooke, Anne, Cooper, Andrea M, Corbett, Alexandra J, Cosma, Antonio, Cosmi, Lorenzo, Coulie, Pierre G, Cumano, Ana, Cvetkovic, Ljiljana, Dang, Van Duc, Dang-Heine, Chantip, Davey, Martin S, Davies, Derek, De Biasi, Sara, Del Zotto, Genny, Dela Cruz, Gelo Victoriano, Delacher, Michael, Della Bella, Silvia, Dellabona, Paolo, Deniz, Günnur, Dessing, Mark, Di Santo, James P, Diefenbach, Andreas, Dieli, Francesco, Dolf, Andreas, Dörner, Thomas, Dress, Regine J, Dudziak, Diana, Dustin, Michael, Dutertre, Charles-Antoine, Ebner, Friederike, Eckle, Sidonia BG, Edinger, Matthias, Eede, Pascale, Ehrhardt, Götz RA, Eich, Marcus, Engel, Pablo, Engelhardt, Britta, Erdei, Anna

    المصدر: European Journal of Immunology, vol 49, iss 10

    الوقت: 1457 - 1973

    وصف الملف: application/pdf

    العلاقة: qt8kv8873x; https://escholarship.org/uc/item/8kv8873xTest

  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية

    المساهمون: Institut Pasteur, Institut National de la Santé et de la Recherche Médicale, H2020 Marie Skłodowska-Curie Actions

    المصدر: Frontiers in Immunology ; volume 8 ; ISSN 1664-3224

    مصطلحات موضوعية: Immunology, Immunology and Allergy

  5. 5
    كتاب

    المؤلفون: Li, Yan, Di Santo, James P.

    المصدر: Bacteria and Intracellularity ; page 299-313 ; ISBN 9781683672791 9781683670254

  6. 6
    دورية أكاديمية

    مصطلحات موضوعية: 610 Medizin, ddc:610

    العلاقة: Stripecke, Renata , Münz, Christian, Schuringa, Jan Jacob, Bissig, Karl‐Dimiter, Soper, Brian, Meeham, Terrence, Yao, Li‐Chin, Di Santo, James P, Brehm, Michael, Rodriguez, Estefania, Wege, Anja Kathrin, Bonnet, Dominique, Guionaud, Silvia, Howard, Kristina E, Kitchen, Scott, Klein, Florian, Saeb‐Parsy, Kourosh, Sam, Johannes, Sharma, Amar Deep, Trumpp, Andreas , Trusolino, Livio , Bult, Carol und Shultz, Leonard (2020) Innovations, challenges, and minimal information for standardization of humanized mice. EMBO Molecular Medicine 12 (7).

  7. 7
  8. 8
    دورية أكاديمية

    المؤلفون: Cossarizza, Andrea, Chang, Hyun‐dong, Radbruch, Andreas, Acs, Andreas, Adam, Dieter, Adam‐klages, Sabine, Agace, William W., Aghaeepour, Nima, Akdis, Mübeccel, Allez, Matthieu, Almeida, Larissa Nogueira, Alvisi, Giorgia, Anderson, Graham, Andrä, Immanuel, Annunziato, Francesco, Anselmo, Achille, Bacher, Petra, Baldari, Cosima T., Bari, Sudipto, Barnaba, Vincenzo, Barros‐martins, Joana, Battistini, Luca, Bauer, Wolfgang, Baumgart, Sabine, Baumgarth, Nicole, Baumjohann, Dirk, Baying, Bianka, Bebawy, Mary, Becher, Burkhard, Beisker, Wolfgang, Benes, Vladimir, Beyaert, Rudi, Blanco, Alfonso, Boardman, Dominic A., Bogdan, Christian, Borger, Jessica G., Borsellino, Giovanna, Boulais, Philip E., Bradford, Jolene A., Brenner, Dirk, Brinkman, Ryan R., Brooks, Anna E. S., Busch, Dirk H., Büscher, Martin, Bushnell, Timothy P., Calzetti, Federica, Cameron, Garth, Cammarata, Ilenia, Cao, Xuetao, Cardell, Susanna L., Casola, Stefano, Cassatella, Marco A., Cavani, Andrea, Celada, Antonio, Chatenoud, Lucienne, Chattopadhyay, Pratip K., Chow, Sue, Christakou, Eleni, Čičin‐šain, Luka, Clerici, Mario, Colombo, Federico S., Cook, Laura, Cooke, Anne, Cooper, Andrea M., Corbett, Alexandra J., Cosma, Antonio, Cosmi, Lorenzo, Coulie, Pierre G., Cumano, Ana, Cvetkovic, Ljiljana, Dang, Van Duc, Dang‐heine, Chantip, Davey, Martin S., Davies, Derek, De Biasi, Sara, Del Zotto, Genny, Dela Cruz, Gelo Victoriano, Delacher, Michael, Della Bella, Silvia, Dellabona, Paolo, Deniz, Günnur, Dessing, Mark, Di Santo, James P., Diefenbach, Andreas, Dieli, Francesco, Dolf, Andreas, Dörner, Thomas, Dress, Regine J., Dudziak, Diana, Dustin, Michael, Dutertre, Charles‐antoine, Ebner, Friederike, Eckle, Sidonia B. G., Edinger, Matthias, Eede, Pascale, Ehrhardt, Götz R.a., Eich, Marcus, Engel, Pablo, Engelhardt, Britta, Erdei, Anna, Esser, Charlotte, Everts, Bart, Evrard, Maximilien, Falk, Christine S., Fehniger, Todd A., Felipo‐benavent, Mar, Ferry, Helen, Feuerer, Markus, Filby, Andrew, Filkor, Kata, Fillatreau, Simon, Follo, Marie, Förster, Irmgard, Foster, John, Foulds, Gemma A., Frehse, Britta, Frenette, Paul S., Frischbutter, Stefan, Fritzsche, Wolfgang, Galbraith, David W., Gangaev, Anastasia, Garbi, Natalio, Gaudilliere, Brice, Gazzinelli, Ricardo T., Geginat, Jens, Gerner, Wilhelm, Gherardin, Nicholas A., Ghoreschi, Kamran, Gibellini, Lara, Ginhoux, Florent, Goda, Keisuke, Godfrey, Dale I., Goettlinger, Christoph, González‐navajas, Jose M., Goodyear, Carl S., Gori, Andrea, Grogan, Jane L., Grummitt, Daryl, Grützkau, Andreas, Haftmann, Claudia, Hahn, Jonas, Hammad, Hamida, Hämmerling, Günter, Hansmann, Leo, Hansson, Goran, Harpur, Christopher M., Hartmann, Susanne, Hauser, Andrea, Hauser, Anja E., Haviland, David L., Hedley, David, Hernández, Daniela C., Herrera, Guadalupe, Herrmann, Martin, Hess, Christoph, Höfer, Thomas, Hoffmann, Petra, Hogquist, Kristin, Holland, Tristan, Höllt, Thomas, Holmdahl, Rikard, Hombrink, Pleun, Houston, Jessica P., Hoyer, Bimba F., Huang, Bo, Huang, Fang‐ping, Huber, Johanna E., Huehn, Jochen, Hundemer, Michael, Hunter, Christopher A., Hwang, William Y. K., Iannone, Anna, Ingelfinger, Florian, Ivison, Sabine M, Jäck, Hans‐martin, Jani, Peter K., Jávega, Beatriz, Jonjic, Stipan, Kaiser, Toralf, Kalina, Tomas, Kamradt, Thomas, Kaufmann, Stefan H. E., Keller, Baerbel, Ketelaars, Steven L. C., Khalilnezhad, Ahad, Khan, Srijit, Kisielow, Jan, Klenerman, Paul, Knopf, Jasmin, Koay, Hui‐fern, Kobow, Katja, Kolls, Jay K., Kong, Wan Ting, Kopf, Manfred, Korn, Thomas, Kriegsmann, Katharina, Kristyanto, Hendy, Kroneis, Thomas, Krueger, Andreas, Kühne, Jenny, Kukat, Christian, Kunkel, Désirée, Kunze‐schumacher, Heike, Kurosaki, Tomohiro, Kurts, Christian, Kvistborg, Pia, Kwok, Immanuel, Landry, Jonathan, Lantz, Olivier, Lanuti, Paola, LaRosa, Francesca, Lehuen, Agnès, Leibundgut‐landmann, Salomé, Leipold, Michael D., Leung, Leslie Y.T., Levings, Megan K., Lino, Andreia C., Liotta, Francesco, Litwin, Virginia, Liu, Yanling, Ljunggren, Hans‐gustaf, Lohoff, Michael, Lombardi, Giovanna, Lopez, Lilly, López‐botet, Miguel, Lovett‐racke, Amy E., Lubberts, Erik, Luche, Herve, Ludewig, Burkhard, Lugli, Enrico, Lunemann, Sebastian, Maecker, Holden T., Maggi, Laura, Maguire, Orla, Mair, Florian, Mair, Kerstin H., Mantovani, Alberto, Manz, Rudolf A., Marshall, Aaron J., Martínez‐romero, Alicia, Martrus, Glòria, Marventano, Ivana, Maslinski, Wlodzimierz, Matarese, Giuseppe, Mattioli, Anna Vittoria, Maueröder, Christian, Mazzoni, Alessio, McCluskey, James, McGrath, Mairi, McGuire, Helen M., McInnes, Iain B., Mei, Henrik E., Melchers, Fritz, Melzer, Susanne, Mielenz, Dirk, Miller, Stephen D., Mills, Kingston H.G., Minderman, Hans, Mjösberg, Jenny, Moore, Jonni, Moran, Barry, Moretta, Lorenzo, Mosmann, Tim R., Müller, Susann, Multhoff, Gabriele, Muñoz, Luis Enrique, Münz, Christian, Nakayama, Toshinori, Nasi, Milena, Neumann, Katrin, Ng, Lai Guan, Niedobitek, Antonia, Nourshargh, Sussan, Núñez, Gabriel, O’Connor, José‐enrique, Ochel, Aaron, Oja, Anna, Ordonez, Diana, Orfao, Alberto, Orlowski‐oliver, Eva, Ouyang, Wenjun, Oxenius, Annette, Palankar, Raghavendra, Panse, Isabel, Pattanapanyasat, Kovit, Paulsen, Malte, Pavlinic, Dinko, Penter, Livius, Peterson, Pärt, Peth, Christian, Petriz, Jordi, Piancone, Federica, Pickl, Winfried F., Piconese, Silvia, Pinti, Marcello, Pockley, A. Graham, Podolska, Malgorzata Justyna, Poon, Zhiyong, Pracht, Katharina, Prinz, Immo, Pucillo, Carlo E. M., Quataert, Sally A., Quatrini, Linda, Quinn, Kylie M., Radbruch, Helena, Radstake, Tim R. D. J., Rahmig, Susann, Rahn, Hans‐peter, Rajwa, Bartek, Ravichandran, Gevitha, Raz, Yotam, Rebhahn, Jonathan A., Recktenwald, Diether, Reimer, Dorothea, Reis e Sousa, Caetano, Remmerswaal, Ester B.M., Richter, Lisa, Rico, Laura G., Riddell, Andy, Rieger, Aja M., Robinson, J. Paul, Romagnani, Chiara, Rubartelli, Anna, Ruland, Jürgen, Saalmüller, Armin, Saeys, Yvan, Saito, Takashi, Sakaguchi, Shimon, Sala‐de‐oyanguren, Francisco, Samstag, Yvonne, Sanderson, Sharon, Sandrock, Inga, Santoni, Angela, Sanz, Ramon Bellmàs, Saresella, Marina, Sautes‐fridman, Catherine, Sawitzki, Birgit, Schadt, Linda, Scheffold, Alexander, Scherer, Hans U., Schiemann, Matthias, Schildberg, Frank A., Schimisky, Esther, Schlitzer, Andreas, Schlosser, Josephine, Schmid, Stephan, Schmitt, Steffen, Schober, Kilian, Schraivogel, Daniel, Schuh, Wolfgang, Schüler, Thomas, Schulte, Reiner, Schulz, Axel Ronald, Schulz, Sebastian R., Scottá, Cristiano, Scott‐algara, Daniel, Sester, David P., Shankey, T. Vincent, Silva‐santos, Bruno, Simon, Anna Katharina, Sitnik, Katarzyna M., Sozzani, Silvano, Speiser, Daniel E., Spidlen, Josef, Stahlberg, Anders, Stall, Alan M., Stanley, Natalie, Stark, Regina, Stehle, Christina, Steinmetz, Tobit, Stockinger, Hannes, Takahama, Yousuke, Takeda, Kiyoshi, Tan, Leonard, Tárnok, Attila, Tiegs, Gisa, Toldi, Gergely, Tornack, Julia, Traggiai, Elisabetta, Trebak, Mohamed, Tree, Timothy I.M., Trotter, Joe, Trowsdale, John, Tsoumakidou, Maria, Ulrich, Henning, Urbanczyk, Sophia, Veen, Willem, Broek, Maries, Pol, Edwin, Van Gassen, Sofie, Van Isterdael, Gert, Lier, René A.w., Veldhoen, Marc, Vento‐asturias, Salvador, Vieira, Paulo, Voehringer, David, Volk, Hans‐dieter, Borstel, Anouk, Volkmann, Konrad, Waisman, Ari, Walker, Rachael V., Wallace, Paul K., Wang, Sa A., Wang, Xin M., Ward, Michael D., Ward‐hartstonge, Kirsten A, Warnatz, Klaus, Warnes, Gary, Warth, Sarah, Waskow, Claudia, Watson, James V., Watzl, Carsten, Wegener, Leonie, Weisenburger, Thomas, Wiedemann, Annika, Wienands, Jürgen, Wilharm, Anneke, Wilkinson, Robert John, Willimsky, Gerald, Wing, James B., Winkelmann, Rieke, Winkler, Thomas H., Wirz, Oliver F., Wong, Alicia, Wurst, Peter, Yang, Jennie H. M., Yang, Juhao, Yazdanbakhsh, Maria, Yu, Liping, Yue, Alice, Zhang, Hanlin, Zhao, Yi, Ziegler, Susanne Maria, Zielinski, Christina, Zimmermann, Jakob, Zychlinsky, Arturo

    مصطلحات موضوعية: Public Health, Biological Chemistry, Science, Health Sciences

    وصف الملف: application/pdf

    العلاقة: Cossarizza, Andrea; Chang, Hyun‐dong; Radbruch, Andreas; Acs, Andreas; Adam, Dieter; Adam‐klages, Sabine; Agace, William W.; Aghaeepour, Nima; Akdis, Mübeccel; Allez, Matthieu; Almeida, Larissa Nogueira; Alvisi, Giorgia; Anderson, Graham; Andrä, Immanuel; Annunziato, Francesco; Anselmo, Achille; Bacher, Petra; Baldari, Cosima T.; Bari, Sudipto; Barnaba, Vincenzo; Barros‐martins, Joana; Battistini, Luca; Bauer, Wolfgang; Baumgart, Sabine; Baumgarth, Nicole; Baumjohann, Dirk; Baying, Bianka; Bebawy, Mary; Becher, Burkhard; Beisker, Wolfgang; Benes, Vladimir; Beyaert, Rudi; Blanco, Alfonso; Boardman, Dominic A.; Bogdan, Christian; Borger, Jessica G.; Borsellino, Giovanna; Boulais, Philip E.; Bradford, Jolene A.; Brenner, Dirk; Brinkman, Ryan R.; Brooks, Anna E. S.; Busch, Dirk H.; Büscher, Martin; Bushnell, Timothy P.; Calzetti, Federica; Cameron, Garth; Cammarata, Ilenia; Cao, Xuetao; Cardell, Susanna L.; Casola, Stefano; Cassatella, Marco A.; Cavani, Andrea; Celada, Antonio; Chatenoud, Lucienne; Chattopadhyay, Pratip K.; Chow, Sue; Christakou, Eleni; Čičin‐šain, Luka; Clerici, Mario; Colombo, Federico S.; Cook, Laura; Cooke, Anne; Cooper, Andrea M.; Corbett, Alexandra J.; Cosma, Antonio; Cosmi, Lorenzo; Coulie, Pierre G.; Cumano, Ana; Cvetkovic, Ljiljana; Dang, Van Duc; Dang‐heine, Chantip; Davey, Martin S.; Davies, Derek; De Biasi, Sara; Del Zotto, Genny; Dela Cruz, Gelo Victoriano; Delacher, Michael; Della Bella, Silvia; Dellabona, Paolo; Deniz, Günnur; Dessing, Mark; Di Santo, James P.; Diefenbach, Andreas; Dieli, Francesco; Dolf, Andreas; Dörner, Thomas; Dress, Regine J.; Dudziak, Diana; Dustin, Michael; Dutertre, Charles‐antoine; Ebner, Friederike; Eckle, Sidonia B. G.; Edinger, Matthias; Eede, Pascale; Ehrhardt, Götz R.a.; Eich, Marcus; Engel, Pablo; Engelhardt, Britta; Erdei, Anna; Esser, Charlotte; Everts, Bart; Evrard, Maximilien; Falk, Christine S.; Fehniger, Todd A.; Felipo‐benavent, Mar; Ferry, Helen; Feuerer, Markus; Filby, Andrew; Filkor, Kata; Fillatreau, Simon; Follo, Marie; Förster, Irmgard; Foster, John; Foulds, Gemma A.; Frehse, Britta; Frenette, Paul S.; Frischbutter, Stefan; Fritzsche, Wolfgang; Galbraith, David W.; Gangaev, Anastasia; Garbi, Natalio; Gaudilliere, Brice; Gazzinelli, Ricardo T.; Geginat, Jens; Gerner, Wilhelm; Gherardin, Nicholas A.; Ghoreschi, Kamran; Gibellini, Lara; Ginhoux, Florent; Goda, Keisuke; Godfrey, Dale I.; Goettlinger, Christoph; González‐navajas, Jose M.; Goodyear, Carl S.; Gori, Andrea; Grogan, Jane L.; Grummitt, Daryl; Grützkau, Andreas; Haftmann, Claudia; Hahn, Jonas; Hammad, Hamida; Hämmerling, Günter; Hansmann, Leo; Hansson, Goran; Harpur, Christopher M.; Hartmann, Susanne; Hauser, Andrea; Hauser, Anja E.; Haviland, David L.; Hedley, David; Hernández, Daniela C.; Herrera, Guadalupe; Herrmann, Martin; Hess, Christoph; Höfer, Thomas; Hoffmann, Petra; Hogquist, Kristin; Holland, Tristan; Höllt, Thomas; Holmdahl, Rikard; Hombrink, Pleun; Houston, Jessica P.; Hoyer, Bimba F.; Huang, Bo; Huang, Fang‐ping; Huber, Johanna E.; Huehn, Jochen; Hundemer, Michael; Hunter, Christopher A.; Hwang, William Y. K.; Iannone, Anna; Ingelfinger, Florian; Ivison, Sabine M; Jäck, Hans‐martin; Jani, Peter K.; Jávega, Beatriz; Jonjic, Stipan; Kaiser, Toralf; Kalina, Tomas; Kamradt, Thomas; Kaufmann, Stefan H. E.; Keller, Baerbel; Ketelaars, Steven L. C.; Khalilnezhad, Ahad; Khan, Srijit; Kisielow, Jan; Klenerman, Paul; Knopf, Jasmin; Koay, Hui‐fern; Kobow, Katja; Kolls, Jay K.; Kong, Wan Ting; Kopf, Manfred; Korn, Thomas; Kriegsmann, Katharina; Kristyanto, Hendy; Kroneis, Thomas; Krueger, Andreas; Kühne, Jenny; Kukat, Christian; Kunkel, Désirée; Kunze‐schumacher, Heike; Kurosaki, Tomohiro; Kurts, Christian; Kvistborg, Pia; Kwok, Immanuel; Landry, Jonathan; Lantz, Olivier; Lanuti, Paola; LaRosa, Francesca; Lehuen, Agnès; Leibundgut‐landmann, Salomé; Leipold, Michael D.; Leung, Leslie Y.T.; Levings, Megan K.; Lino, Andreia C.; Liotta, Francesco; Litwin, Virginia; Liu, Yanling; Ljunggren, Hans‐gustaf; Lohoff, Michael; Lombardi, Giovanna; Lopez, Lilly; López‐botet, Miguel; Lovett‐racke, Amy E.; Lubberts, Erik; Luche, Herve; Ludewig, Burkhard; Lugli, Enrico; Lunemann, Sebastian; Maecker, Holden T.; Maggi, Laura; Maguire, Orla; Mair, Florian; Mair, Kerstin H.; Mantovani, Alberto; Manz, Rudolf A.; Marshall, Aaron J.; Martínez‐romero, Alicia; Martrus, Glòria; Marventano, Ivana; Maslinski, Wlodzimierz; Matarese, Giuseppe; Mattioli, Anna Vittoria; Maueröder, Christian; Mazzoni, Alessio; McCluskey, James; McGrath, Mairi; McGuire, Helen M.; McInnes, Iain B.; Mei, Henrik E.; Melchers, Fritz; Melzer, Susanne; Mielenz, Dirk; Miller, Stephen D.; Mills, Kingston H.G.; Minderman, Hans; Mjösberg, Jenny; Moore, Jonni; Moran, Barry; Moretta, Lorenzo; Mosmann, Tim R.; Müller, Susann; Multhoff, Gabriele; Muñoz, Luis Enrique; Münz, Christian; Nakayama, Toshinori; Nasi, Milena; Neumann, Katrin; Ng, Lai Guan; Niedobitek, Antonia; Nourshargh, Sussan; Núñez, Gabriel; O’Connor, José‐enrique; Ochel, Aaron; Oja, Anna; Ordonez, Diana; Orfao, Alberto; Orlowski‐oliver, Eva; Ouyang, Wenjun; Oxenius, Annette; Palankar, Raghavendra; Panse, Isabel; Pattanapanyasat, Kovit; Paulsen, Malte; Pavlinic, Dinko; Penter, Livius; Peterson, Pärt; Peth, Christian; Petriz, Jordi; Piancone, Federica; Pickl, Winfried F.; Piconese, Silvia; Pinti, Marcello; Pockley, A. Graham; Podolska, Malgorzata Justyna; Poon, Zhiyong; Pracht, Katharina; Prinz, Immo; Pucillo, Carlo E. M.; Quataert, Sally A.; Quatrini, Linda; Quinn, Kylie M.; Radbruch, Helena; Radstake, Tim R. D. J.; Rahmig, Susann; Rahn, Hans‐peter; Rajwa, Bartek; Ravichandran, Gevitha; Raz, Yotam; Rebhahn, Jonathan A.; Recktenwald, Diether; Reimer, Dorothea; Reis e Sousa, Caetano; Remmerswaal, Ester B.M.; Richter, Lisa; Rico, Laura G.; Riddell, Andy; Rieger, Aja M.; Robinson, J. Paul; Romagnani, Chiara; Rubartelli, Anna; Ruland, Jürgen; Saalmüller, Armin; Saeys, Yvan; Saito, Takashi; Sakaguchi, Shimon; Sala‐de‐oyanguren, Francisco; Samstag, Yvonne; Sanderson, Sharon; Sandrock, Inga; Santoni, Angela; Sanz, Ramon Bellmàs; Saresella, Marina; Sautes‐fridman, Catherine; Sawitzki, Birgit; Schadt, Linda; Scheffold, Alexander; Scherer, Hans U.; Schiemann, Matthias; Schildberg, Frank A.; Schimisky, Esther; Schlitzer, Andreas; Schlosser, Josephine; Schmid, Stephan; Schmitt, Steffen; Schober, Kilian; Schraivogel, Daniel; Schuh, Wolfgang; Schüler, Thomas; Schulte, Reiner; Schulz, Axel Ronald; Schulz, Sebastian R.; Scottá, Cristiano; Scott‐algara, Daniel; Sester, David P.; Shankey, T. Vincent; Silva‐santos, Bruno; Simon, Anna Katharina; Sitnik, Katarzyna M.; Sozzani, Silvano; Speiser, Daniel E.; Spidlen, Josef; Stahlberg, Anders; Stall, Alan M.; Stanley, Natalie; Stark, Regina; Stehle, Christina; Steinmetz, Tobit; Stockinger, Hannes; Takahama, Yousuke; Takeda, Kiyoshi; Tan, Leonard; Tárnok, Attila; Tiegs, Gisa; Toldi, Gergely; Tornack, Julia; Traggiai, Elisabetta; Trebak, Mohamed; Tree, Timothy I.M.; Trotter, Joe; Trowsdale, John; Tsoumakidou, Maria; Ulrich, Henning; Urbanczyk, Sophia; Veen, Willem; Broek, Maries; Pol, Edwin; Van Gassen, Sofie; Van Isterdael, Gert; Lier, René A.w.; Veldhoen, Marc; Vento‐asturias, Salvador; Vieira, Paulo; Voehringer, David; Volk, Hans‐dieter; Borstel, Anouk; Volkmann, Konrad; Waisman, Ari; Walker, Rachael V.; Wallace, Paul K.; Wang, Sa A.; Wang, Xin M.; Ward, Michael D.; Ward‐hartstonge, Kirsten A; Warnatz, Klaus; Warnes, Gary; Warth, Sarah; Waskow, Claudia; Watson, James V.; Watzl, Carsten; Wegener, Leonie; Weisenburger, Thomas; Wiedemann, Annika; Wienands, Jürgen; Wilharm, Anneke; Wilkinson, Robert John; Willimsky, Gerald; Wing, James B.; Winkelmann, Rieke; Winkler, Thomas H.; Wirz, Oliver F.; Wong, Alicia; Wurst, Peter; Yang, Jennie H. M.; Yang, Juhao; Yazdanbakhsh, Maria; Yu, Liping; Yue, Alice; Zhang, Hanlin; Zhao, Yi; Ziegler, Susanne Maria; Zielinski, Christina; Zimmermann, Jakob; Zychlinsky, Arturo (2019). "Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition)." European Journal of Immunology 49(10): 1457-1973.; https://hdl.handle.net/2027.42/151979Test; European Journal of Immunology; Hruban, R. H. and Fukushima, N., Pancreatic adenocarcinoma: update on the surgical pathology of carcinomas of ductal origin and PanINs. Modern Pathol. 2007. 20: 61 - 70.; Qiu, P., Simonds, E. F., Bendall, S. C., Gibbs, K. D., Bruggner, R. V., Linderman, M. D., Sachs, K. et al., Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat. Biotechnol. 2011. 29: 886 - 891.; Naim, I., Datta, S., Cavenaugh, J. S., Mosmann, T. R. and Sharma, G., SWIFT-scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, Part 1: Algorithm design, Cytometry A 2014. 85: 408 - 421.; Leipold, M. D. and Maecker, H. T., Mass cytometry: protocol for daily tuning and running cell samples on a CyTOF mass cytometer. J. Vis. Exp. 2012. e4398.; Fletez-Brant, K., Spidlen, J., Brinkman, R. R., Roederer, M. and Chattopadhyay, P. K., flowClean: Automated identification and removal of fluorescence anomalies in flow cytometry data. Cytometry A 2016. 89: 461 - 471.; Finak, G., Perez, J. M., Weng, A. and Gottardo, R., Optimizing transformations for automated, high throughput analysis of flow cytometry data. BMC Bioinformatics. 2010. 11: 546.; Finak, G., Perez, J. M. and Gottardo, R., flowTrans: Parameter Optimization for Flow Cytometry Data Transformation. R package version 1.24.0. 2010.; Hahne, F., Khodabakhshi, A. H., Bashashati, A., Wong, C. J., Gascoyne, R. D., Weng, A. P., Seyfert-Margolis, V. et al., Per-channel basis normalization methods for flow cytometry data. Cytometry A 2010. 77: 121 - 131.; Finak, G., Jiang, W., Krouse, K., Wei, C., Sanz, I., Phippard, D., Asare, A. et al., High-throughput flow cytometry data normalization for clinical trials. Cytometry A 2014. 85: 277 - 286; Mair, F., Gate to the future: computational analysis of immunophenotyping data. Cytometry A 2019. 95: 147 - 149.; Aghaeepour, N., Chattopadhyay, P., Chikina, M., Dhaene, T., Van Gassen, S., Kursa, M., Lambrecht, B. N. et al., A benchmark for evaluation of algorithms for identification of cellular correlates of clinical outcomes. Cytometry 2016. 89: 16 - 21.; Weber, L. M. and Robinson, M. D., Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data. Cytometry A 2016. 89: 1084 - 1096.; Li, H., Shaham, U., Stanton, K. P., Yao, Y., Montgomery, R. R. and Kluger, Y., Gating mass cytometry data by deep learning. Bioinformatics 2017. 33: 3423 - 3430.; Ko, B. S., Wang, Y. F., Li, J. L., Li, C. C., Weng, P. F., Hsu, S. C., Hou, H. A. et al., Clinically validated machine learning algorithm for detecting residual diseases with multicolor flow cytometry analysis in acute myeloid leukemia and myelodysplastic syndrome. EBioMedicine 2018. 37: 91 - 100.; Azad, A., Rajwa, B. and Pothen, A., Immunophenotype discovery, hierarchical organization, and template-based classification of flow cytometry samples. Front. Oncol. 2016. 6: 188.; Finak, G., Frelinger, J., Jiang, W., Newell, E. W., Ramey, J., Davis, M. M., Kalams, S. A. et al., OpenCyto: An open source infrastructure for scalable, robust, reproducible, and automated, end-to-end flow cytometry data analysis. PLoS Comput. Biol. 2014. 10: e1003806.; Malek, M., Taghiyar, M. J., Chong, L., Finak, G., Gottardo, R. and Brinkman, R. R., flowDensity: Reproducing manual gating of flow cytometry data by automated density-based cell population identification. Bioinformatics 2015. 31: 606 - 607.; Lux, M., Brinkman, R. R., Chauve, C., Laing, A., Lorenc, A., Abeler-Dörner, L., Hammer, B. et al., flowLearn: fast and precise identification and quality checking of cell populations in flow cytometry. Bioinformatics 2018. 1: 9.; Kalina, T., Flores-Montero, J., Lecrevisse, Q., Pedreira, C. E., van der Velden, V. H., Novakova, M., Mejstrikova, E., Hrusak, O. et al., Quality assessment program for Euro Flow protocols: Summary results of four-year (2010-2013) quality assurance rounds. Cytometry A 2015. 87 ( 2 ): 145 - 156.; Aghaeepour, N., FlowMeans: non-parametric flow cytometry data gating. R package version. 2010. 1(0).; Aghaeepour, N. and Simonds, E. F., GateFinder: projection-based gating strategy optimization for polychromatic and mass flow cytometry data. Bioinformatics 2018. 34: 4131 - 4133.; Amir, E.-A. D., Davis, K. L., Tadmor, M. D., Simonds, E. F., Levine, J. H., Bendall, S. C., Shenfeld, D. K. et al., viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat. Biotechnol. 2013. 31: 545 - 552.; Samani, F. S., Moore, J. K., Khosravani, P. and Ebrahimi, M., Features of free software packages in flow cytometry: a comparison between four non-commercial software sources. Cytotechnology. 2014. 66 ( 4 ): 555 - 559.; Chen, T. J. and Kotecha, N., Cytobank: providing an analytics platform for community cytometry data analysis and collaboration. Curr. Top. Microbiol. Immunol. 2014. 377: 127 - 157.; Roederer, M., Nozzi, J. L. and Nason, M. C., SPICE: Exploration and analysis of post-cytometric complex multivariate datasets. Cytometry A. 2011. 79: 167 - 174.; Spidlen, J., Barsky, A., Breuer, K., Carr, P., Nazaire, M. D., Hill, B. A., Qian, Y. et al., GenePattern flow cytometry suite. Source Code Biol. Med. 2013. 8: 14.; Brinkman, R. R., Aghaeepour, N., Finak, G., Gottardo, R., Mosmann, T. and Scheuermann, R. H., Automated analysis of flow cytometry data comes of age. Cytometry A 2016. 89: 16 - 21.; Benjamini, Y. and Hochberg, Y., Controlling the False Discovery Rate - a Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B-Methodological 1995. 57: 289 - 300.; Almudevar, A., Multiple hypothesis testing: a methodological overview. Methods Mol. Biol. 2013. 972: 37 - 55.; Rebhahn, J. A., Roumanes, D. R., Qi, Y., Khan, A., Thakar, J., Rosenberg, A., Lee, F. E. et al., Competitive SWIFT cluster templates enhance detection of aging changes. Cytometry A 2016. 89: 59 - 70.; Maaten, L. V. D. and Hinton, G., Visualizing data using t-SNE. J. Mach. Learn. Res. 2008. 9: 2579 - 2605.; Aghaeepour, N., Jalali, A., O’Neill, K., Chattopadhyay, P. K., Roederer, M., Hoos, H. H. and Brinkman, R. R., RchyOptimyx: Cellular hierarchy optimization for flow cytometry. Cytometry A 2012. 81: 1022 - 1030.; O’Neill, K., Jalali, A., Aghaeepour, N., Hoos, H. and Brinkman, R. R., Enhanced flowType/RchyOptimyx: a bioconductor pipeline for discovery in high-dimensional cytometry data. Bioinformatics 2014. 30: 1329 - 1330.; Tong, D. L., Ball, G. R. and Pockley, A. G., gEM/GANN: a multivariate computational strategy for auto-characterizing relationships between cellular and clinical phenotypes and predicting disease progression time using high-dimensional flow cytometry data. Cytometry 2015. 87: 616 - 623.; Gassen, S. V., Vens, C., Dhaene, T., Lambrecht, B. N. and Saeys, Y., FloReMi: flow density survival regression using minimal feature redundancy. Cytometry A 2015. 89: 22 - 29.; Mair, F., Hartmann, F. J., Mrdjen, D., Tosevski, V., Krieg, C. and Becher, B., The end of gating? An introduction to automated analysis of high dimensional cytometry data. Eur. J. Immunol. 2016. 46: 34 - 43.; LeCun, Y., Bengio, Y. and Hinton, G., Deep learning. Nature 2015. 521: 436 - 444.; Rosenblatt, F., The Perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 1958. 65: 386 - 408.; Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S. E., Anguelov, D., Erhan, D. et al., Going deeper with convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, 2015, pp. 1 - 9.; Gupta, P. J. Harrison, Wieslander, H., Pielawski, N., Kartasalo, K., Partel, G., Solorzano, L., Suveer, A. et al., Deep learning in image cytometry: a review. Cytometry A 2019. 95: 366 - 380.; Eulenberg, P., Koehler, N., Blasi, T., Filby, A., Carpenter, A. E., Rees, P., Theis, F. J. et al., Reconstructing cell cycle and disease progression using deep learning. Nat. Commun. 2017. 8: 463.; Behrmann, J., Etmann, C., Boskamp, T., Casadonte, R., Kriegsmann, J. and Maass, P., Deep learning for tumor classification in imaging mass spectrometry. Bioinformatics 2017. 1: 1 - 10.; Li, H., Shaham, U., Stanton, K. P., Yao, Y., Montgomery, R. R., Kluger, Y. et al., Gating mass cytometry data by deep learning. Bioinformatics 2017. 33: 3423 - 3430.; Ornatsky, O. I., Kinach, R., Bandura, D. R., Lou, X., Tanner, S. D., Baranov, V. I., Nitz, M. and Winnik, M. A., Development of analytical methods for multiplex bio-assay with inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2008. 23: 463 - 469.; Jolliffe, I. T., Principal component analysis, Springer Science & Business Media, Berlin, Germany 2002.; Bendall, S. C., Simonds, E. F., Qiu, P., Amir el, A. D., Krutzik, P. O., Finck, R., Bruggner, R. V. et al., Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 2011. 332: 687 - 696.; Newell, E. W., Sigal, N., Bendall, S. C., Nolan, G. P. and Davis, M. M., Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8+ T cell phenotypes. Immunity 2012. 36: 142 - 152.; Kotecha, N., Krutzik, P. O. and Irish, J. M., Web-based analysis and publication of flow cytometry experiments. Curr. Protoc. Cytom. 2010. Chapter 10, Unit10.17.; Höllt, T. et al., Cytosplore: interactive immune cell phenotyping for large single-cell datasets. Comput. Graphics Forum 2016. 35: 171 - 180.; Chen, H. et al., Cytofkit: a bioconductor package for an integrated mass cytometry data analysis pipeline. PLoS Comput. Biol. 2016. 12: e1005112.; Kobak, D. and Berens, P., The art of using t-SNE for single-cell transcriptomics. bioRxiv. 2018. Available at: https://doi.org/10.1101/453449Test; Wattenberg, M., Viégas, F. and Johnson, I., How to use t-SNE effectively. Distill 2016. 1 ( 10 ). https://doi.org/10.23915/distill.00002Test; Belkina, A. C. et al., Automated optimal parameters for T-distributed stochastic neighbor embedding improve visualization and allow analysis of large datasets. bioRxiv. 2018.; Linderman, G. C., Rachh, M., Hoskins, J. G., Steinerberger, S. and Kluger, Y., Efficient Algorithms for t-distributed stochastic neighborhood embedding. arXiv. 2017. Available at: https://arxiv.org/abs/1712.09005Test; van der Maaten, L. J. P., Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 2014. ( 15 ): 3221 - 3245.; Pezzotti, N., Lelieveldt, B. P. F., Van Der Maaten, L., Hollt, T., Eisemann, E., Vilanova, A. et al., Approximated and user steerable tSNE for progressive visual analytics. IEEE Trans. Vis. Comput. Graph. 2017. 23: 1739 - 1752.; Linderman, G. C., Rachh, M., Hoskins, J. G., Steinerberger, S. and Kluger, Y., Fast interpolation-based t-SNE for improved visualization of single-cell RNA-seq data. Nat. Methods 2019. 16 ( 3 ): 243 - 245.; Pezzotti, N., Höll, T., Lelieveldt, T., Eisemann, E. and Vilanova, A., Hierarchical stochastic neighbor embedding. Comput. Graphics Forum 2016. 35: 21 - 30.; van Unen, V., Höllt, T., Pezzotti, N., Li, N., Reinders, M. J. T., Eisemann, E., Koning, F. et al., Visual analysis of mass cytometry data by hierarchical stochastic neighbour embedding reveals rare cell types. Nat. Commun. 2017. 8: 1740.; Linderman, G. C. and Steinerberger, S., Clustering with t-SNE, provably. arXiv. 2017. Available at: https://arxiv.org/abs/1706.02582Test; Shekhar, K. et al., Automatic classification of cellular expression by nonlinear stochastic embedding (ACCENSE). Proc. Natl. Acad. Sci. USA 2014. 111: 202 - 207.; Murphy, R. F., Automated identification of subpopulations in flow cytometric list mode data using cluster analysis. Cytometry. 1985. 6: 302 - 309.; Diggins, K. E., Gandelman, J. S., Roe, C. E. and Irish, J. M., Generating quantitative cell identity labels with marker enrichment modeling (MEM). Curr. Protoc. Cytom. 2018. 83: 10.21.1 - 10.21.28.; Schadt, E. E., Lamb, J., Yang, X., Zhu, J., Edwards, S., Guhathakurta, D., Sieberts, S. K. et al., An integrative genomics approach to infer causal associations between gene expression and disease. Nat. Genet. 2005. 37: 710 - 717.; Emilsson, V., Thorleifsson, G., Zhang, B., Leonardson, A. S., Zink, F., Zhu, J., Carlson, S. et al., Genetics of gene expression and its effect on disease. Nature 2008. 452: 423 - 428.; Stegle, O., Teichmann, S. A. and Marioni, J. C., Computational and analytical challenges in single-cell transcriptomics. Nat. Rev. Genet. 2015; 16: 133 - 145.; Bantscheff, M., Schirle, M., Sweetman, G., Rick, J. and Kuster, B., Quantitative mass spectrometry in proteomics: a critical review. Anal. Bioanal. Chem. 2007. 389: 1017 - 1031.; Weston, A. D. and Hood, L., Systems biology, proteomics, and the future of health care: toward predictive, preventative, and personalized medicine. J. Proteome Res. 2004. 3: 179 - 196.; Aghaeepour, N., Lehallier, B., Baca, Q., Ganio, E. A., Wong, R. J., Ghaemi, M. S., Culos, A. et al., A proteomic clock of human pregnancy. Am. J. Obstet. Gynecol. 2018. 218: 347.e1 - 347.e14.; Patterson, A. D., Maurhofer, O., Beyoglu, D., Lanz, C., Krausz, K. W., Pabst, T., Gonzalez, F. J. et al., Aberrant lipid metabolism in hepatocellular carcinoma revealed by plasma metabolomics and lipid profiling. Cancer Res. 2011. 71: 6590 - 6600.; Zhao, Y., Fu, L., Li, R., Wang, L. N., Yang, Y., Liu, N. N., Zhang, C. M. et al., Metabolic profiles characterizing different phenotypes of polycystic ovary syndrome: plasma metabolomics analysis. BMC Med. 2012. 10: 153.; Chen, X., Liu, L., Palacios, G., Gao, J., Zhang, N., Li, G., Lu, J. et al., Plasma metabolomics reveals biomarkers of the atherosclerosis. J. Sep. Sci. 2010. 33: 2776 - 2783.; Psychogios, N., Hau, D. D., Peng, J., Guo, A. C., Mandal, R., Bouatra, S., Sinelnikov, I. et al., The human serum metabolome. PLoS One 2011. 6: e16957.; Bathe, O. F. et al., Feasibility of identifying pancreatic cancer based on serum metabolomics. Cancer Epidemiol. Biomarkers Prev. 2011. 20: 140 - 147.; Zhang, A., Sun, H. and Wang, X., Serum metabolomics as a novel diagnostic approach for disease: a systematic review. Anal. Bioanal. Chem. 2012. 404: 1239 - 1245.; Bouatra, S., Aziat, F., Mandal, R., Guo, A. C., Wilson, M. R., Knox, C., Bjorndahl, T. C. et al., The human urine metabolome. PLoS One 2013. 8: e73076.; Kim, Y., Koo, I., Jung, B. H., Chung, B. C. and Lee, D., Multivariate classification of urine metabolome profiles for breast cancer diagnosis. BMC Bioinformatics 2010. 11: S4.; Dethlefsen, L., McFall-Ngai, M. and Relman, D. A., An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 2007. 449: 811 - 818.; Woodward, L. J., Anderson, P. J., Austin, N. C., Howard, K. and Inder, T. E., Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. N. Engl. J. Med. 2006. 355: 685 - 694.; Giesen, C., Wang, H. A., Schapiro, D., Zivanovic, N., Jacobs, A., Hattendorf, B., Schuffler, P. J. et al., Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 2014. 11: 417 - 422.; Halilaj, E., Hastie, T. J., Gold, G. E. and Delp, S. L., Physical activity is associated with changes in knee cartilage microstructure. Osteoarthr. Cartil. 2018. 26: 770 - 774.; Jensen, P. B., Jensen, L. J. and Brunak, S., Mining electronic health records: towards better research applications and clinical care. Nat. Rev. Genet. 2012. 13: 395 - 405.; Marbach, D., Costello, J. C., Küffner, R., Vega, N. M., Prill, R. J., Camacho, D. M., Allison, K. R. et al., Wisdom of crowds for robust gene network inference. Nat. Methods 2012. 9: 796 - 804.; Elhalawani, H. et al., Machine Learning Applications in Head and Neck Radiation Oncology: Lessons From Open-Source Radiomics Challenges. Front. Oncol. 2018. 8: 294.; Ritchie, M. D., Holzinger, E. R., Li, R., Pendergrass, S. A. and Kim, D., Methods of integrating data to uncover genotype-phenotype interactions. Nat. Rev. Genet. 2015. 16: 85 - 97.; Feinberg, A. P., Epigenomics reveals a functional genome anatomy and a new approach to common disease. Nat. Biotechnol. 2010. 28: 1049 - 1052.; Huang, S., Chaudhary, K. and Garmire, L. X., More Is Better: Recent Progress in Multi-Omics Data Integration Methods. Front. Genet. 2017. 8: 84.; Bersanelli, M. et al., Methods for the integration of multi-omics data: mathematical aspects. BMC Bioinformatics 2016. 17 ( Suppl 2 ): 15.; Li, Y., Wu, F-X. and Ngom, A., A review on machine learning principles for multi-view biological data integration. Brief. Bioinformatics 2018. 19: 325 - 340.; Tini, G., Marchetti, L., Priami, C. and Scott-Boyer, M-P., Multi-omics integration-a comparison of unsupervised clustering methodologies. Brief. Bioinformatics 2017. bbx167; Shen, R., Olshen, A. B. and Ladanyi, M., Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics 2009. 25: 2906 - 2912.; Lock, E. F., Hoadley, K. A., Marron, J. S. and Nobel, A. B., Joint and individual variation explained (jive) for integrated analysis of multiple data types. Ann. Appl. Stat. 2013. 7: 523 - 542.; Wang, B. et al., Similarity network fusion for aggregating data types on a genomic scale. Nat. Methods 2014. 11: 333 - 337.; Nassar, H. and Gleich, D. F., in Proceedings of the 2017 SIAM international conference on data mining, In N. Chawla, W. Wang, (Eds) Society for Industrial and Applied Mathematics, Philadelphia, PA, 2017. pp. 615 - 623.; Lock, E. F., Dunson, D. B., Bayesian consensus clustering. Bioinformatics 2013. 29: 2610 - 2616.; Lin, D., Zhang, J., Li, J., Calhoun, V. D., Deng, H. W. and Wang, Y. P., Group sparse canonical correlation analysis for genomic data integration. BMC Bioinformatics 2013. 14: 245.; Holzinger, E. R., Dudek, S. M., Frase, A. T., Pendergrass, S. A. and Ritchie, M. D., ATHENA: the analysis tool for heritable and environmental network associations. Bioinformatics 2014. 30: 698 - 705.; Ghaemi, M. S. et al., Multiomics modeling of the immunome, transcriptome, microbiome, proteome and metabolome adaptations during human pregnancy. Bioinformatics 2019. 35: 95 - 103.; Singh, A. et al., DIABLO: an integrative approach for identifying key molecular drivers from multi-omic assays. Bioinformatics 2019. https://doi.org/10.1093/bioinformatics/bty1054Test; He, L., Yang, Z., Zhao, Z., Lin, H. and Li, Y., Extracting drug-drug interaction from the biomedical literature using a stacked generalization-based approach. PLoS One 2013. 8: e65814.; Bendall, S. C., Davis, K. L., Amir, E.-A. D., Tadmor, M. D., Simonds, E. F., Chen, T. J., Shenfeld, D. K. et al., Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 2014. 157: 714 - 725.; Saelens, W., Cannoodt, R., Todorov, H. and Saeys, Y., A comparison of single-cell trajectory inference methods. Nat. Biotechnol. 2019. 37: 547 - 554.; Treutlein, B., Lee, Q. Y., Camp, J. G., Mall, M., Koh, W., Shariati, S. A. M., Sim, S. et al., Dissecting direct reprogramming from fibroblast to neuron using single-cell RNA-seq. Nature 2016. 534: 391 - 395.; Cannoodt, R., Saelens, W. and Saeys, Y., Computational methods for trajectory inference from single cell transcriptomics. Eur. J. Immunol. 2016. 46: 2496 - 2506.; Rebhahn, J. A., Deng, N., Sharma, G., Livingstone, A. M., Huang, S. and Mosmann, T. R., An animated landscape representation of CD4+ T-cell differentiation, variability, and plasticity: insights into the behavior of populations versus cells. Eur. J. Immunol. 2014. 44: 2216 - 2229.; Dean, P. N. and Jett, J. J., Mathematical analysis of DNA distributions derived from flow microfluorometry. J. Cell. Biol. 1974. 60: 523 - 527.; Gray, J. W., Cell cycle analysis from computer synthesis of deoxyribonucleic acid histograms. J. Histochem. Cytochem. 1974. 22: 642 - 650.; Watson, J. V., The application of age distribution theory in the analysis of cytofluorimetric DNA-histogram data. Cell Tissue Kinet. 1977. 10: 157 - 169.; Watson, J. V., Chambers, S. H. and Smith, P. J., A pragmatic approach to the analysis of DNA histograms with a definable G1 peak. Cytometry 1987. 8: 1 - 8.; Rosenblatt, J. I., Hokanson, J. A., McLaughlin, S. R. and Leary, J. F., Theoretical basis for sampling statistics useful for detecting and isolating rare cells using flow cytometry and cell sorting. Cytometry 1997. 27: 233 - 238.; Poisson, S. D., Recherches sur la probabilité des jugements en matière criminelle et en matière civile: précédées des règles générales du calcul des probabilités. Bachelier, Paris, France, 1837.; Gosset, W. S., The probable error of a mean. Biometrica 1908. 6: 1 - 25.; Fisher, R. A., Statistical methods for research workers. Oliver & Boyd, Edinburgh, U.K., 1925.; Watson, J. V., Flow cytometry data analysis: basic concepts and statistics, Cambridge University Press, Cambridge, UK, 2005.; Fisher, R. A. and Yates, F., Statistical tables for biological, medical and agricultural research. Oliver and Boyd, Edinburgh, UK, 1963. p. 86.; Snedecor, G. W., Statistical methods 4th ed., Iowa State College Press, Ames, Iowa, 1946.; Wilcoxon, F., Individual comparisons by ranking methods. Biometrics Bull. 1945. 1: 80 - 83.; Mann, H. B. and Whitney, D. R., On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 1947. 18: 50 - 60.; Siegel, S. and Castellón, N. J., Non-parametric statistics for the behavioral sciences, 2nd ed., McGraw-Hill, New York, NY, 1988, Chapter 6.; Young, I. T., Proof without prejudice: use of the Kolmogorov-Smirnov test for the analysis of histograms from flow systems and other sources. J. Histochem. Cytochem. 1977. 25: 935 - 941.; Kendall, M. G., Rank and product-moment correlation. Biometrika 1949. 36: 177 - 193.; Watson, J. V., Proof without prejudice revisited: Immunofluorescence histogram analysis using cumulative frequency subtraction plus ratio analysis of means. Cytometry 2001. 43: 55 - 68.; Bocsi, J., Melzer, S., Dähnert, I. and Tárnok, A., OMIP-023: 10-color, 13 antibody panel for in-depth phenotyping of human peripheral blood leukocytes. Cytometry A 2014. 85: 781 - 784.; Melzer, S., Zachariae, S., Bocsi, J., Engel, C., Löffler, M. and Tárnok, A., Reference intervals for leukocyte subsets in adults: Results from a population-based study using 10-color flow cytometry. Cytometry B Clin. Cytom. 2015. 88: 270 - 281.; Nettey, L., Giles, A. J. and Chattopadhyay, P. K., OMIP-050: a 28-color/30-parameter fluorescence flow cytometry panel to enumerate and characterize cells expressing a wide array of immune checkpoint molecules. Cytometry A 2018. 93: 1094 - 1096.; Mazza, E. M. C., Brummelman, J., Alvisi, G., Roberto, A., De Paoli, F., Zanon, V, Colombo, F., Roederer, M. et al., Background fluorescence and spreading error are major contributors of variability in high-dimensional flow cytometry data visualization by t-distributed stochastic neighboring embedding. Cytometry A 2018. 93: 785 - 792.; Diggins, K. E., Ferrell, P. B. and Irish, J. M., Methods for discovery and characterization of cell subsets in high dimensional mass cytometry data. Methods 2015. 82: 55 - 63.; Pierzchalski, A., Robitzki, A., Mittag, A., Emmrich, F., Sack, U., O’Connor, J. E., Bocsi, J. et al., Cytomics and nanobioengineering. Cytometry B Clin. Cytom. 2008. 74: 416 - 426.; Van Gassen, S., Callebaut, B., Van Helden, M. J., Lambrecht, B. N., Demeester, P., Dhaene, T. and Saeys, Y., FlowSOM: using self-organizing maps for visualization and interpretation of cytometry data. Cytometry A 2015. 87: 636 - 645.; Elhmouzi-Younes, J., Palgen, J. L., Tchitchek, N., Delandre, S., Namet, I., Bodinham, C. L., Pizzoferro, K. et al., In depth comparative phenotyping of blood innate myeloid leukocytes from healthy humans and macaques using mass cytometry. Cytometry A 2017. 91: 969 - 982.; Loeffler, M., Engel, C., Ahnert, P., Alfermann, D., Arelin, K., Baber, R., Beutner, F. et al., The LIFE-Adult-Study: objectives and design of a population-based cohort study with 10-000 deeply phenotyped adults in Germany. BMC Public Health 2015. 15: 691.; Moher, D., Glasziou, P., Chalmers, I., Nasser, M., Bossuyt, P. M., Korevaar, D. A., Graham, I. D. et al., Increasing value and reducing waste in biomedical research: who’s listening? Lancet 2015. 387: 1573 - 1586.; Taylor, C. F., Field, D., Sansone, S. A., Aerts, J., Apweiler, R., Ashburner, M., Ball, C. A. et al., Promoting coherent minimum reporting guidelines for biological and biomedical investigations: the MIBBI project. Nat. Biotechnol. 2008. 26: 889 - 896.; Nies, K. P. H., Kraaijvanger, R., Lindelauf, K. H. K., Drent, R. J. M. R., Rutten, R. M. J., Ramaekers, F. C. S. and Leers, M. P. G., Determination of the proliferative fractions in differentiating hematopoietic cell lineages of normal bone marrow. Cytometry A. 2018. 93: 1097 - 1105.; Parks, D. R., Moore, W. A., Brinkman, R. R., Chen, Y., Condello, D., El Khettabi, F., Nolan, J. P. et al., Methodology for evaluating and comparing flow cytometers: a multisite study of 23 instruments. Cytometry A 2018. 93: 1087 - 1091.; Jaracz-Ros, A., Hémon, P., Krzysiek, R., Bachelerie, F., Schlecht-Louf, G. and Gary-Gouy, H., OMIP-048 MC: quantification of calcium sensors and channels expression in lymphocyte subsets by mass cytometry. Cytometry A 2018. 93: 681 - 684.; Leavesley, S. and Tárnok, A., Tycho Brahe’s way to precision. Cytometry A. 2018. 93: 977 - 979.; Spidlen, J., Breuer, K. and Brinkman, R., Preparing a Minimum Information about a Flow Cytometry Experiment (MIFlowCyt) compliant manuscript using the International Society for Advancement of Cytometry (ISAC) FCS file repository (FlowRepository.org). Curr. Protoc. Cytom. 2012. Chapter 10: Unit 10.18.; Holzwarth, K., Köhler, R., Philipsen, L., Tokoyoda, K., Ladyhina, V., Wählby, C., Niesner, R. A. et al., Multiplexed fluorescence microscopy reveals heterogeneity among stromal cells in mouse bone marrow sections. Cytometry A 2018. 93: 876 - 888.; Roederer, M. and Tárnok, A., OMIPs-Orchestrating multiplexity in polychromatic science. Cytometry A 2010. 77: 811 - 812.; Finak, G., Jiang, W. and Gottardo, R., CytoML for cross-platform cytometry data sharing. Cytometry A 2018. 93: 1189 - 1196; O’Neill, K. and Brinkman, R. R., Publishing code is essential for reproducible flow cytometry bioinformatics. Cytometry A 2016. 89: 10 - 11.; Thomson Reuters. Collaborative Science - Solving the Issues of Discovery, Attribution and Measurement in Data Sharing. 2012. http://wokinfo.com/products_tools/multidisciplinary/dci/collaborative_science_essay.pdfTest; Piwowar, H. A. and Chapman, W. W., A review of journal policies for sharing research data. Proceedings ELPUB 2008 Conference on Electronic Publishing, 2008, http://elpub.scix.net/data/works/att/001_elpub2008.content.pdfTest; Fecher, B., Friesike, S. and Hebing, M., What drives academic data sharing? PLoS One 2015. 10: e0118053.; Nicol, A., Caruso, J. and Archambault, à ., Open Data Access Policies and Strategies in the European Research Area and Beyond. Science-Metrix, Inc. Produced for the European Commission DG Research & Innovation, 2013, http://www.science-metrix.com/pdf/SM_EC_OA_Data.pdfTest; National Institute of Health. NIH Data Sharing Policy. http://grants.nih.gov/grants/policy/data_sharingTest/; PLOS. PLOS- New Data Policy: Public Access to Data. http://blogs.plos.org/everyone/2014/02/24/plos-new-data-policy-public-access-data-2Test/; Spidlen, J., Breuer, K., Rosenberg, C., Kotecha, N. and Brinkman, R. R., FlowRepository: a resource of annotated flow cytometry datasets associated with peer-reviewed publications. Cytometry A 2012. 81: 727 - 731.; Kong, Y. M., Dahlke, C., Xiang, Q., Qian, Y., Karp, D. and Scheuermann, R. H., Toward an ontology-based framework for clinical research databases. J. Biomed. Inform. 2011. 44: 48 - 58.; Bhattacharya, S., Andorf, S., Gomes, L., Dunn, P., Schaefer, H., Pontius, J., Berger, P. et al., ImmPort: disseminating data to the public for the future of immunology. Immunol. Res. 2014. 58: 234 - 239.; Brusic, V., Gottardo, R., Kleinstein, S. H., Davis, M. M.; HIPC steering committee, Computational resources for high-dimensional immune analysis from the Human Immunology Project Consortium. Nat. Biotechnol. 2014. 32 ( 2 ): 146 - 148.; U.S. Department of Health & Human Services. Summary of the HIPAA Privacy Rule. http://www.hhs.gov/sites/default/files/privacysummary.pdfTest; Vasilevsky, N. A., Minnier, J., Haendel, M. A. and Champieux, R. E., Reproducible and reusable research: are journal data sharing policies meeting the mark? Peer J. 2017. 5: e3208.; Kay, D. B., Cambier, J. L. and Wheeless, L. L., Jr., Imaging in flow. J. Histochem. Cytochem. 1979. 27: 329 - 334.; George, T. C., Basiji, D. A., Hall, B. E., Lynch, D. H., Ortyn, W. E., Perry, D. J., Seo, M. J. et al., Distinguishing modes of cell death using the ImageStream multispectral imaging flow cytometer. Cytometry A 2004. 59: 237 - 245.; Pozarowski, P., Holden, E. and Darzynkiewicz, Z., Laser scanning cytometry: principles and applications-an update. Methods Mol. Biol. 2013. 931: 187 - 212.; Stavrakis, S., Holzner, G., Choo, J. and deMello, A., High-throughput microfluidic imaging flow cytometry. Curr. Opin. Biotechnol. 2019. 55: 36 - 43.; Nitta, N., Sugimura, T., Isozaki, A., Mikami, H., Hiraki, K., Sakuma, S., Iino, T. et al., Intelligent image-activated cell sorting. Cell 2018. 175: 266 - 276.; Hritzo, M. K., Courneya, J. P. and Golding, A., Imaging flow cytometry: a method for examining dynamic native FOXO1 localization in human lymphocytes. J. Immunol. Methods 2018. 454: 59 - 70.; Maguire, O., Collins, C., O’Loughlin, K., Miecznikowski, J. and Minderman, H., Quantifying nuclear p65 as a parameter for NF-kappaB activation: Correlation between ImageStream cytometry, microscopy, and Western blot. Cytometry A 2011. 79: 461 - 469.; Maguire, O., Tornatore, K. M., O’Loughlin, K. L., Venuto, R. C. and Minderman, H., Nuclear translocation of nuclear factor of activated T cells (NFAT) as a quantitative pharmacodynamic parameter for tacrolimus. Cytometry A 2013. 83: 1096 - 1104.; Stone, R. C., Feng, D., Deng, J., Singh, S., Yang, L., Fitzgerald-Bocarsly, P., Eloranta, M. L. et al., Interferon regulatory factor 5 activation in monocytes of systemic lupus erythematosus patients is triggered by circulating autoantigens independent of type I interferons. Arthritis Rheum. 2012. 64: 788 - 798.; Trifonova, R. T. and Barteneva, N. S., Quantitation of IRF3 nuclear translocation in heterogeneous cellular populations from cervical tissue using imaging flow cytometry. Methods Mol. Biol. 2018. 1745: 125 - 153.; Volk, A., Li, J., Xin, J., You, D., Zhang, J., Liu, X., Xiao, Y. et al., Co-inhibition of NF-kappaB and JNK is synergistic in TNF-expressing human AML. J. Exp. Med. 2014. 211: 1093 - 1108.; Wan, C. K., Andraski, A. B., Spolski, R., Li, P., Kazemian, M., Oh, J., Samsel, L. et al., Opposing roles of STAT1 and STAT3 in IL-21 function in CD4+ T cells. Proc. Natl. Acad. Sci. USA 2015. 112: 9394 - 9399.; Haridas, V., Ranjbar, S., Vorobjev, I. A., Goldfeld, A. E. and Barteneva, N. S., Imaging flow cytometry analysis of intracellular pathogens. Methods 2017. 112: 91 - 104.; Pugsley, H. R., Quantifying autophagy: Measuring LC3 puncta and autolysosome formation in cells using multispectral imaging flow cytometry. Methods 2017. 112: 147 - 156.; Lannigan, J. and Erdbruegger, U., Imaging flow cytometry for the characterization of extracellular vesicles. Methods 2017. 112: 55 - 67.; Shenoy, G. N., Loyall, J., Maguire, O., Iyer, V., Kelleher, R. J., Jr., Minderman, H., Wallace, P. K. et al., Exosomes associated with human ovarian tumors harbor a reversible checkpoint of T-cell responses. Cancer Immunol. Res. 2018. 6: 236 - 247.; Ploppa, A., George, T. C., Unertl, K. E., Nohe, B. and Durieux, M. E., ImageStream cytometry extends the analysis of phagocytosis and oxidative burst. Scand J. Clin. Lab. Invest. 2011. 71: 362 - 369.; Henery, S., George, T., Hall, B., Basiji, D., Ortyn, W. and Morrissey, P., Quantitative image based apoptotic index measurement using multispectral imaging flow cytometry: a comparison with standard photometric methods. Apoptosis 2008. 13: 1054 - 1063.; Poh, S. E. P., Png, E. and Tong, L., Quantitative image analysis of cellular morphology using Amnis® ImageStreamX Mark II imaging flow cytometer: a comparison against conventional methods. Single Cell Biol. 2015. 4: s1.; Balta, E., Stopp, J., Castelletti, L., Kirchgessner, H., Samstag, Y. and Wabnitz, G. H., Qualitative and quantitative analysis of PMN/T-cell interactions by InFlow and super-resolution microscopy. Methods 2017. 112: 25 - 38.; Mace, T. A., Zhong, L., Kilpatrick, C., Zynda, E., Lee, C. T., Capitano, M., Minderman, H. et al., Differentiation of CD8+ T cells into effector cells is enhanced by physiological range hyperthermia. J. Leukoc. Biol. 2011. 90: 951 - 962.; Maguire, O., Wallace, P. K. and Minderman, H., Fluorescent in situ hybridization in suspension by imaging flow cytometry. Methods Mol. Biol. 2016. 1389: 111 - 126.; Blasi, T., Hennig, H., Summers, H. D., Theis, F. J., Cerveira, J., Patterson, J. O., Davies, D. et al., Label-free cell cycle analysis for high-throughput imaging flow cytometry. Nat. Commun. 2016. 7: 10256.; Ortyn, W. E., Perry, D. J., Venkatachalam, V., Liang, L., Hall, B. E., Frost, K. and Basiji, D. A., Extended depth of field imaging for high speed cell analysis. Cytometry A 2007. 71: 215 - 231.; Ortyn, W. E., Hall, B. E., George, T. C., Frost, K., Basiji, D. A., Perry, D. J., Zimmerman, C. A. et al., Sensitivity measurement and compensation in spectral imaging. Cytometry A 2006. 69: 852 - 862.; Chester, C. and Maecker, H. T., Algorithmic tools for mining high-dimensional cytometry data. J. Immunol. 2015. 195: 773 - 779.; Krutzik, P. O. and Nolan, G. P., Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling. Nat. Methods 2006. 3: 361 - 368.; Bodenmiller, B., Zunder, E. R., Finck, R., Chen, T. J., Savig, E. S., Bruggner, R. V., Simonds, E. F. et al., Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat. Biotechnol. 2012. 30: 858 - 867.; Behbehani, G. K., Thom, C., Zunder, E. R., Finck, R., Gaudilliere, B., Fragiadakis, G. K., Fantl, W. J. et al., Transient partial permeabilization with saponin enables cellular barcoding prior to surface marker staining. Cytometry A 2014. 85: 1011 - 1019.; Mei, H. E., Leipold, M. D. and Maecker, H. T., Platinum-conjugated antibodies for application in mass cytometry. Cytometry A 2016. 89: 292 - 300.; Mei, H. E., Leipold, M. D., Schulz, A. R., Chester, C. and Maecker, H. T., Barcoding of live human peripheral blood mononuclear cells for multiplexed mass cytometry. J. Immunol. 2015. 194: 2022 - 2031.; Lai, L., Ong, R., Li, J. and Albani, S., A CD45-based barcoding approach to multiplex mass-cytometry (CyTOF). Cytometry A 2015. 87: 369 - 374.; Akkaya, B., Miozzo, P., Holstein, A. H., Shevach, E. M., Pierce, S. K. and Akkaya, M., A simple, versatile antibody-based barcoding method for flow cytometry. J. Immunol. 2016.; Nassar, A. F., Wisnewski, A. V. and Raddassi, K., Automation of sample preparation for mass cytometry barcoding in support of clinical research: protocol optimization. Anal. Bioanal. Chem. 2017. 409: 2363 - 2372.; Zunder, E. R., Finck, R., Behbehani, G. K., Amir el, A. D., Krishnaswamy, S., Gonzalez, V. D., Lorang, C. G. et al., Palladium-based mass tag cell barcoding with a doublet-filtering scheme and single-cell deconvolution algorithm. Nat. Protoc. 2015. 10: 316 - 333.; Catena, R., Ozcan, A., Zivanovic, N. and Bodenmiller, B., Enhanced multiplexing in mass cytometry using osmium and ruthenium tetroxide species. Cytometry A 2016. 89: 491 - 497.; Chevrier, S., Crowell, H. L., Zanotelli, V. R. T., Engler, S., Robinson, M. D. and Bodenmiller, B., Compensation of signal spillover in suspension and imaging mass cytometry. Cell Syst. 2018. 6: 612 - 620. e615.; Fread, K. I., Strickland, W. D., Nolan, G. P. and Zunder, E. R., An updated debarcoding tool for mass cytometry with cell type-specific and cell sample-specific stringency adjustment. Pac. Symp. Biocomput. 2017. 22: 588 - 598.; Zivanovic, N., Jacobs, A. and Bodenmiller, B., A practical guide to multiplexed mass cytometry. Curr. Top. Microbiol. Immunol. 2013.; Hartmann, F. J., Simonds, E. F. and Bendall, S. C., A universal live cell barcoding-platform for multiplexed human single cell analysis. Sci. Rep. 2018. 8: 10770.; Yamanaka, Y. J., Szeto, G. L., Gierahn, T. M., Forcier, T. L., Benedict, K. F., Brefo, M. S., Lauffenburger, D. A. et al., Cellular barcodes for efficiently profiling single-cell secretory responses by microengraving. Anal. Chem. 2012. 84: 10531 - 10536.; Schulz, A. R. and Mei, H. E., Surface barcoding of live PBMC for multiplexed mass cytometry. Methods Mol. Biol. 2019. 1989: 93 - 108.; Simard, C., Cloutier, M. and Neron, S., Rapid determination of IL-6 specific activity by flow cytometry. J. Immunol. Methods 2014. 415: 63 - 65.; Simard, C., Cloutier, M. and Neron, S., Feasibility study: phosphospecific flow cytometry enabling rapid functional analysis of bone marrow samples from patients with multiple myeloma. Cytometry B Clin. Cytom. 2014. 86: 139 - 144.; Krutzik, P. O., Clutter, M. R., Trejo, A. and Nolan, G. P., Fluorescent cell barcoding for multiplex flow cytometry. Curr. Protoc. Cytom. 2011. Chapter 6: Unit 6 31.; Krutzik, P. O., Crane, J. M., Clutter, M. R. and Nolan, G. P., High-content single-cell drug screening with phosphospecific flow cytometry. Nat. Chem. Biol. 2008. 4: 132 - 142.; Frischbutter, S., Schultheis, K., Patzel, M., Radbruch, A. and Baumgrass, R., Evaluation of calcineurin/NFAT inhibitor selectivity in primary human Th cells using bar-coding and phospho-flow cytometry. Cytometry A 2012. 81: 1005 - 1011.; Bernardo, S. M., Allen, C. P., Waller, A., Young, S. M., Oprea, T., Sklar, L. A. and Lee, S. A., An automated high-throughput cell-based multiplexed flow cytometry assay to identify novel compounds to target Candida albicans virulence-related proteins. PLoS One 2014. 9: e110354.; Spurgeon, B. E., Aburima, A., Oberprieler, N. G., Tasken, K. and Naseem, K. M., Multiplexed phosphospecific flow cytometry enables large-scale signaling profiling and drug screening in blood platelets. J. Thromb. Haemost. 2014. 12: 1733 - 1743.; Clark, M. A., Goheen, M. M., Spidale, N. A., Kasthuri, R. S., Fulford, A. and Cerami, C., RBC barcoding allows for the study of erythrocyte population dynamics and P. falciparum merozoite invasion. PLoS One 2014. 9: e101041.; Becher, B., Schlitzer, A., Chen, J., Mair, F., Sumatoh, H. R., Teng, K. W. et al., High-dimensional analysis of the murine myeloid cell system. Nat. Immunol. 2014. 15: 1181 - 1189.; McCarthy, R. L., Mak, D. H., Burks, J. K. and Barton, M. C., Rapid monoisotopic cisplatin based barcoding for multiplexed mass cytometry. Sci. Rep. 2017. 7: 3779.; Schulz, A. R. and Mei, H. E., Cell-surface barcoding of live PBMC for multiplexed mass cytometry. In McGuire, H. and Ashhurst, T. (Eds.) Methods in molecular biology. Springer Nature, Basingstoke, UK 2019.; Willis, L. M., Park, H., Watson, M. W. L., Majonis, D., Watson, J. L. and Nitz, M., Tellurium-based mass cytometry barcode for live and fixed cells. Cytometry A 2018. 93: 685 - 694.; Wu, X., DeGottardi, Q., Wu, I. C., Wu, L., Yu, J., Kwok, W. W. and Chiu, D. T., Ratiometric Barcoding for Mass Cytometry. Anal. Chem. 2018. 90: 10688 - 10694.; Meng, H., Warden, A., Zhang, L., Zhang, T., Li, Y., Tan, Z., Wang, B. et al., A mass-ratiometry-based CD45 barcoding method for mass cytometry detection. SLAS Technol. 2019. 2472630319834057.; Irish, J. M., Myklebust, J. H., Alizadeh, A. A., Houot, R., Sharman, J. P., Czerwinski, D. K., Nolan, G. P. et al., B-cell signaling networks reveal a negative prognostic human lymphoma cell subset that emerges during tumor progression. Proc. Natl. Acad. Sci. USA 2010. 107: 12747 - 12754.; Gaudillière, B., Fragiadakis, G. K., Bruggner, R. V., Nicolau, M., Finck, R., Tingle, M., Silva, J. et al., Clinical recovery from surgery correlates with single-cell immune signatures. Sci. Transl. Med. 2014. 6: 255ra131.; Bandura, D. R., Baranov, V. I., Ornatsky, O. I., Antonov, A., Kinach, R., Lou, X., Pavlov, S. et al., Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal. Chem. 2009. 81: 6813 - 6822.; Bendall, S. C., Nolan, G. P., Roederer, M. and Chattopadhyay, P. K., A deep profiler’s guide to cytometry. Trends Immunol. 2012. 33: 323 - 332.; Tanner, S. D., Baranov, V. I., Ornatsky, O. I., Bandura, D. R. and George, T. C., An introduction to mass cytometry: fundamentals and applications. Cancer Immunol. Immunother. 2013. 62: 955 - 965.; Wong, M. T., Ong, D. E., Lim, F. S., Teng, K. W., McGovern, N., Narayanan, S., Ho, W. Q. et al., A high-dimensional atlas of human T cell diversity reveals tissue-specific trafficking and cytokine signatures. Immunity 2016. 45: 442 - 456.; Zunder, E. R., Lujan, E., Goltsev, Y., Wernig, M. and Nolan, G. P., A continuous molecular roadmap to iPSC reprogramming through progression analysis of single-cell mass cytometry. Cell Stem Cell 2015. 16: 323 - 337.; Nair, N., Mei, H. E., Chen, S. Y., Hale, M., Nolan, G. P., Maecker, H. T., Genovese, M. et al., Mass cytometry as a platform for the discovery of cellular biomarkers to guide effective rheumatic disease therapy. Arthritis Res. Ther. 2015. 17: 127.; Mingueneau, M., Boudaoud, S., Haskett, S., Reynolds, T. L., Nocturne, G., Norton, E., Zhang, X. et al., Cytometry by time-of-flight immunophenotyping identifies a blood Sjogren’s signature correlating with disease activity and glandular inflammation. J. Allergy Clin. Immunol. 2016. 137: 1809 - 1821 e1812.; Olin, A., Henckel, E., Chen, Y., Lakshmikanth, T., Pou, C., Mikes, J., Gustafsson, A. et al., Stereotypic immune system development in newborn children. Cell 2018. 174: 1277 - 1292.; Brodin, P., Jojic, V., Gao, T., Bhattacharya, S., Angel, C. J., Furman, D., Shen-Orr, S. et al., Variation in the human immune system is largely driven by non-heritable influences. Cell 2015. 160: 37 - 47.; Pejoski, D., Tchitchek, N., Rodriguez Pozo, A., Elhmouzi-Younes, J., Yousfi-Bogniaho, R., Rogez-Kreuz, C., Clayette, P. et al., Identification of vaccine-altered circulating b cell phenotypes using mass cytometry and a two-step clustering analysis. J. Immunol. 2016. 196: 4814 - 4831.; Leipold, M. D., Ornatsky, O., Baranov, V., Whitfield, C. and Nitz, M., Development of mass cytometry methods for bacterial discrimination. Anal. Biochem. 2011. 419: 1 - 8.; Guo, Y., Baumgart, S., Stark, H. J., Harms, H. and Muller, S., Mass cytometry for detection of silver at the bacterial single cell level. Front Microbiol. 2017. 8: 1326.; Yang, Y. S., Atukorale, P. U., Moynihan, K. D., Bekdemir, A., Rakhra, K., Tang, L., Stellacci, F. et al., High-throughput quantitation of inorganic nanoparticle biodistribution at the single-cell level using mass cytometry. Nat. Commun. 2017. 8: 14069.; Abdelrahman, A. I., Ornatsky, O., Bandura, D., Baranov, V., Kinach, R., Dai, S., Thickett, S. C. et al., Metal-containing polystyrene beads as standards for mass cytometry. J. Anal. At Spectrom. 2010. 25: 260 - 268.; Galli, E., Friebel, E., Ingelfinger, F., Unger, S., Nunez, N. G. and Becher, B., The end of omics? High dimensional single cell analysis in precision medicine. Eur. J. Immunol. 2019. 49: 212 - 220.; Kimball, A. K., Oko, L. M., Bullock, B. L., Nemenoff, R. A., van Dyk, L. F. and Clambey, E. T., A beginner’s guide to analyzing and visualizing mass cytometry data. J. Immunol. 2018. 200: 3 - 22.; Cosma, A., A time to amaze, a time to settle down, and a time to discover. Cytometry A 2015. 87: 795 - 796.; Chang, Q., Ornatsky, O. I., Siddiqui, I., Loboda, A., Baranov, V. I. and Hedley, D. W., Imaging mass cytometry. Cytometry A 2017. 91: 160 - 169.; Zhao, Y., Uduman, M., Siu, J. H. Y., Tull, T. J., Sanderson, J. D., Wu, Y. B., Zhou, J. Q. et al., Spatiotemporal segregation of human marginal zone and memory B cell populations in lymphoid tissue. Nat. Commun. 2018. 9: 3857.; Keren, L., Bosse, M., Marquez, D., Angoshtari, R., Jain, S., Varma, S., Yang, S. R. et al., A structured tumor-immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. Cell 2018. 174: 1373 - 1387 e1319.; Tricot, S., Meyrand, M., Sammicheli, C., Elhmouzi-Younes, J., Corneau, A., Bertholet, S., Malissen, M., Le Grand, R. et al., Evaluating the efficiency of isotope transmission for improved panel design and a comparison of the detection sensitivities of mass cytometer instruments. Cytometry A 2015. 87: 357 - 368.; Rahman, A. H., Tordesillas, L. and Berin, M. C., Heparin reduces nonspecific eosinophil staining artifacts in mass cytometry experiments. Cytometry A 2016. 89: 601 - 607.; Schulz, A. R., Stanislawiak, S., Baumgart, S., Grutzkau, A. and Mei, H. E., Silver nanoparticles for the detection of cell surface antigens in mass cytometry. Cytometry A 2017. 91: 25 - 33.; Lin, W., Hou, Y., Lu, Y., Abdelrahman, A. I., Cao, P., Zhao, G., Tong, L. et al., A high-sensitivity lanthanide nanoparticle reporter for mass cytometry: tests on microgels as a proxy for cells. Langmuir 2014. 30: 3142 - 3153.; Tong, L., Lu, E., Pichaandi, J., Zhao, G. and Winnik, M. A., Synthesis of uniform NaLnF4 (Ln: Sm to Ho) nanoparticles for mass cytometry. J. Phys. Chem. C 2016. 120: 6269 - 6280.; Baumgart, S., Schulz, A. R., Peddinghaus, A., Stanislawiak, S., Gillert, S., Hirseland, H., Krauthauser, S. et al., Dual-labelled antibodies for flow and mass cytometry: a new tool for cross-platform comparison and enrichment of target cells for mass cytometry. Eur. J. Immunol. 2017.; Finck, R., Simonds, E. F., Jager, A., Krishnaswamy, S., Sachs, K., Fantl, W., Pe’er, D. et al., Normalization of mass cytometry data with bead standards. Cytometry A 2013. 83: 483 - 494.; Schulz, A. R., Baumgart, S., Schulze, J., Urbicht, M., Grutzkau, A. and Mei, H. E., Stabilizing antibody cocktails for mass cytometry. Cytometry A 2019.; Kadic, E., Moniz, R. J., Huo, Y., Chi, A. and Kariv, I., Effect of cryopreservation on delineation of immune cell subpopulations in tumor specimens as determinated by multiparametric single cell mass cytometry analysis. BMC Immunol. 2017. 18: 6.; Kleinsteuber, K., Corleis, B., Rashidi, N., Nchinda, N., Lisanti, A., Cho, J. L., Medoff, B. D. et al., Standardization and quality control for high-dimensional mass cytometry studies of human samples. Cytometry A 2016. 89: 903 - 913.; Leipold, M. D., Obermoser, G., Fenwick, C., Kleinstuber, K., Rashidi, N., McNevin, J. P., Nau, A. N. et al., Comparison of CyTOF assays across sites: Results of a six-center pilot study. J. Immunol. Methods 2018. 453: 37 - 43.; Sumatoh, H. R., Teng, K. W., Cheng, Y. and Newell, E. W., Optimization of mass cytometry sample cryopreservation after staining. Cytometry A 2017. 91: 48 - 61.; Nicholas, K. J., Greenplate, A. R., Flaherty, D. K., Matlock, B. K., Juan, J. S., Smith, R. M., Irish, J. M. et al., Multiparameter analysis of stimulated human peripheral blood mononuclear cells: a comparison of mass and fluorescence cytometry. Cytometry A 2016. 89: 271 - 280.; Baumgart, S., Peddinghaus, A., Schulte-Wrede, U., Mei, H. E. and Grutzkau, A., OMIP-034: comprehensive immune phenotyping of human peripheral leukocytes by mass cytometry for monitoring immunomodulatory therapies. Cytometry A 2017. 91: 34 - 38.; Behbehani, G. K., Bendall, S. C., Clutter, M. R., Fantl, W. J. et al., Single-cell mass cytometry adapted to measurements of the cell cycle. Cytometry A 2012. 81: 552 - 566.; Frei, A. P., Bava, F. A., Zunder, E. R., Hsieh, E. W., Chen, S. Y., Nolan, G. P. and Gherardini, P. F., Highly multiplexed simultaneous detection of RNAs and proteins in single cells. Nat. Methods 2016. 13: 269 - 275.; Mavropoulos, A., Allo, B., He, M., Park, E., Majonis, D. and Ornatsky, O., Simultaneous detection of protein and mRNA in Jurkat and KG-1a cells by mass cytometry. Cytometry A 2017. 91: 1200 - 1208.; Robinson, J. P., Rajwa, B., Patsekin, V. and Davisson, V. J., Computational analysis of high throughput flow cytometry data. Expert Opin. Drug Deliv. 2012. 7: 679 - 693.; Cheung, P., Vallania, F., Warsinske, H. C., Donato, M., Schaffert, S., Chang, S. E., Dvorak, M. et al., Single-cell chromatin modification profiling reveals increased epigenetic variations with aging. Cell 2018. 173: 1385 - 1397 e1314.; Lumba, M. A., Willis, L. M., Santra, S., Rana, R., Schito, L., Rey, S., Wouters, B. G. et al., A beta-galactosidase probe for the detection of cellular senescence by mass cytometry. Org. Biomol. Chem. 2017. 15: 6388 - 6392.; Edgar, L. J., Vellanki, R. N., Halupa, A., Hedley, D., Wouters, B. G. and Nitz, M., Identification of hypoxic cells using an organotellurium tag compatible with mass cytometry. Angew Chem. Int. Ed. Engl. 2014. 53: 11473 - 11477.; Stern, A. D., Rahman, A. H. and Birtwistle, M. R., Cell size assays for mass cytometry. Cytometry A 2017. 91: 14 - 24.; Rapsomaniki, M. A., Lun, X. K., Woerner, S., Laumanns, M., Bodenmiller, B. and Martinez, M. R., CellCycleTRACER accounts for cell cycle and volume in mass cytometry data. Nat. Commun. 2018. 9: 632.; Budzinski, L., Schulz, A. R., Baumgart, S., Burns, T., Rose, T., Hirseland, H. and Mei, H. E., Osmium-labeled microspheres for bead-based assays in mass cytometry. J. Immunol. 2019. 202: 3103 - 3112.; Bringeland, G. H., Bader, L., Blaser, N., Budzinski, L., Schulz, A. R., Mei, H. E., Myhr, K. M. et al., Optimization of receptor occupancy assays in mass cytometry: standardization across channels with QSC beads. Cytometry A 2019. 95: 314 - 322.; Ornatsky, O. I., Lou, X., Nitz, M., Schafer, S., Sheldrick, W. S., Baranov, V. I., Bandura, D. R. et al., Study of cell antigens and intracellular DNA by identification of element-containing labels and metallointercalators using inductively coupled plasma mass spectrometry. Anal. Chem. 2008. 80: 2539 - 2547.; Blair, T. A., Michelson, A. D. and Frelinger, A. L., 3rd, Mass cytometry reveals distinct platelet subtypes in healthy subjects and novel alterations in surface glycoproteins in Glanzmann thrombasthenia. Sci. Rep. 2018. 8: 10300.; Lee, B. H. and Rahman, A. H., Acquisition, Processing, and Quality Control of Mass Cytometry Data. Methods Mol. Biol. 2019. 1989: 13 - 31.; Fienberg, H. G., Simonds, E. F., Fantl, W. J., Nolan, G. P. and Bodenmiller, B., A platinum-based covalent viability reagent for single-cell mass cytometry. Cytometry A 2012. 81: 467 - 475.; Leipold, M. D. and Maecker, H. T., Phenotyping of live human PBMC using CyTOFTM mass cytometry. bio-protocol 2015. 5: e1382.; Han, G., Spitzer, M. H., Bendall, S. C., Fantl, W. J. and Nolan, G. P., Metal-isotope-tagged monoclonal antibodies for high-dimensional mass cytometry. Nat. Protoc. 2018. 13: 2121 - 2148.; Han, G., Chen, S. Y., Gonzalez, V. D., Zunder, E. R., Fantl, W. J. and Nolan, G. P., Atomic mass tag of bismuth-209 for increasing the immunoassay multiplexing capacity of mass cytometry. Cytometry A 2017. 91: 1150 - 1163.; Horowitz, A., Strauss-Albee, D. M., Leipold, M., Kubo, J., Nemat-Gorgani, N., Dogan, O. C., Dekker, C. L. et al., Genetic and environmental determinants of human NK cell diversity revealed by mass cytometry. Sci. Transl. Med. 2013. 5: 208ra145.; Leipold, M. D., Newell, E. W. and Maecker, H. T., Multiparameter phenotyping of human PBMCs using mass cytometry. Methods Mol. Biol. 2015. 1343: 81 - 95.; Olsen, L. R., Leipold, M. D., Pedersen, C. B. and Maecker, H. T., The anatomy of single cell mass cytometry data. Cytometry A 2018.; Robinson, J. P., Patsekin, V., Holdman, C., Ragheb, K., Sturgis, J., Fatig, R., Avramova, L. V. et al., High-throughput secondary screening at the single-cell level. J. Lab. Automat. 2012. 18: 85 - 98.; Robinson, J. P., Durack, G. and Kelley, S., An innovation in flow cytometry data collection & analysis producing a correlated multiple sample analysis in a single file. Cytometry 1991. 12: 82 - 90.; Newell, E., Bendall, S., Hong, D., Lewis, D., Nolan, G. and Davis, M., Surveying the influenza-specific cytotoxic T cell response in humans and mice using mass-cytometry (CyTOF) and combinatorial tetramer staining. Clin. Immunol. 2010. 135: S104 - S104.; Rajwa, B., Venkatapathi, M., Ragheb, K., Banada, P. P., Hirleman, E. D., Lary, T. and Robinson, J. P. Automated classification of bacterial particles in flow by multiangle scatter measurement and a support vector machine classifier. Cytometry Part A 2008. 73A: 369 - 379.; Costa, E. S., Pedreira, C. E., Barrena, S., Lecrevisse, Q., Flores, J., Quijano, S., Almeida, J. et al., Automated pattern-guided principal component analysis vs expert-based immunophenotypic classification of B-cell chronic lymphoproliferative disorders: A step forward in the standardization of clinical immunophenotyping. Leukemia 2010. 24: 1927 - 1933.; Dundar, M., Akova, F., Yerebakan, H. Z. and Rajwa, B., A non-parametric Bayesian model for joint cell clustering and cluster matching: identification of anomalous sample phenotypes with random effects. BMC Bioinformatics 2014. 15: 314.; Bagwell, C. B., Hunsberger, B. C., Herbert, D. J., Munson, M. E., Hill, B. L., Bray, C. M. and Preffer, F. I., Probability state modeling theory. Cytometry A 2015. 87: 646 - 660.; Fulton, R. J., McDade, R. L., Smith, P. L., Kienker, L. J. and Kettman, J. R. Advanced multiplexed analysis with the FlowMetrix system. Clin. Chem. 1997. 43: 1749 - 1756.; Robinson, J. P., Patsekin, V., Gregori, G., Rajwa, B. and Jones, J., Multispectral flow cytometry: next generation tools for automated classification. Microsc. Microanal. 2005. 11: 2 - 3.; Mair, F. and Prlic, M., OMIP-044: 28-color immunophenotyping of the human dendritic cell compartment. Cytometry A. 2018. 106: 255.; Nolan, J. P. and Condello, D., Spectral flow cytometry. Curr. Protoc. Cytom. 2013. Chapter 1:Unit1.27-1.27.13.; Bagwell, C. B. and Adams, E. G., Fluorescence spectral overlap compensation for any number of flow cytometry parameters. Ann. N. Y. Acad. Sci. 1993. 677: 167 - 184.; Roederer, M., Compensation is not dependent on signal intensity or on number of parameters. Cytometry. 2001. 46: 357 - 359.; Perfetto, S. P., Chattopadhyay, P. K. and Roederer, M., Seventeen-colour flow cytometry: unravelling the immune system. Nat. Rev. Immunol. 2004. 4: 648 - 655.; Mahnke, Y. D., Brodie, T. M., Sallusto, F., Roederer, M., Lugli, E., The who’s who of T-cell differentiation: human memory T-cell subsets. Eur. J. Immunol. 2013. 43: 2797 - 2809.; Herzenberg, L. A., Tung, J., Moore, W. A., Herzenberg, L. A. and Parks, D. R., Interpreting flow cytometry data: a guide for the perplexed. Nat. Immunol. 2006. 7: 681 - 685.; Gerner, M. Y., Kastenmüller, W., Ifrim, I., Kabat, J. and Germain, R. N., Histo-cytometry: a method for highly multiplex quantitative tissue imaging analysis applied to dendritic cell subset microanatomy in lymph nodes. Immunity. 2012. 37: 364 - 376.; Ashhurst, T. M., Smith, A. L. and King, N. J. C., High-dimensional fluorescence cytometry. John Wiley & Sons, Inc., Hoboken, NJ 2017. 5.8.1 - 5.8.38.; Picelli, S., Faridani, O. R., Björklund, A. K., Winberg, G., Sagasser, S. and Sandberg, R., Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 2014. 9: 171 - 181.; Lafzi, A., Moutinho, C., Picelli, S. and Heyn, H., Tutorial: guidelines for the experimental design of single-cell RNA sequencing studies. Nat. Protoc. 2018. 13: 2742 - 2757.; Macosko, E. Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman, M., Tirosh, I. et al., Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015. 161: 1202 - 1214.; Klein, A. M., Mazutis, L., Akartuna, I., Tallapragada, N., Veres, A., Li, V., Peshkin, L. et al., Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015. 161: 1187 - 1201.; Valihrach, L., Androvic, P. and Kubista, M., Platforms for single-cell collection and analysis. Int. J. Mol. Sci. 2018. 19: 807.; Cao, J., Packer, J. S., Ramani, V., Cusanovich, D. A., Huynh, C., Daza, R., Qiu, X. et al., Comprehensive single-cell transcriptional profiling of a multicellular organism. Science. 2017. 357: 661 - 667.; BuceviÄ ius, J., LukinaviÄ ius, G. and GerasimaitÄ , R., The use of Hoechst dyes for DNA staining and beyond. Chemosensors. 2018. 6: 18.; Smith, P. J., Blunt, N., Wiltshire, M., Hoy, T., Teesdale-Spittle, P., Craven, M. R., Watson, J. V. et al., Characteristics of a novel deep red/infrared fluorescent cell-permeant DNA probe, DRAQ5, in intact human cells analyzed by flow cytometry, confocal and multiphoton microscopy. Cytometry. 2000. 40: 280 - 291.; Wlodkowic, D., Skommer, J. and Darzynkiewicz, Z., Flow cytometry-based apoptosis detection. Methods Mol. Biol. 2009. 559: 19 - 32.; Belloc, F., Belaud-Rotureau, M. A., Lavignolle, V., Bascans, E., Braz-Pereira, E., Durrieu, F. and Lacombe, F., Flow cytometry detection of caspase 3 activation in preapoptotic leukemic cells. Cytometry. 2000. 40: 151 - 160.; Shapiro, H. M., Practical flow cytometry. Wiley-Liss, Hoboken, NJ 2003.; Riddell, A., Gardner, R., Perez-Gonzalez, A., Lopes, T. and Martinez, L., Rmax: a systematic approach to evaluate instrument sort performance using center stream catch. Methods. 2015. 82: 64 - 73.; Ziegenhain, C., Vieth, B., Parekh, S., Reinius, B., Guillaumet-Adkins, A., Smets, M., Leonhardt, H. et al., Comparative analysis of single-cell RNA sequencing methods. Mol. Cell. 2017. 65: 631 - 643.; Semrau, S., Goldmann, J. E., Soumillon, M., Mikkelsen, T. S., Jaenisch, R. and van Oudenaarden, A., Dynamics of lineage commitment revealed by single-cell transcriptomics of differentiating embryonic stem cells. Nat. Commun. 2017. 8: 243.; Patel, A. P., Tirosh, I., Trombetta, J. J., Shalek, A. K., Gillespie, S. M., Wakimoto, H., Cahill, D. P. et al., Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014. 344: 1396 - 1401.; Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. and Yosef, N., Deep generative modeling for single-cell transcriptomics. Nat. Methods. 2018. 15: 1053 - 1058.; Vallejos, C. A., Marioni, J. C. and Richardson, S., BASiCS: Bayesian analysis of single-cell sequencing data PLoS Comput. Biol. 2015. 11: e1004333.; Anders, S. and Huber, W., Differential expression analysis for sequence count data. Genome Biol. 2010. 11: R106.; Robinson, M. D. and Oshlack, A., A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010. 11: R25.; Bullard, J. H., Purdom, E., Hansen, K. D. and Dudoit, S., Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics. 2010. 11: 94.; Bacher, R., Chu, L-F, Leng, N., Gasch, A. P., Thomson, J. A., Stewart, R. M., Newton, M. et al., SCnorm: robust normalization of single-cell RNA-seq data. Nat. Methods. 2017. 14: 584 - 586.; Lun, A. T. L., Bach, K. and Marioni, J. C., Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol. 2016. 17: 75.; Butler, A., Hoffman, P., Smibert, P., Papalexi, E. and Satija, R., Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 2018. 36: 411 - 420.; Abdi, H. and Williams, L. J., Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010. 2: 433 - 459.; StÃ¥hlberg, A. and Bengtsson, M., Single-cell gene expression profiling using reverse transcription quantitative real-time PCR. Methods. 2010. 50: 282 - 288.; StÃ¥hlberg, A., Bengtsson, M., Hemberg, M. and Semb, H., Quantitative transcription factor analysis of undifferentiated single human embryonic stem cells. Clin. Chem. 2009. 55: 2162 - 2170.; Kiselev, V. Y., Kirschner, K., Schaub, M. T., Andrews, T., Yiu, A., Chandra, T., Natarajan, K. N. et al., SC3: consensus clustering of single-cell RNA-seq data. Nat. Methods. 2017. 14: 483 - 486.; Soneson, C. and Robinson, M. D., Bias, robustness and scalability in single-cell differential expression analysis. Nat. Methods. 2018. 15: 255 - 261.; Koch, C. and Muller, S., Personalized microbiome dynamics-cytometric fingerprints for routine diagnostics. Mol. Aspects Med. 2018. 59: 123 - 134.; Muller, S., Modes of cytometric bacterial DNA pattern: a tool for pursuing growth. Cell Prolif. 2007. 40: 621 - 639.; Delgado-Baquerizo, M., Oliverio, A. M., Brewer, T. E., Benavent-Gonzalez, A., Eldridge, D. J., Bardgett, R. D., Maestre, F. T. et al., A global atlas of the dominant bacteria found in soil. Science 2018. 359: 320 - 325.; Koch, C., Harnisch, F., Schroder, U. and Muller, S., Cytometric fingerprints: evaluation of new tools for analyzing microbial community dynamics. Front Microbiol. 2014. 5: 273.; Zimmermann, J., Hubschmann, T., Schattenberg, F., Schumann, J., Durek, P., Riedel, R., Friedrich, M. et al., High-resolution microbiota flow cytometry reveals dynamic colitis-associated changes in fecal bacterial composition. Eur. J. Immunol. 2016. 46: 1300 - 1303.; Vandeputte, D., Kathagen, G., D’Hoe, K., Vieira-Silva, S., Valles-Colomer, M., Sabino, J., Wang, J. et al., Quantitative microbiome profiling links gut community variation to microbial load. Nature 2017. 551: 507 - 511.; Muller, S. and Nebe-von-Caron, G., Functional single-cell analyses: flow cytometry and cell sorting of microbial populations and communities. FEMS Microbiol. Rev. 2010. 34: 554 - 587.; Lambrecht, J., Schattenberg, F., Harms, H. and Mueller, S., Characterizing microbiome dynamics-flow cytometry based workflows from pure cultures to natural communities. J. Vis. Exp. 2018.; Gunther, S., Hubschmann, T., Rudolf, M., Eschenhagen, M., Roske, I., Harms, H. and Muller, S., Fixation procedures for flow cytometric analysis of environmental bacteria. J. Microbiol. Methods 2008. 75: 127 - 134.; Shi, L., Gunther, S., Hubschmann, T., Wick, L. Y., Harms, H. and Muller, S., Limits of propidium iodide as a cell viability indicator for environmental bacteria. Cytometry A 2007. 71: 592 - 598.; Props, R., Rubbens, P., Besmer, M., Buysschaert, B., Sigrist, J., Weilenmann, H., Waegeman, W. et al., Detection of microbial disturbances in a drinking water microbial community through continuous acquisition and advanced analysis of flow cytometry data. Water Res. 2018. 145: 73 - 82.; Stepanauskas, R., Fergusson, E. A., Brown, J., Poulton, N. J., Tupper, B., Labonte, J. M., Becraft, E. D. et al., Improved genome recovery and integrated cell-size analyses of individual uncultured microbial cells and viral particles. Nat. Commun. 2017. 8: 84.; Jahn, M., Seifert, J., von Bergen, M., Schmid, A., Buhler, B. and Muller, S., Subpopulation-proteomics in prokaryotic populations. Curr. Opin. Biotechnol. 2013. 24: 79 - 87.; Liu, Z., Cichocki, N., Hubschmann, T., Suring, C., Ofiteru, I. D., Sloan, W. T., Grimm, V. et al., Neutral mechanisms and niche differentiation in steady-state insular microbial communities revealed by single cell analysis. Environ. Microbiol. 2019. 21: 164 - 181.; Koch, C., Gunther, S., Desta, A. F., Hubschmann, T. and Muller, S., Cytometric fingerprinting for analyzing microbial intracommunity structure variation and identifying subcommunity function. Nat. Protoc. 2013. 8: 190 - 202.; Rogers, W. T. and Holyst, H. A., FlowFP: A Bioconductor Package for Fingerprinting Flow Cytometric Data. Adv. Bioinformatics 2009. 193947.; De Roy, K., Clement, L., Thas, O., Wang, Y. and Boon, N., Flow cytometry for fast microbial community fingerprinting. Water Res. 2012. 46: 907 - 919.; Koch, C., Fetzer, I., Harms, H. and Muller, S., CHIC-an automated approach for the detection of dynamic variations in complex microbial communities. Cytometry A 2013. 83: 561 - 567.; Schroder, K. and Tschopp, J., The inflammosomes. Cell 2010. 140: 821 - 832.; Aachoui, Y., Sagulenko, V., Miao, E. A. and Stacey, K. J., Inflammasomemediated pyroptotic and apoptotic cell death, and defense against infection. Curr. Opin. Microbiol. 2013. 16: 319 - 326.; Miao, E. A., Rajan, J. V. and Aderem, A., Caspase-1-induced pyroptotic cell death. Immunol. Rev. 2011. 243: 206 - 214.; Jin, C. and Flavell, R.A., Molecular mechanism of NLRP3 inflammasome activation. J. Clin. Immunol. 2010. 30: 628 - 631.; Lamkanfi, M., Emerging inflammasome effector mechanisms. Nat. Rev. Immunol. 2011. 11: 213 - 220.; Vajjhala, P. R., Lu, A., Brown, D. L., Pang, S. W., Sagulenko, V., Sester, D. P., Cridland, S. O. et al., The inflammasome adaptor ASC induces procaspase-8 death effector domain filaments. J. Biol. Chem. 2015. 4; 290: 29217 - 29230.; Man, S. M., Tourlomousis, P., Hopkins, L., Monie, T. P., Fitzgerald, K. A. and Bryant, C. E., Salmonella infection induces recruitment of Caspase-8 to the inflammasome to modulate IL-1beta production. J. Immunol. 2013. 191: 5239 - 5246.; Agostini, L., Martinon, F., Burns, K., McDermott, M. F., Hawkins, P. N. and Tschopp, J., NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 2004. 20: 319 - 325.; Martinon, F., Agostini, L., Meylan, E. and Tschopp, J., Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr. Biol. 2004. 14: 1929 - 1934.; Sagulenko, V., Thygesen, S. J., Sester, D. P., Idris, A., Cridland, J. A., Vajjhala, P. R., Roberts, T. L., Schroder, K., Vince, J. E., Hill, J. M. Silke, J. and Stacey K. J., AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC. Cell Death Differ. 2013. 20: 1149 - 1160.; Masumoto, J., Taniguchi, S., Ayukawa, K., Sarvotham, H., Kishino, T., Niikawa, N., Hidaka, E. et al., ASC, a novel 22-kDa protein, aggregates during apoptosis of human promyelocytic leukemia HL-60 cells. J. Biol. Chem. 1999. 274: 33835 - 33838.; Franklin, B. S., Bossaller, L., De Nardo, D., Ratter, J. M., Stutz, A., Engels, G., Brenker, C. et al., The adaptor ASC has extracellular and -prionoid- activities that propagate inflammation. Nat. Immunol. 2014. 15: 727 - 737.; Baroja-Mazo, A., Martín-Sánchez, F., Gomez, A. I., Martínez, C. M., Amores-Iniesta, J., Compan, V., Barberà -Cremades, M. et al., The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat. Immunol. 2014. 15: 738 - 748.; Venegas, C., Kumar, S., Franklin, B. S., Dierkes, T., Brinkschulte, R., Tejera, D., Vieira-Saecker, A. et al., Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer’s disease. Nature 2017. 552: 355 - 361.; Pollard, K. M. and Kono, D. H., Requirements for innate immune pathways in environmentally induced autoimmunity. BMC Med. 2013. 11: 100.; Master, S. L., Specific inflammasomes in complex diseases. Clin. Immunol. 2013. 143: 223 - 228.; Rubartelli, A., Redox control of NLRP3 inflammasome activation in health and disease. J. Leukoc. Biol. 2012. 92: 951 - 958.; Heneka, M. T., Kummer, M. P., Stutz, A., Delekate, A., Schwartz, S., Vieira-Saecker, A., Griep, A. et al., NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 2013. 493: 674 - 678.; Saresella, M., La Rosa, F., Piancone, F., Zoppis, M., Marventano, I., Calabrese, E., Rainone, V., Nemni, R. et al., The NLRP3 and NLRP1 inflammasomes are activated in Alzheimer’s disease. Mol. Neurodegener 2016. 11 ( 1 ): 23.; Saresella, M., Piancone, F., Marventano, I., Zoppis, M., Hernis, A., Zanette, M., Trabattoni, D. et al., Multiple Inflammasome Complexes are Activated in Autistic Spectrum Disorders. Brain Behav. Immun. 2016. 57: 125 - 133.; Piancone, F., Saresella, M., Marventano, I., La Rosa, F., Santangelo, M. A., Caputo, D., Mendozzi, L., Rovaris, M. et al., Monosodium urate crystals activate the inflammasome in primary progressive multiple sclerosis. Front. Immunol. 2018. 9: 983.; Bandera, A., Masetti, M., Fabbiani, M., Biasin, M., Muscatello, A., Squillace, N., Clerici, M. et al., The NLRP3 Inflammasome is Upregulated in HIV-Infected ART-treated Individuals with Defective Immune Recovery. Front. Immunol. 2018. 9: 214.; Nagar, A., DeMarco, R. A. and Harton, J. A., Inflammasome and caspase-1 activity characterization and evaluation: An imaging flow cytometer-based detection and assessment of inflammasome specks and caspase-1 activation. J. Immunol. 2019. 202: 1003 - 1015.; Hooijberg, J. H. Broxterman H. J., Kool M., Assaraf Y. G., Peters G. J., Noordhuis P. and Scheper R. J., Antifolate resistance mediated by the multidrug resistance proteins MRP1 and MRP2. Cancer Res. 1999. 59: 2532 - 2535.; Zeng, H. et al., Transport of methotrexate (MTX) and folates by multidrug resistance protein (MRP) 3 and MRP1: effect of polyglutamylation on MTX transport. Cancer Res. 2001. 61: 7225 - 7232.; Volk, E. L., Farley, K. M., Wu, Y., Li, F., Robey, R. W. and Schneider, E., Overexpression of wild-type breast cancer resistance protein mediates methotrexate resistance. Cancer Res. 2002. 62: 5035 - 5040.; Sarkadi, B. et al., Human multidrug resistance ABCB and ABCG transporters: participation in a chemoimmunity defense system. Physiol Rev. 2006. 86: 1179 - 1236.; Lee, N. H., Pharmacogenetics of drug metabolizing enzymes and transporters: effects on pharmacokinetics and pharmacodynamics of anticancer agents. Anticancer Agents Med. Chem. 2010. 10: 583 - 592.; Porcelli, L., Lemos, C., Peters, G. J., Paradiso, A. and Azzariti, A., Intracellular trafficking of MDR transporters and relevance of SNPs. Curr. Top. Med. Chem. 2009. 9: 197 - 208.; Damiani, D. et al., The prognostic value of P-glycoprotein (ABCB) and breast cancer resistance protein (ABCG2) in adults with de novo acute myeloid leukemia with normal karyotype. Haematologica 2006. 91: 825 - 828.; Georges, E., Tsuruo, T. and Ling, V., Topology of P-glycoprotein as determined by epitope mapping of MRK-16 monoclonal antibody. J. Biol. Chem. 1993. 268: 1792 - 1798.; Vasudevan, S., Tsuruo, T. and Rose, D. R., Mode of binding of anti-P-glycoprotein antibody MRK-16 to its antigen. A crystallographic and molecular modeling study. J. Biol. Chem. 1998. 273: 25413 - 25419.; Telbisz, A., Hegedüs, C., à zvegy-Laczka, C., Goda, K., Várady, G., Takáts, Z., Szabó, E. et al., Antibody binding shift assay for rapid screening of drug interactions with the human ABCG2 multidrug transporter. Eur. J. Pharm. Sci. 2012. 45: 101 - 109.; Toldi, G. et al., Peripheral lymphocyte multidrug resistance activity as a predictive tool of biological therapeutic response in rheumatoid arthritis. J. Rheumatol. 2019. 46: 572 - 578.; Micsik, T. et al., MDR-1 and MRP-1 activity in peripheral blood leukocytes of rheumatoid arthritis patients. Diagn. Pathol. 2015. 10: 216.; Homolya, L., Holló, Z., Germann, U. A., Pastan, I., Gottesman, M. M., Sarkadi, B. Fluorescent cellular indicators are extruded by the multidrug resistance protein. J. Biol. Chem. 1993. 268: 21493 - 21496.; Cortada, C. M. et al., Lymphocyte P-glycoprotein variability in healthy individuals. Medicina 2009. 69: 619 - 624.; Szerémy, P., Tauberné Jakab, K., Baráth, S., Apjok, A., Filkor, K., Holló, Z., Márki-Zay, J., Kappelmayer, J., Sipka, S., Krajcsi, P., Toldi, G. Determination of reference values of MDR-ABC transporter activities in CD3+ lymphocytes of healthy volunteers using a flow cytometry based method. Cytometry B Clin. Cytom. 2018 https://doi.org/10.1002/cyto.b.21729Test. [Epub ahead of print].; Yu, L., Sa, S., Wang, L., Dulmage, K., Bhagwat, N., Yee, S. S., Sen, M. et al., An integrated enrichment system to facilitate isolation and molecular characterization of single cancer cells from whole blood. Cytometry A 2018. 93: 1226 - 1233.; Hayashi, T., Shibata, N., Okumura, R., Kudome, T., Nishimura, O., Tarui, H. and Agata, K., Single-cell gene profiling of planarian stem cells using fluorescent activated cell sorting and its -index sorting" function for stem cell research. Dev. Growth Differ. 2010. 52: 131 - 144.; Schulte, R., Wilson, N. K., Prick, J. C., Cossetti, C., Maj, M. K., Gottgens, B. and Kent, D. G., Index sorting resolves heterogeneous murine hematopoietic stem cell populations. Exp. Hematol. 2015. 43: 803 - 811.; Wilson, N. K., Kent, D. G., Buettner, F., Shehata, M., Macaulay, I. C., Calero-Nieto, F. J., Sanchez Castillo, M. et al., Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations. Cell Stem Cell 2015. 16: 712 - 724.; Busse, C. E., Czogiel, I., Braun, P., Arndt, P. F. and Wardemann, H., Single-cell based high-throughput sequencing of full-length immunoglobulin heavy and light chain genes. Eur. J. Immunol. 2014. 44: 597 - 603.; Gee, M. H., Han, A., Lofgren, S. M., Beausang, J. F., Mendoza, J. L., Birnbaum, M. E., Bethune, M. T. et al., Antigen identification for orphan T cell receptors expressed on tumor-infiltrating lymphocytes. Cell 2018. 172: 549 - 563.; Penter, L., Dietze, K., Bullinger, L., Westermann, J., Rahn, H. P. and Hansmann, L., FACS single cell index sorting is highly reliable and determines immune phenotypes of clonally expanded T cells. Eur. J. Immunol. 2018. 48: 1248 - 1250.; Bernemann, I., Kersting, M., Prokein, J., Hummel, M., Klopp, N. and Illig, T., [Centralized biobanks: a basis for medical research]. Bundesgesundheitsblatt. Gesundheitsforschung. Gesundheitsschutz. 2016. 59: 336 - 343.; Penter, L., Dietze, K., Ritter, J., Lammoglia-Cobo, M. F., Garmshausen, J., Aigner, F., Bullinger, L. et al., Localization-associated immune phenotypes of clonally expanded tumor-infiltrating T cells and distribution of their target antigens in rectal cancer. Oncoimmunology 2019. 8: e1586409.; Higdon, L. E., Cain, C. J., Colden, M. A. and Maltzman, J. S. Optimization of single-cell plate sorting for high throughput sequencing applications. J. Immunol. Methods 2019. 466: 17 - 23.; Kleeberger, C. A., Lyles, R. H., Margolick, J. B., Rinaldo, C. R., Phair, J. P. and Giorgi, J. V., Viability and recovery of peripheral blood mononuclear cells cryopreserved for up to 12 years in a multicenter study. Clin. Diagn. Lab. Immunol. 1999. 6: 14 - 19.; Ruitenberg, J. J., Mulder, C. B., Maino, V. C., Landay, A. L. and Ghanekar, S. A., VACUTAINER CPT and Ficoll density gradient separation perform equivalently in maintaining the quality and function of PBMC from HIV seropositive blood samples. BMC Immunol. 2006. 7: 11.; Grievink, H. W., Luisman, T., Kluft, C., Moerland, M. and Malone, K. E., Comparison of three isolation techniques for human peripheral blood mononuclear cells: cell recovery and viability, population composition, and cell functionality. Biopreserv. Biobank. 2016. 14: 410 - 415.; Disis, M. L., dela Rosa, C., Goodell, V., Kuan, L-Y, Chang, JCC, Kuus-Reichel, K., Clay, T. M. et al., Maximizing the retention of antigen specific lymphocyte function after cryopreservation. J. Immunol. Methods 2006. 308: 13 - 18.; Weinberg, A., Song, L-Y, Wilkening, C., Sevin, A., Blais, B., Louzao, R., Stein, D. et al., Optimization and limitations of use of cryopreserved peripheral blood mononuclear cells for functional and phenotypic T-cell characterization. Clin. Vaccine Immunol. 2009. 16: 1176 - 1186.; Bull, M., Lee, D., Stucky, J., Chiu, Y-L, Rubin, A., Horton, H. and McElrath, M. J., Defining blood processing parameters for optimal detection of cryopreserved antigen-specific responses for HIV vaccine trials. J. Immunol. Methods. 2007. 322: 57 - 69.; Scheiermann, C., Kunisaki, Y. and Frenette, P. S., Circadian control of the immune system. Nat. Rev. Immunol. 2013. 13: 190 - 198.; Tompa, A., Nilsson-Bowers, A. and Faresjö, M., Subsets of CD4+, CD8+, and CD25hi lymphocytes are in general not influenced by isolation and long-term cryopreservation. J. Immunol. 2018. 201: 1799 - 1809.; Seale, A. C., de Jong, B. C., Zaidi, I., Duvall, M., Whittle, H., Rowland-Jones, S. and Jaye, A., Effects of cryopreservation on CD4+ CD25+ T cells of HIV-1 infected individuals. J. Clin. Lab. Anal. 2008. 22: 153 - 158.; AssumpcióRomeu, M., Mestre, M., González, L., Valls, A., Verdaguer, J., Corominas, M., Bas, J. et al., Lymphocyte immunophenotyping by flow cytometry in normal adults. J. Immunol. Methods 1992. 154: 7 - 10.; Lemieux, J., Jobin, C., Simard, C. and Néron, S., A global look into human T cell subsets before and after cryopreservation using multiparametric flow cytometry and two-dimensional visualization analysis. J. Immunol. Methods 2016. 434: 73 - 82.; Wang, L., Hückelhoven, A., Hong, J., Jin, N., Mani, J., Chen, B., Schmitt, M. et al., Standardization of cryopreserved peripheral blood mononuclear cells through a resting process for clinical immunomonitoring-development of an algorithm. Cytometry A. 2016. 89: 246 - 258.; Holland, M., Cunningham, R., Seymour, L., Kleinsteuber, K., Cunningham, A., Patel, T., Manos, M. et al., Separation, banking, and quality control of peripheral blood mononuclear cells from whole blood of melanoma patients. Cell Tissue Bank. 2018. 19: 783 - 790.; De Boer, F., Dräger, A. M., Van der Wall, E., Pinedo, H. M. and Schuurhuis, G. J., Changes in l -selectin expression on CD34-positive cells upon cryopreservation of peripheral blood stem cell transplants. Bone Marrow Transplant. 1998. 22: 1103 - 1110.; Campbell, D. E., Tustin, N. B., Riedel, E., Tustin, R., Taylor, J., Murray, J. and Douglas, S. D., Cryopreservation decreases receptor PD-1 and ligand PD-L1 coinhibitory expression on peripheral blood mononuclear cell-derived T cells and monocytes. Clin. Vaccine Immunol. 2009. 16: 1648 - 1653.; Zhang, W., Nilles, T. L., Johnson, J. R. and Margolick, J. B., The effect of cellular isolation and cryopreservation on the expression of markers identifying subsets of regulatory T cells. J. Immunol. Methods. 2016. 431: 31 - 37.; Posevitz-Fejfár, A., Posevitz, V., Gross, C. C., Bhatia, U., Kurth, F., Schütte, V., Bar-Or, A. et al., Effects of blood transportation on human peripheral mononuclear cell yield, phenotype and function: implications for immune cell biobanking. PLoS One. 2014. 9: e115920.; Nemes, E., Kagina, B. M. N., Smit, E., Africa, H., Steyn, M., Hanekom, W. A. and Scriba, T. J., Differential leukocyte counting and immunophenotyping in cryopreserved ex vivo whole blood. Cytometry A. 2015. 87: 157 - 165.; Maecker, H. T., McCoy, J. P., FOCIS Human Immunophenotyping Consortium, Amos, M., Elliott, J., Gaigalas, A., Wang, L. et al., A model for harmonizing flow cytometry in clinical trials. Nat. Immunol. 2010. 11: 975 - 978.; Burel, J. G., Qian, Y., Lindestam Arlehamn, C., Weiskopf, D., Zapardiel-Gonzalo, J., Taplitz, R., Gilman, R. H. et al., An integrated workflow to assess technical and biological variability of cell population frequencies in human peripheral blood by flow cytometry. J. Immunol. 2017. 198: 1748 - 1758.; Bendou, H., Sizani, L., Reid, T., Swanepoel, C., Ademuyiwa, T., Merino-Martinez, R., Meuller, H. et al., Baobab laboratory information management system: development of an open-source laboratory information management system for biobanking. Biopreserv. Biobank. 2017. 15: 116 - 120.; Mate, S., Kadioglu, D., Majeed, R. W., Stöhr, M. R., Folz, M., Vormstein, P., Storf, H. et al., Proof-of-concept integration of heterogeneous biobank IT infrastructures into a hybrid biobanking network. Stud. Health Technol. Inform. 2017. 243: 100 - 104.; Consuegra, I., Rodríguez-Aierbe, C., Santiuste, I., Bosch, A., Martínez-Marín, R., Fortuto, M. A., Díaz, T. et al., Isolation methods of peripheral blood mononuclear cells in spanish biobanks: an overview. Biopreserv. Biobank. 2017. 15: 305 - 309.; Aziz, N., Margolick, J. B., Detels, R., Rinaldo, C. R., Phair, J., Jamieson, B. D. and Butch, A. W., Value of a quality assessment program in optimizing cryopreservation of peripheral blood mononuclear cells in a multicenter study. Clin. Vaccine Immunol. 2013. 20: 590 - 595.; Ramos, T. V., Mathew, A. J., Thompson, M. L. and Ehrhardt, R. O., Standardized cryopreservation of human primary cells. Curr. Protoc. Cell Biol. 2014. 64: A.3I.1 - 8.; Xiao, D., Ling, K. H. J., Custodio, J., Majeed, S. R. and Tarnowski, T., Quantitation of intracellular triphosphate metabolites of antiretroviral agents in peripheral blood mononuclear cells (PBMCs) and corresponding cell count determinations: review of current methods and challenges. Expert Opin. Drug Metab. Toxicol. 2018. 14: 781 - 802.; Becher, F., Pruvost, A. G., Schlemmer, D. D., Créminon, C. A., Goujard, C. M., Delfraissy, J. F., Benech, H. C. et al., Significant levels of intracellular stavudine triphosphate are found in HIV-infected zidovudine-treated patients. AIDS. 2003. 17: 555 - 561.; Corkum, C. P., Ings, D. P., Burgess, C., Karwowska, S., Kroll, W. and Michalak, T. I., Immune cell subsets and their gene expression profiles from human PBMC isolated by Vacutainer Cell Preparation Tube (CPT-) and standard density gradient. BMC Immunol. 2015. 16: 48.; Angel, S., von Briesen, H., Oh, Y.-J., Baller, M. K., Zimmermann, H. and Germann, A., Toward optimal cryopreservation and storage for achievement of high cell recovery and maintenance of cell viability and T cell functionality. Biopreserv. Biobank. 2016. 14: 539 - 547.; Angelo, M., Bendall, S. C., Finck, R., Hale, M. B., Hitzman, C., Borowsky, A. D., Levenson, R. M. et al., Multiplexed ion beam imaging of human breast tumors. Nat. Med. 2014. 20: 436 - 442.; Smets, T., Stevenaert, F., Adams, H. and Vanhoof, G., Deep profiling of the immune system of multiple myeloma patients using cytometry by time-of-flight (CyTOF). Methods Mol. Biol. 2018. 1792: 47 - 54.; Edwards, B. S. and Sklar, L. A., Flow cytometry: impact on early drug discovery. J. Biomol. Screen 2015. 20: 689 - 707.; Moffat, J. G., Vincent, F., Lee, J. A., Eder, J. and Prunotto, M., Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat. Rev. Drug Discov. 2017. 16: 531 - 543.; Vignali, D. A., Multiplexed particle-based flow cytometric assays. J. Immunol. Methods 2000. 243: 243 - 255.; Joslin, J., Gilligan, J., Anderson, P., Garcia, C., Sharif, O., Hampton, J., Cohen, S. et al., A Fully automated high-throughput flow cytometry screening system enabling phenotypic drug discovery. SLAS Discov. 2018. 23: 697 - 707.; Bredemeyer, A. L., Edwards, B. S., Haynes, M. K., Morales, A. J., Wang, Y., Ursu, O., Waller, A. et al., High-throughput screening approach for identifying compounds that inhibit nonhomologous end joining. SLAS Discov. 2018. 23: 624 - 633.; Buranda, T., Gineste, C., Wu, Y., Bondu, V., Perez, D., Lake, K. R., Edwards, B. S. et al., A high-throughput flow cytometry screen identifies molecules that inhibit hantavirus cell entry. SLAS Discov. 2018. 23: 634 - 645.; Wang, Y., Yoshihara, T., King, S., Le, T., Leroy, P., Zhao, X., Chan, C. K. et al., Automated high-throughput flow cytometry for high-content screening in antibody development. SLAS Discov. 2018. 23: 656 - 666.; Martinez, E. M., Klebanoff, S. D., Secrest, S., Romain, G., Haile, S. T., Emtage, P. C. R. and Gilbert, A. E., High-throughput flow cytometric method for the simultaneous measurement of CAR-T cell characterization and cytotoxicity against solid tumor cell lines. SLAS Discov. 2018. 23: 603 - 612.; Kaur, M. and Esau, L., Two-step protocol for preparing adherent cells for high-throughput flow cytometry. Biotechniques 2015. 59: 119 - 126.; Chan, B. M., Badh, A., Berry, K. A., Grauer, S. A. and King, C. T., Flow cytometry-based epitope binning using competitive binding profiles for the characterization of monoclonal antibodies against cellular and soluble protein targets. SLAS Discov. 2018. 23: 613 - 623.; Virginia Litwin, P. M., Flow cytometry in drug discovery and development. Wiley, Hoboken, NJ 2011.; Goni-de-Cerio, F., Mariani, V., Cohen, D., Madi, L., Thevenot, J., Oliveira, H., Uboldi, C. et al., Biocompatibility study of two diblock copolymeric nanoparticles for biomedical applications by in vitro toxicity testing. J. Nanopart. Res. 2013. 15: 1 - 17.; Buenz, E. J., Limburg, P. J. and Howe, C. L., A high-throughput 3-parameter flow cytometry-based cell death assay. Cytometry A 2007. 71: 170 - 173.; Boitano, A. E., Wang, J., Romeo, R., Bouchez, L. C., Parker, A. E., Sutton, S. E., Walker, J. R. et al., Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science 2010. 329: 1345 - 1348.; Zhao, Z., Henowitz, L. and Zweifach, A., A multiplexed assay that monitors effects of multiple compound treatment times reveals candidate immune-enhancing compounds. SLAS Discov. 2018. 23: 646 - 655.; Ding, M., Kaspersson, K., Murray, D. and Bardelle, C., High-throughput flow cytometry for drug discovery: principles, applications, and case studies. Drug Discov. Today 2017. 22: 1844 - 1850.; Javarappa, K. K., Tsallos, D. and Heckman, C. A., A multiplexed screening assay to evaluate chemotherapy-induced myelosuppression using healthy peripheral blood and bone marrow. SLAS Discov. 2018. 23: 687 - 696.; Nolan, J. P. and Mandy, F., Multiplexed and microparticle-based analyses: quantitative tools for the large-scale analysis of biological systems. Cytometry A 2006. 69: 318 - 325.; Moeller, T., Brown, C., Muchow, M. and Yee, B., Transcript regulation of 18 ADME genes by prototypical inducers in human hepatocytes. Drug Metab. Rev. 2012. 44: 79 - 80.; Liu, Z. and O’Rourke, J., Expediting antibody discovery with a cell and bead multiplexed competition assay. SLAS Discov. 2018. 23: 667 - 675.; Young, S. M., Bologa, C., Prossnitz, E. R., Oprea, T. I., Sklar, L. A. and Edwards, B. S., High-throughput screening with HyperCyt flow cytometry to detect small molecule formylpeptide receptor ligands. J. Biomol. Screen 2005. 10: 374 - 382.; Lahl, K., Loddenkemper, C., Drouin, C., Freyer, J., Arnason, J., Eberl, G., Hamann, A. et al., Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. J. Exp. Med. 2007. 204: 57 - 63.; Zhang, J. H., Chung, T. D. and Oldenburg, K. R., A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen 1999. 4: 67 - 73.; Moore, J. and Roederer, M., The flow cytometry shared resource laboratory: best practices to assure a high-quality, cost-effective partnership with biomedical research laboratories. Cytometry A 2009. 75: 643 - 649.; Meder, D. et al., Institutional core facilities: prerequisite for breakthroughs in the life sciences: core facilities play an increasingly important role in biomedical research by providing scientists access to sophisticated technology and expertise. EMBO Rep. 2016. 17: 1088 - 1093.; Barsky, L. W. et al., International Society for Advancement of Cytometry (ISAC) flow cytometry shared resource laboratory (SRL) best practices. Cytometry A 2016. 89: 1017 - 1030.; Ferrando-May, E. et al., Advanced light microscopy core facilities: Balancing service, science and career. Microsc. Res. Tech. 2016. 79: 463 - 479.; Brown, C. M., Careers in core facility management. Cold Spring Harb. Perspect. Biol. 2018. 10 ( 8 ).; Davies, D., Filby, A. and Lannigan, J., Shared Resource Laboratory (SRL) Communications-a new journal type. Cytometry A 2018.; Box, A. C., Park, J., Semerad, C. L., Konnesky, J. and Haug, J. S., Cost accounting method for cytometry facilities. Cytometry A 2012. 81: 439 - 444.; Petrunkina, A. M., Algorithm and metrics for a standardized evaluation of cell sorting service delivery. Cytometry A 2013. 83: 602 - 607.; Lennartz, K., Lu, M., Flasshove, M., Moritz, T. and Kirstein, U., Improving the biosafety of cell sorting by adaptation of a cell sorting system to a biosafety cabinet. Cytometry A 2005. 66: 119 - 127.; Mische, S. and Wilkerson, A., Disaster and Contingency Planning for Scientific Shared Resource Cores. J. Biomol. Tech. 2016. 27: 4 - 17.; Antal-Szalmás, P., Nagy, B. Jr, Debreceni, I. B. and Kappelmayer, J., Measurement of soluble biomarkers by flow cytometry. EJIFCC 2013. 23: 135 - 142.; Commenges, D., Alkhassim, C., Gottardo, R., Hejblum, B. and Thiebaut, R., cytometree: a binary tree algorithm for automatic gating in cytometry analysis. bioRxiv. 2018 1:335554.; de Jager, W., te Velthuis, H., Prakken, B. J., Kuis, W. and Rijkers, G. T., Simultaneous detection of 15 human cytokines in a single sample of stimulated peripheral blood mononuclear cells. Clin. Diagn. Lab. Immunol. 2003. 10: 133 - 139.; DiGiuseppe, J. A., Cardinali, J. L., Rezuke, W. N. and Pe’er, D., PhenoGraph and viSNE facilitate the identification of abnormal T-cell populations in routine clinical flow cytometric data. Cytometry B Clin. Cytom. 2018. 94: 744 - 757.; Gomaa, A. and Boye, J., Simultaneous detection of multi-allergens in an incurred food matrix using ELISA, multiplex flow cytometry and liquid chromatography mass spectrometry (LC-MS). Food Chem. 2015. 175: 585 - 592.; http://www.cancer.net/cancer-types/sarcoma-soft-tissue/overviewTest; Maggi, L., Cimaz, R., Capone, M., Santarlasci, V., Rossi, M. C., Mazzoni, A., Montaini, G. et al., Immunosuppressive activity of abatacept on circulating T helper lymphocytes from juvenile idiopathic arthritis patients. Int. Arch. Allergy Immunol. 2016. 171: 45 - 53.; Maueröder, C., Chaurio, R. A., Dumych, T., Podolska, M., Lootsik, M. D., Culemann, S., Friedrich, R. P. et al., A blast without power-cell death induced by the tuberculosis-necrotizing toxin fails to elicit adequate immune responses. Cell Death Differ. 2016. 23: 1016 - 1025.; Munoz, L. E., Maueroder, C., Chaurio, R., Berens, C., Herrmann, M. and Janko, C., Colourful death: six-parameter classification of cell death by flow cytometry-dead cells tell tales. Autoimmunity 2013. 46: 336 - 341.; Salvioli, S., Ardizzoni, A., Franceschi, C. and Cossarizza, A., JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess AW changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett. 1997. 411: 77 - 82.; Cossarizza, A., Chang, H.-D., Radbruch, A., Akdis, M., Andrä, I., Annunziato, F., Bacher, P. et al., Guidelines for the use of flow cytometry and cell sorting in immunological studies. Eur. J. Immunol. 2017. 47: 1584 - 1797.; Mack, J., Fulwyler Particle Separator. US patent US 3380584 A.; Kachel, V., Fellner-Feldegg, H. and Menke, E., Hydrodynamic properties of flow cytometry instruments. In M. R. Melamed, T. Lindmo and M. L. Mendelsohn (Eds.), Flow cytometry and sorting, 2nd ed., Wiley, New York, NY, 1990, pp. 27 - 44.; Crosland-Taylor, P. J., A device for counting small particles suspended in a fluid through a tube. Nature 1953. 171: 37 - 38.; Gucker, F. T., Jr., O’Konski, C. T., Pickard, H. B. and Pitts, J. N., Jr., A photoelectronic counter for colloidal particles. J. Am. Chem. Soc. 1947. 69: 2422 - 2431.; Van den Engh, G. J., Flow cytometer droplet formation system. US patent US 6861265 B1.; Van den Engh, G. J., Particle separating apparatus and method. US patent US 5819948 A.; Norton, P. O., Vane, D. R. and Javadi, S., Fixed mounted sorting cuvette with user replaceable nozzle. US patent US 7201875 B2.; Doležel, J. and Göhde, W., Sex determination in dioecious plants Melandrium album and M. rubrum using high-resolution flow cytometry. Cytometry 1995. 19: 103 - 106.; Steen, H. B., Lindau, T. and Sorensen, O., A simple, high resolution flow cytometer based on a standard fluorescence microscope. In O. D. Laerum, T. Lindmo and E. Thorud (Eds.), Proceedings of the IVth international symposium on flow cytometry (pulse cytophotometry), Bergen, Norway, 1980, pp. 31 - 33.; Pinkel, D. and Stovel, R., Flow chambers and sample handling. In M. A., Van Dilla, P. N. Dean, O. D. Laerum, and M. R. Melame (Eds.), Flow cytometry: Instrumentation and data analysis, Academic Press, London, 1985, pp. 77 - 128.; Kaduchak, G. et al., Ultrasonic analyte concentration and application in flow cytometry. US patent US 7340957 B2.; Kaduchak, G. et al., System and method for acoustic focusing hardware and implementations. US patent US 8714014 B2.; Ward, M., Turner, P., DeJohn, M. and Kaduchak, G., Fundamentals of acoustic cytometry. Curr. Protoc. Cytometry 2009. 53: 1.22.1 - 1.22.12.; Sweet, R. G., Fluid droplet recorder. US patent US 3596275 A.; Göttlinger, C., Mechtold, B., Meyer, K. L. and Radbruch, A., Setup of a flow sorter. In Radbruch, A. (Ed.), Flow cytometry and cell sorting. Springer Laboratory, Berlin, Germany 1992, pp. 153 - 158.; Petersen, T. W. and Van den Engh, G., Stability of the breakoff point in a high-speed cell sorter. Cytometry Part A 2003. 56: 63 - 70.; Kaiser, T., Raba, K., Scheffold, A. and Radbruch, A., A sheath-cooling system to stabilize side-streams and drop delay during long-term sorts for FACS-Aria® cell-sorter, http://fccf.drfz.de/uploads/pdf/poster_zentrallabor_A0.pdfTest; Lawrence, W. G., Varadi, G., Entine, G., Podniesinski, E. and Wallace, P. K., Enhanced red and near infrared detection in flow cytometry using avalanche photodiodes. Cytometry A 2008. 73: 767 - 776.; Kester, W., Understand SINAD, ENOB, SNR, THD, THD+ N, and SFDR so you don’t get lost in the noise floor. MT-003 Tutorial, 2009, http://www.analog.com/media/en/training-seminars/tutorials/MT-003.pdfTest; AD9240AS by Analog Devices %7C Data Acquisition, Arrow.com. [Online]. Available: https://www.arrow.com/de-de/products/ad9240as/analog-devicesTest. [Accessed: 18-Jan-2017].; Snow, C., Flow cytometer electronics. Cytometry Part A 2004. 57A: 63 - 69.; Asbury, C. L., Uy, J. L. and van den Engh, G., Polarization of scatter and fluorescence signals in flow cytometry. Cytometry 2000. 40: 88 - 101.; Shapiro, H. M., Practical flow cytometry, 4th ed., John Wiley & Sons, Inc., Hoboken, NJ 2003, pp. 184 - 197.; Watson, D. A., Brown, L. O., Gaskill, D. F., Naivar, M., Graves, S. W., Doorn, S. K. and Nolan, J. P., A flow cytometer for the measurement of Raman spectra. Cytometry A 2008. 73A: 119 - 128.; Nolan, J. P., Condello, D., Duggan, E., Naivar, M. and Novo, D., Visible and near infrared fluorescence spectral flow cytometry. Cytometry A 2012. 83: 253 - 264.; Wade, C. G., Rhyne, R. H., Woodruff, W. H., Bloch, D. P. and Bartholomew, J. C., Spectra of cells in flow cytometry using a vidicon detector. J. Histochem. Cytochem. 1979. 27: 1049 - 1052.; Robinson, J. P., Multispectral cytometry: the next generation. Biophoton. Int. 2004, 36 - 40.; Robinson, J. P., Rajwa, B., Gregori, G., Jones, V and Patsekin, V, Multispectral cytometry of single bio-particles using a 32-channel detector. In T. Tuan Vo-Dinh, W. S. Grundfest, D. A. Benaron and G. E. Cohn, (Eds.), Advanced biomedical and clinical diagnostic systems III, 5692 ed. Springer, Berlin/Heidelberg, 2005, Pp. 359 - 365.; Robinson, J. P., Rajwa, B., Patsekin, V., Gregori, G. and Jones, J. Multi-spectral detector and analysis system US patent US7280204 B2.; Grégori, G., Patsekin, V., Rajwa, B., Jones, J., Ragheb, K., Holdman, C., Robinson, J. P. et al., Hyperspectral cytometry at the single cell level using a 32 channel photodetector. Cytometry A 2012. 81A: 35 - 44.; Goddard, G., Martin, J. C., Naivar, M., Goodwin, P. M., Graves, S. W., Habbersett, R., Nolan, J. P. et al., Single particle high resolution spectral analysis flow cytometry. Cytometry 2006. 69A: 842 - 851.; Futamura, K., Sekino, M., Hata, A., Ikebuchi, R., Nakanishi, Y., Egawa, G., Kabashima, K. et al., Novel full-spectral flow cytometry with multiple spectrally-adjacent fluorescent proteins and fluorochromes and visualization of in vivo cellular movement. Cytometry 2015. 87: 830 - 842.; Feher, K., von Volkmann, K., Kirsch, J., Radbruch, A., Popien, J. and Kaiser, T., Multispectral flow cytometry: The consequences of increased light collection. Cytometry 2016. 89: 681 - 689.; Roederer, M., Distributions of autofluorescence after compensation: Be panglossian, fret not. Cytometry A 2016. 89: 398 - 402.; Szalóki, G. and Goda, K., Compensation in multicolor flow cytometry. Cytometry A 2015. 87: 982 - 985.; Novo, D., Grégori, G. and Rajwa, B., Generalized unmixing model for multispectral flow cytometry utilizing nonsquare compensation matrices. Cytometry A 2013. 83: 508 - 520.; Nguyen, R., Perfetto, S., Mahnke, Y. D., Chattopadhyay, P. and Roederer, M., Quantifying spillover spreading for comparing instrument performance and aiding in multicolor panel design. Cytometry A 2013. 83: 306 - 315.; Lee, J. A., Spidlen, J., Boyce, K., Cai, J., Crosbie, N., Dalphin, M., Furlong, J., et al. MIFlowCyt: the Minimum Information about a Flow Cytometry Experiment. Cytometry A 2008. 73: 926 - 930.; Tung, J. W., Parks, D. R., Moore, W. A. and Herzenberg, L. A., New approaches to fluorescence compensation and visualization of FACS data. Clin. Immunol. 2004. 110: 277 - 283.; BD Cytometer Setup and Tracking Application Guide V3.0, 2013, BD Biosciences, San Jose, CA.; Wood, J. and Hoffman, R., Evaluating fluorescence sensitivity on flow cytometers: an overview. Cytometry 1998. 33: 256 - 259.; Barber, D. L., Wherry, E. J. and Ahmed, R., J. Immunol. 2003. 171: 27 - 31.; Wood, J., Fundamental flow cytometer properties governing sensitivity and resolution. Cytometry 1998. 33: 260 - 266.; Hoffman, R. A., Standardization, calibration, and control in flow cytometry. Curr. Protoc. Cytom. 2005. 79: 1.3.1 - 1.3.21.; Wood, J. C. S., 2009, Establishing and maintaining system linearity. Curr. Protoc. Cytom. Chapter 1: 1.4.1 - 1.4.14.; Jett, J. H., Martin, J. C., Habbersett, R. C., Techniques for flow cytometer alignment. Curr. Protoc. Cytom. 2009. Chapter 1: 1.10.1 - 1.10.7.; Perfetto, S. P., Chattopadhyay, P. K., Wood, J., Nguyen, R., Ambrozak, D., Hill, J. P. and Roederer, M., Q and B Values are Critical Measurements Required for Inter-Instrument Standardization and Development of Multicolor Flow Cytometry Staining Panels. Cytometry 2014. 85A: 1037 - 1048.; Perfetto, S. P., Ambrozak, D., Nguyen, R., Chattopadhyay, P. K. and Roederer, M., Quality assurance for polychromatic flow cytometry using a suite of calibration beads. Nat. Protoc. 2012. 7: 2067 - 2079.; Steen, H. B., Noise, Sensitivity, and Resolution of Flow Cytometers. Cytometry 1992. 13: 822 - 830.; Friend, M., Franklin, G. B. and Quinn, B., An LED pulser for measuring photomultiplier linearity. Nucl. Instr. And Meth. A 2012. 676: 66 - 69.; Giesecke, C., Feher, K., von Volkmann, K., Kirsch, J., Radbruch, A. and Kaiser, T., Determination of background, signal-to-noise, and dynamic range of a flow cytometer: a novel practical method for instrument characterization and standardization. Cytometry 2017. 91A: 1104 - 1114.; Reference Manuals for discussed instruments: a) BD FACSCanto II Flow Cytometer Reference Manual, 2006, BD Biosciences, San Jose, USA; b) MACSQuant Instrument User Manual, V6, 2015, Miltenyi Biotec, Bergisch Gladbach, Germany; c) CyFlow Cube 6 Instrument Operating Manual, 2012, Partec GmbH, Germany; d) Attune NxT Acoustic Focusing Cytometer User Guide, 2015, Life Technologies, USA part of Thermo Fisher Scientific; e) Gallios Flow Cytometer Instructions for use, 2009, Beckman Coulter, USA; Flow Cell Care & Maintenance; Feb 2011, Precision Cells, Inc. http://ezinearticles.com/?Flow-Cytometry---Flow-Cell-Care-and-Maintenance&id=5898431Test; A Guide to Absolute Counting Using the BD Accuri C6 Flow Cytometer, Jan. 2012, BD Biosciences, Technical Bulletin.; BD FACSDIVA Software v 8.0 Reference Manual; Maciorowski, Z., Chattopadhyay, P. K. and Jain, P., Basic Multicolor Flow Cytometry. Curr. Protoc. Immunol. 2017. 117: 5.4.1 - 5.4.38.; Maecker, H. T. and Trotter, J., Flow cytometry controls, instrument setup, and the determination of positivity. Cytometry A 2006. 69: 1037 - 1042.; Chase, E. S. and Hoffman, R. A., Resolution of dimly fluorescent particles: a practical measure of fluorescence sensitivity. Cytometry 1998. 33: 267 - 279.; Meinelt, E., Reunanen, M., Edinger, M., Jaimes, M., Stall, A., Sasaki, D. and Trotter, J., Standardizing Application Setup Across Multiple Flow Cytometers Using BD FACSDiva- Version 6. Software. BD Biosciences Technical Bulletin. 2012.; Roederer, M., Compensation in flow cytometry. Curr. Protoc. Cytom. 2002. 22: 1.14.1-1.14.20.; Biburger, M., Trenkwald, I. and Nimmerjahn, F., Three blocks are not enough-blocking of the murine IgG receptor FcgammaRIV is crucial for proper characterization of cells by FACS analysis. Eur. J. Immunol. 2015. 45: 2694 - 2697.; Maecker, H. T., Frey, T., Nomura, L. E. and Trotter, J., Selecting fluorochrome conjugates for maximum sensitivity. Cytometry A 2004. 62: 169 - 173.; Nüsse, M., Beisker, W., Kramer, J., Miller, B. M., Schreiber, G. A., Viaggi, S., Weller, E. M. et al., Measurement of micronuclei by flow cytometry. Methods Cell Biol. 1994. 42: 149 - 158.; Hengst, J., Theorell, J., Deterding, K., Potthoff, Dettmer, A., Ljunggren, H. G., Wedemeyer, H. and Björkström, N. K., High-resolution determination of human immune cell signatures from fine-needle liver aspirates. Eur. J. Immunol. 2015. 45: 2154 - 2157.; Johnson, S., Nguyen, V. and Coder, D., Assessment of cell viability. Curr. Protoc. Cytom. 2013. 64: 9.2.1-9.2.26; Edward, R. and Dimmick, I., Compensation-free dead cell exclusion: multi-beam excitation of the far-red DNA binding viability dyeDRAQ7.(TECH2P. 873). J. Immunol. 2014. 192: 135.4; Pieper, I. L., Radley, G., Chan, C. H., Friedmann, Y., Foster, G. and Thornton, C. A., Quantification methods for human and large animal leukocytes using DNA dyes by flow cytometry. Cytometry A 2016. 89: 565 - 574.; Reardon, A. J., Elliott, J. A. and McGann, L. E., Fluorescence as an alter-native to light-scatter gating strategies to identify frozen-thawed cells with flow cytometry. Cryobiology 2014. 69: 91 - 99.; Hønge, B. L., Petersen, M. S., Olesen, R., Møller, B. K. and Erikstrup, C. Optimizing recovery of frozen human peripheral blood mononuclear cells for flow cytometry. PLoS One. 2017. 12: e0187440; Hoth, M. and Penner, R., Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 1992. 355: 353 - 356.; Alsayed, H., Owaidah, T. and Al Rawas, F., Validation of a modifiedcryopreservation method for leukemic blasts for flow cytometry assessment. Hematol. Oncol. Stem Cell Ther. 2008. 1: 94 - 97.; Chow, S., Hedley, D., Grom, P., Magari, R., Jacobberger, J. W. and Shankey, T. V., Whole blood fixation and permeabilization protocol with red blood cell lysis for flow cytometry of intracellular phosphorylated epitopes in leukocyte subpopulations. Cytometry A. 2005. 67: 4 - 17.; Woost, P. C., Solchaga, L. A., Meyerson, H. J., Shankey, T. V., Goolsby, C. L. and Jacobberger, J. W., High-resolution kinetics of cytokine signaling in human CD34/CD117-positive cells in unfractionated bone marrow. Blood 2011. 117: e131 - e141.; Marvin, J., Swiminathan, S., Kraker, G., Chadburn, A., Jacobberger, J. W. and Goolsby, C., Normal bone marrow signal-transduction profiles: a requisite for enhanced detection of signaling dysregulations in AML. Blood 2011. 117: e120 - e130.; Shankey, T. V., Forman, M. F., Scibelli, P., Cobb, J., Smith, C. M., Mills, R., Holdiway, K. et al., An optimized whole blood method for flow cytometric measurement of ZAP-70 protein expression in chronic lymphocytic leukemia. Cytometry 2006. 70: 259 - 269.; Jacobberger, J. W., Sramkowski, R. M., Frisa, P. S., Peng Ye, P., Gottlieb, M. A., Hedley, D. W., Shankey, T. V. et al., Immunoreactivity of STAT5 phosphorylated on tyrosine as a cell-based measure of Bcr/Abl kinase activity. Cytometry 2003. 54: 75 - 88.; Boehm, T., McCurley, N., Sutoh, Y., Schorpp, M., Kasahara, M. and Cooper, M. D., VLR-based adaptive immunity. Annu. Rev. Immunol. 2012. 30: 203 - 220.; Pancer, Z., Amemiya, C. T., Ehrhardt, G. R., Ceitlin, J., Gartland, G. L. and Cooper, M. D., Somatic diversification of variable lymphocyte receptors in the Agnathan sea lamprey. Nature 2004. 430: 174 - 180.; Velikovsky, C. A., Deng, L., Tasumi, S., Iyer, L. M., Kerzic, M. C., Aravind, L., Pancer, Z. et al., Structure of a lamprey variable lymphocyte receptor in complex with a protein antigen. Nat. Struct. Mol. Biol. 2009. 16: 725 - 730.; Han, B. W., Herrin, B. R., Cooper, M. D. and Wilson, I. A., Antigen recognition by variable lymphocyte receptors. Science 2008. 321: 1834 - 1837.; Luo, M., Velikovsky, C. A., Yang, X., Siddiqui, M. A., Hong, X., Barchi, J. J., Jr., Gildersleeve, J. C. et al., Recognition of the Thomsen-Friedenreich pancarcinoma carbohydrate antigen by a lamprey variable lymphocyte receptor. J. Biol. Chem. 2013. 288: 23597 - 23606.; Collins, B. C., Gunn, R. J., McKitrick, T. R., Cummings, R. D., Cooper, M. D., Herrin, B. R. and Wilson, I. A., Structural Insights into VLR Fine Specificity for Blood Group Carbohydrates. Structure 2017. 25: 1667 - 1678.; Chan, J. T. H., Liu, Y., Khan, S., St-Germain, J. R., Zou, C., Leung, L. Y., Yang, T. et al., A tyrosine sulfation-dependent HLA-I modification identifies memory B cells and plasma cells. Sci. Adv. 2018. 4: eaar7653.; Herrin, B. R., Alder, M. N., Roux, K. H., Sina, C., Ehrhardt, G. R., Boydston, J. A., Turnbough, C. L., Jr. et al., Structure and specificity of lamprey monoclonal antibodies. Proc. Natl. Acad. Sci. USA. 2008. 105: 2040 - 2045.; Haas, J., Roth, S., Arnold, K., Kiefer, F., Schmidt, T., Bordoli, L. and Schwede, T., The Protein Model Portal-a comprehensive resource for protein structure and model information. Database 2013. 2013: bat031.; Yu, C., Liu, Y., Chan, J. T., Tong, J., Li, Z., Shi, M., Davani, D. et al., Identification of human plasma cells with a lamprey monoclonal antibody. JCI Insight 2016. 1: e84738.; Alder, M. N., Rogozin, I. B., Iyer, L. M., Glazko, G. V., Cooper, M. D. and Pancer, Z., Diversity and function of adaptive immune receptors in a jawless vertebrate. Science 2005. 310: 1970 - 1973.; Yu, C., Ali, S., St-Germain, J., Liu, Y., Yu, X., Jaye, D. L., Moran, M. F. et al., Purification and identification of cell surface antigens using lamprey monoclonal antibodies. J. Immunol. Methods 2012. 386: 43 - 49.; Baker, M., Antibody anarchy: a call to order. Nature 2015. 527: 545 - 551.; Zhang, X., Calvert, R. A., Sutton, B. J. and Dore, K. A., IgY: a key isotype in antibody evolution. Biol. Rev. Camb. Philos. Soc. 2017. 92: 2144 - 2156.; Mucci, I., Legitimo, A., Compagnino, M., Consolini, R., Miglidaccio, P., Metelli, M. R. and Scatena, F., The methodological approach for the generation of human dendritic cells from monocytes affects the maturation state of the resultant dendritic cells. Biologicals 2009. 37: 288 - 96.; Delirezh, N. and Shojaeefar, E., Phenotypic and functional comparison between flask adherent and magnetic activated cell sorted monocytes derived dendritic cells. Iran J. Immunol. 2012. 9: 98 - 108.; Pribush, A., Meyerstein, D. and Meyerstein, N., Kinetics of erythrocyte swelling and membrane hole formation in hypotonic media. BBABiomembrane 2002. 1558: 119 - 132.; Tiirikainen, M. I., Evaluation of red blood cell lysing solutions for the detection of intracellular antigens by flow cytometry. Cytometry 1995. 20: 341 - 348.; Bøyum, A., Løvhaug, D., Tresland, L. and Nordlie, E. M., Separation of leucocytes: improved cell purity by fine adjustments of gradient medium density and osmolality. Scand. J. Immunol. 1991. 34: 697 - 712.; Einwallner, E., Subasic, A., Strasser, A., Augustin, D., Thalhammer, R., Steiner, I. and Schwarzinger, I., Lysis matters: red cell lysis with FACS Lyse affects the flow cytometric enumeration of circulating leukemic blasts. J. Immunol. Methods 2013. 390: 127 - 132.; Lindahl, P. E., Principle of a counter-streaming centrifuge for the separation of particles of different sizes. Nature 1948. 161: 648 - 649.; McEwen, C. R., Stallard, R. W. and Juhos, E. T., Separation of biological particles by centrifugal elutriation. Anal. Biochem. 1968. 23: 369 - 77.; Pretlow, T. G. and Pretlow, T. P., Centrifugal elutriation (counterstreaming centrifugation) of cells. Cell Biophys. 1979. 1: 195 - 210.; www.biologydiscussion.com/cell-biology/8-methods-involved-in-separation-of-whole-cells-with-diagram/3494; Ferrone, S., Cooper, N. R., Pellegrino, M. A. and Reisfeld, R. A., Interaction of histocompatibility (HL-A) antibodies and complement with synchronized human lymphoid cells in continuous culture. J. Exp. Med. 1973. 137: 55 - 68.; Lustig, H. and Bianco, C., Antibody-mediated cell cytotoxicity in a defined system: regulation by antigen, antibody, and complement. J. Immunol. 1976. 116: 253 - 60.; Esser, C., Historical and useful methods of preselection and preparative scale cell sorting. In D. Recktenwald and A. Radbruch (Eds.), Cell separation methods and applications. Marcel Dekker Inc., New York/Basel/Hong Kong, 1998, pp. 1 - 14.; www.pluriselect.com; www.miltenyibiotec.com; Thomas, T. E., Miller, C. L. and Eaves, C. J., Purification of hematopoietic stem cells for further biological study. Methods. 1999. 17: 202 - 218.; Van der Toom, E. E., Verdone, J. E., Gorin, M. A. and Pienta, K. J., Technical challenges in the isolation and analysis of circulating tumor cells. Oncotarget 2016. 7: 62754 - 62766.; Donnenberg, V. S. and Donnenberg, A. D., Identification, rare-event detection and analysis of dendritic cell subsets in bronchio-alveolar lavage fluid and peripheral blood by flow cytometry. Front. Biosci. 2003. 8: s1175 - s1180.; Bacher, P. and Scheffold, A., New technologies for monitoring human antigen-specific T cells and regulatory T cells by flow-cytometry. Curr. Opin. Pharmacol. 2015. 23: 17 - 24.; www.thermofisher.com/de/de/home/brands/product-brand/dynal.html; www.bdbiosciences.com/us/reagents/research/magnetic-cell-separation/other-species-cell-separation-reagents/cell-separation-magnet/p/552311; Recktenwald, D. and Radbruch, A. (Eds.), Cell separation methods and applications. Marcel Dekker Inc., New York/ Basel/ Hong Kong, 1998.; Miltenyi, S. and Pflueger, E., High gradient magnetic cell sorting. In A. Radbruch (Ed.), Flow cytometry and sorting. Springer-Verlag, Berlin/Heidelberg, 1992, pp. 141 - 152.; Ruffert, C., Magnetic bead-Magic bullet (review). Micromachines 2016. 7: 21.; McCloskey, K. E., Chalmers, J. J. and Zborowski, M., Magnetic cell separation: Characterization of magnetophoretic mobility. Anal. Chem. 2003. 75: 6868 - 6874.; Boyum, A., Isolation of leucocytes from human blood. Further observations. Methylcellulose, dextran, and ficoll as erythrocyteaggregating agents. Scand. J. Clin. Lab. Invest. Suppl. 1968. 97: 31 - 50.; Boyum, A., Isolation of lymphocytes, granulocytes and macrophages. Scand. J. Immunol. 1976. Suppl 5: 9 - 15.; Yeo, C., Saunders, N., Locca, D., Flett, A., Preston, M., Brookman, P., Davy, B. et al., Ficoll-Paque versus Lymphoprep: A comparative study of two density gradient media for therapeutic bone marrow mononuclear cell preparations. Regen. Med. 2009. 4: 689 - 696.; Boyum, A., Brincker, F. H., Martinsen, I., Lea, T. and Lovhaug, D., Separation of human lymphocytes from citrated blood by density gradient (NycoPrep) centrifugation: Monocyte depletion depending upon activation of membrane potassium channels. Scand. J. Immunol. 2002. 56: 76 - 84.; Kuhns, D. B., Priel, D. A., Chu, J. and Zarember, K. A., Isolation and functional analysis of human neutrophils. Curr. Protoc. Immunol. 2015. 111: 7.23.1 - 7.23.16.; Maqbool, M., Vidyadaran, S., George, E. and Ramasamy, R., Optimisation of laboratory procedures for isolating human peripheral blood derived neutrophils. Med. J. Malaysia 2011. 66: 296 - 299.; Bruyninckx, W. J. and Blancquaert, A. M., Isolation of horse mononuclear cells, especially of monocytes, on Isopaque-Ficoll neutral density gradient. Vet. Immunol. Immunopathol. 1983. 4: 493 - 504.; Pertoft, H., Fractionation of cells and subcellular particles with Percoll. J. Biochem. Biophys. Methods 2000. 44: 1 - 30.; Yu, L., Warner, P., Warner, B., Recktenwald, D., Yamanishi, D., Guia, A. and Ghetti, A., Whole blood leukocytes isolation with microfabricated filter for cell analysis, Cytometry 2011. 79A: 1009 - 1015.; Higuchi, A., Wang, C.-T., Ling, Q.-D., Lee, H. H.-C., Suresh Kumar, S., Chang, Y., Alarfaj, A. A. et al., A hybrid-membrane migration method to isolate high-purity adipose-derived stem cells from fat tissues. Sci. Rep. 2015. 5: 10217.; Huang, L. R., Cox, E. C., Austin, R. H. and Sturm, J. C., Continuous particle separation through deterministic lateral displacement. Science 2004. 304: 987 - 990.; Davis, J. A., Inglis, D. W., Morton, K. J., Lawrence, D. A., Huang, L. R., Chou, S. Y., Sturm, J. C. et al., Deterministic hydrodynamics: Taking blood apart, Proc. Nat. Acad. Sci. 2008. 103: 14779 - 14784.; Loutherback, K., D’Silva1, J., Liu, L., Wu, A., Austin, R. H. and Sturm, J. C., Deterministic separation of cancer cells from blood at 10 mL/min. AIP Adv. 2012. 2: 042107.1 - 042107.7.; D’Silva, J., Austin, H. and Sturm, C., Inhibition of clot formation in deterministic lateral displacement arrays for processing large volumes of blood for rare cell capture. Lab Chip 2015. 15: 2240 - 2247.; Civin, C. I., Ward, T., Skelley, A. M., Gandhi, K., Peilun Lee, Z., Dosier, C. R., D’Silva, J. L. et al., Automated leukocyte processing by microfluidic deterministic lateral displacement. Cytometry A. 2016. 89: 1073 - 1083.; Campos-González, R., Skelley, A. M., Gandhi, K., Inglis, D. W., Sturm, J. C., Civin, C. I. and Ward, T., Deterministic lateral displacement: the next-generation CAR T-cell processing? SLAS Technol. 2018. 23: 338 - 351.; Laurell, T., Petersson, F. and Nilsson, A., Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem. Soc. Rev. 2007. 36: 492 - 506.; Dykes, J., Lenshof, A., à strand-Grundström, I.-B., Laurell, T. and Scheding, S., Efficient removal of platelets from peripheral blood progenitor cell products using a novel micro-chip based acoustophoretic platform. PLoS ONE 2011. 6: e23074.; Urbansky, A., Ohlsson, P., Lenshof, A., Garofalo, F., Scheding, S. and Laurell, T., Rapid and effective enrichment of mononuclear cells from blood using acoustophoresis. Sci. Rep. 2017. 7: 17161.; Wysocki, L. J. and Sato, V. L., Panning for lymphocytes: A method for cell selection. Proc. Natl. Acad. Sci. U S A 1978. 75: 2844 - 2848.; Weiner, M. S., Bianco, C. and Nussenzweig, V., Enhanced binding of neuraminidase-treated sheep erythrocytes to human T lymphocytes. Blood 1973. 42: 939 - 946.; Indiviri, F., Huddlestone, J., Pellegrino, M. A. and Ferroni, S., Isolation of human T lymphocytes: Comparison between wool filtration and rosetting with neuraminidase (VCN) and 2-aminoethylisothiouronium (AET)-treated sheep red blood cells. J. Immunol. Methods 1980. 34: 107 - 112.; Lepe-Zuniga, J. L., Zigler, J. S. and Gery, I., Toxicity of light-exposed Hepes media. J. Immunol. Methods 1987. 103: 145.; Cowan, C. M. and Basu, S., Heng, B. C., Comparison of enzymatic and nonenzymatic means of dissociating adherent monolayers of mesenchymal stem cells. Biol. Proc. Online 2009. 11: 161 - 169.; Amaral, K., Rogero, M., Fock, R., Borelli, P. and Gavini, G., Cytotoxicity analysis of EDTA and citric acid applied on murine resident macrophages culture. Int. Endod. J. 2007. 40 ( 5 ): 338 - 343.; Wiesman, U., Segregating cells-proteases in tissue culture. In Sterchi, E. E. and Stöcker, W. (Eds.), Proteolytic enzymes: Tools and targets. Springer, Berlin, Germany, 1999, pp. 298 - 311.; Stovel, R. T., The influence of particles on jet breakoff. J. Histochem. Cytochem. 1977. 25: 813 - 820.; Pinkel, D. and Stovel, R., Flow chambers and sample handling. In Van Dilla, M. A., Dean, P. N., Laerum, O. D. and Melame, M. R. (Eds.), Flow cytometry: Instrumentation and data analysis, Academic Press, London, UK, 1985, pp. 77 - 128.; Houtz, B., Trotter, J. and Sasaki, D., Tips on cell preparation for flow cytometric analysis and sorting. BD FACService Technotes 2004. 9.; Holmes, K. L., Fontes, B., Hogarth, P., Konz, R., Monard, S., Pletcher, Jr., C. H., Wadley, R. B. et al., International Society for the Advancement of Cytometry cell sorter biosafety standards. Cytometry A 2014. 85: 434 - 453.; van der Maaten, L. J. P. and Hinton, G. E., Visualizing high-dimensional data using t-SNE. J. Mach. Learn. Res. 2008. 9: 2579 - 2605.; McInnes, L., Healy, J and Melville, J., UMAP: uniform manifold approximation and projection for dimension reduction arXiv:1802.03426; Aghaeepour, N, Simonds, E. F., Knapp, D. J. H. F., Bruggner, R. V., Sachs, K., Culos, A., Gherardini, P. F. et al., GateFinder: projection-based gating strategy optimization for flow and mass cytometry. Bioinformatics 2018. 34 ( 23 ): 4131 - 4133.; Becht, E., Simoni, Y., Coustan-Smith, E., Maximilien, E., Cheng, Y., Ng, L. G., Campana, D. et al., Reverse-engineering flow-cytometry gating strategies for phenotypic labelling and high-performance cell sorting. Bioinformatics 2019. 35: 301 - 308.; Samusik, N., Irvine, A., Aghaeepour, A., Spidlen, J. and Trotter, J. Computational Sorting with HyperFinder, CYTO 2019, Session Parallel 06, 24 June 2019.; Loos, H., Blok-Schut, B., van Doorn, R., Hoksbergen, R., Brutel de la Rivière, A. and Meerhof, L., A method for the recognition and separation of human blood monocytes on density gradients. Blood 1976. 48: 731 - 742.; BD FACSAria user’s guide, BD Biosciences, San Jose, USA, 2006.; Wixforth, A., Acoustically driven programmable microfluidics for biological and chemical applications. J. Lab. Automat. 2006. 11: 399 - 405.; Kaiser, T., Raba, K., Sickert, M., Radbruch, A. and Scheffold, A., Integration of an ultrasonic wave device in a FACS-Aria cell sorter for continuous, noninvasive mixing of cell suspensions. Poster, Budapest, 2008 ISAC congress. https://doi.org/10.13140/RG.2.1.1760.2966Test; Radbruch, A. (Ed.), Flow cytometry and cell sorting, 2nd ed., Springer, Berlin/Heidelberg 2000.; Freyer, J. P., Fillak, D. and Jett, J. H., Use of xantham gum to suspend large particles during flow cytometric analysis and sorting. Cytometry 1989. 10: 803 - 806.; Fu, L.-M., Yang, R.-J., Lin, C.-H., Pan, Y.-J. and Gwo-Bin, L., Electrokinetically driven micro flow cytometers with integrated fiber optics for on-line cell/particle detection. Anal. Chim. Acta 2004. 507: 163 - 169.; Telleman, P., Larsen, U. D., Philip, J., Blankenstein, G. and Wolff, A., Cell Sorting in Microfluidic Systems. In Jed Harrison, D. and van den Berg, A. (Eds.). Micro total analysis systems -98. Springer, Amsterdam, the Netherlands, 1998, pp. 39 - 44.; Wang, X., Chen, S., Kong, M., Wang, Z., Costa, K. D., Li, R. A. and Sun, D., Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies. Lab Chip 2011. 11: 3656 - 3662.; Bhagat, A. A., Bow, H., Hou, H. W., Tan, S. J., Han, J. and Lim, C. T., Microfluidics for cell separation. Med. Biol. Eng. Comput. 2010. 48: 999 - 1014.; Chapman, G. V., Instrumentation for flow cytometry. J. Immunol. Methods 2000. 243: 3 - 12.; Abate, A. R., Agresti, J. J. and Weitz, D. A., Microfluidic sorting with highspeed single-layer membrane valves. Appl. Phys. Lett. 2010. 96: 203509.; Shemesh, J., Bransky, A., Khoury, M. and Levenberg, S., Advanced microfluidic droplet manipulation based on piezoelectric actuation. Biomed. Microdevices 2010. 12: 907 - 914.; Chen, C. H., Cho, S. H., Tsai, F., Erten, A. and Lo, Y. H., Microfluidic cell sorter with integrated piezoelectric actuator. Biomed. Microdevices 2009. 11: 1223 - 1231.; Wang, M. M., Tu, E., Raymond, D. E., Yang, J. M., Zhang, H., Hagen, N., Dees, B. et al., Microfluidic sorting of mammalian cells by optical force switching. Nat. Biotechnol. 2005. 23: 83 - 87.; Roederer, M., Spectral compensation for flow cytometry: visualization artifacts, limitations, and caveats. Cytometry 2001. 45: 194 - 205.; Rockefeller University BD FACSAria2-3 Water-Cooled Sort Collection Integrated Tube Holder 5-15-;5-5 %7C NIH 3D Print Exchange. Available at: http://3dprint.nih.gov/discover/3dpx-002415Test. (Accessed: 20th April 2016 ); Sasaki, D. T., Tichenor, E. H., Lopez, F., Combs, J., Uchida, N., Smith, C. R., Stokdijk, W. et al., Development of a clinically applicable high-speed flow cytometer for the isolation of transplantable human hematopoietic stem cells. J. Hematother. 1995. 4: 503 - 514.; June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S., Milone, M. C., CAR T cell immunotherapy for human cancer. Science 2018. 359: 1361 - 1365.; Hoffmann, P., Eder, R., Boeld, T. J., Doser, K., Piseshka, B., Andreesen, R. et al., Only the CD45RA+ subpopulation of CD4+CD25high T cells gives rise to homogeneous regulatory T-cell lines upon in vitro expansion. Blood 2006. 108: 4260 - 4267.; GMP EudraLex Volume 4, Part I, with guidance in Annex 1 on -Manufacture of Sterile Medicinal Products- and Annex 2 on -Manufacture of Biological active substances and Medicinal Products for Human Use-; https://ec.europa.eu/health/documents/eudralex/vol-4_deTest.; Good Manufacturing Practice for Advanced Therapy Medicinal Products, published in Part IV of Eudralex Volume 4; https://ec.europa.eu/health/documents/eudralex/vol-4_deTest; Reflection paper on classification of advanced therapy medicinal products. EMA/CAT/600280/ 2010 (ed. EMA) (EMA-CAT, http://www.ema.europa.eu/docs/en_GB/document_library/Regulatory_and_procedural_guideline/2012/04/WC500126681.pdfTest, 2012 ).; Commission Directive 2009 /120/EC of 14 September 2009 amending Directive 2001/83/EC of the European Parliament and of the Council on the Community code relating to medicinal products for human use as regards advanced therapy medicinal product.; Regulation (EC) No 1394 / 2007 of the European Parliament and of the Council of 13 November 2007 on advanced therapy medicinal products and amending Directive 2001/83/EC and Regulation (EC) No 726/2004.; Guideline on process validation for finished products - information and data to be provided in regulatory submissions, EMA/CHMP/CVMP/QWP/BWP/70278/2012-Rev1. 27 February 2014: European Medicines Agency (EMA).; Brunner, K. T., Mauel, J., Cerottini, J. C. and Chapuis, B., Immunology 1968. 14: 181 - 196.; USFDA. Guidance for industry. Process validation: General principles and practices, U.S. Department of Health and Human Services Food and Drug Administration Washington, DC 2011.; ICH Q6B: Specifications: Test Procedures and Acceptance Criteria for Biotechnological / Biological Products, ICH Harmonised Tripartite Guideline. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use.; ICH Q2(R1): Validation of Analytical Procedures: Text and Methodology, ICH Harmonised Tripartite Guideline. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use.; Leslie, D. S., Johnston, W. W., Daly, L., Ring, D. B., Shpall, E. J., Peters, W. P. and Bast, R. C., Jr., Detection of breast carcinoma cells in human bone marrow using fluorescence-activated cell sorting and conventional cytology. Am. J. Clin. Pathol. 1990. 94: 8 - 13.; Frantz, C. N., Ryan, D. H., Cheung, N. V., Duerst, R. E. and Wilbur, D. C., Sensitive detection of rare metastatic human neuroblastoma cells in bone marrow by two-color immunofluorescence and cell sorting. Prog. Clin. Biol. Res. 1988. 271: 249 - 262.; Ryan, D. H., Mitchell, S. J., Hennessy, L. A., Bauer, K. D., Horan, P. K. and Cohen, H. J., Improved detection of rare CALLA-positive cells in peripheral blood using multiparameter flow cytometry. J. Immunol. Methods 1984. 74: 115 - 128.; Visser, J. W. and De Vries, P., Identification and purification of murine hematopoietic stem cells by flow cytometry. Methods Cell Biol. 1990. 33: 451 - 468.; Cory, J. M., Ohlsson-Wilhelm, B. M., Brock, E. J., Sheaffer, N. A., Steck, M. E., Eyster, M. E. and Rapp, F., Detection of human immunodeficiency virus-infected lymphoid cells at low frequency by flow cytometry. J. Immunol. Methods 1987. 105: 71 - 78.; Jensen, R. H. and Leary, J. F., Mutagenesis as measured by flow cytometry and cell sorting. In M. R. Melamed, M. L. Mendelsohn and T. Lindmo (Eds.) Flow cytometry and sorting, 2nd ed., Wiley-LISS, New York, NY, 1990.; Cossarizza, A. and Cousins, D., Overcoming challenges in cellular analysis: multiparameter analysis of rare cells. Science 2015. 347: 443.; Gross, H. J., Verwer, B., Houck, D., Hoffman, R. A. and Recktenwald, D., Model study detecting breast cancer cells in peripheral blood mononuclear cells at frequencies as low as 10 -7. Proc. Natl. Acad. Sci. U.S.A. 1995. 92: 537 - 541.; Donnenberg, A. D. and Donnenberg, V. S., Rare-event analysis in flow cytometry. Clin. Lab. Med. 2007. 27: 627 - 652.; De Biasi, S., Bianchini, E., Nasi, M., Digaetano, M., Gibellini, L., Carnevale, G., Borghi, V. et al., Th1 and Th17 pro-inflammatory profile characterizes iNKT cells in virologically suppressed HIV + patients with low CD4/CD8 ratio. AIDS 2016. 30: 2599 - 2610.; Duda, D. G., Cohen, K. S., Scadden, D. T. and Jain, R. K., A protocol for phenotypic detection and enumeration of circulating endothelial cells and circulating progenitor cells in human blood. Nat. Protoc. 2007. 2: 805 - 810.; Mancuso, P., Antoniotti, P., Quarna, J., Calleri, A., Rabascio, C., Tacchetti, C. and Braidotti, P., Validation of a standardized method for enumerating circulating endothelial cells and progenitors: flow cytometry and molecular and ultrastructural analyses. Clin. Cancer Res. 2009. 15: 267 - 273.; Van Craenenbroeck, E. M., Conraads, V. M., Van Bockstaele, D. R., Haine, S. E., Vermeulen, K., Van Tendeloo, V. F. and Vrints, C. J., Quantification of circulating endothelial progenitor cells: A methodological comparison of six flow cytometric approaches. J. Immunol. Methods 2008. 332: 31 - 40.; Estes, M. L., Mund, J. A., Ingram, D. A. and Case, J., Identification of endothelial cells and progenitor cell subsets in human peripheral blood. Curr. Protoc. Cytom. 2010. 52: 9.33.1 - 9.33.11.; De Biasi, S., Cerri, S., Bianchini, E., Gibellini, L., Persiani, E., Montanari, G. and Luppi, F., Levels of circulating endothelial cells are low in idiopathic pulmonary fibrosis and are further reduced by anti-fibrotic treatments. BMC Med. 2015. 13: 277.; Cox, C., Reeder, J. E., Robinson, R. D., Suppes, S. B. and Wheeless, L. L., Comparison of frequency distribution in flow cytometry. Cytometry 1988. 9: 291 - 298.; Haight, F. A., Handbook of the Poisson distribution. John Wiley & Sons, New York, NY, 1967.; Roederer, M., How many events is enough? Are you positive? Cytometry 2008. 73: 384 - 385.; Boyd, W. A., Smith, M. V. and Freedman, J. H., Caenorhabditis elegans as a model in developmental toxicology. Methods Cell. Biol. 2012. 889: 15 - 24.; Steffen, A., Ludwig, B., Krautz, C., Bornstein, S. and Solimena, M., Functional assessment of automatically sorted pancreatic islets using large particle flow cytometry. Islet. 2011. 3: 67 - 270.; Li, C. Y., Wood, D. K., Huang, J. H. and Bhatia, S. N., Flow-based pipeline for systematic modulation and analysis of 3D tumor microenvironments. Lab. Chip. 2013. 13: 1969 - 1978.; Coder, D. M., Assessment of cell viability. Curr. Protoc. Cytom. 2001. 15: 9.2:9.2.1 - 9.2.14.; Nussbaum, J. C., Dyken, S. J. and Moltke, J., Type 2 innate lymphoid cells control eosinophil homeostasis. Nature 2013. 502: 245 - 248.; Perfetto, S. P., Chattopadhyay, P. K., Lamoreaux, L., Nguyen, R., Ambrozak, D., Koup, R. A. and Roederer, M. Amine reactive dyes: an effective tool to discriminate live and dead cells in polychromatic flow cytometry. J. Immunol. Methods 2006. 313: 199 - 208.; Zuba-Surman, E. K., Kucia, M. and Ratajczak, M. Z., Decoding the dots: the ImageStream system (ISS) as a novel and powerful tool for flow cytometric analysis. Cent. Eur. J. Biol. 2008. 3: 1 - 10.; Vindelov, L. L., Christensen, I. J. and Nissen, N. I., A detergent-trypsin method for the preparation of nuclei for flow cytometric DNA analysis. Cytometry 1983. 3: 323 - 327.; Hedley, D. W., Friedlander, M. L., Taylor, I. W., Rugg, C. A. and Musgrove, E. A., Method for analysis of cellular DNA content of paraffin-embedded pathological material using flow cytometry. J. Histochem. Cytochem. 1983. 31: 1333 - 1335.; Degtyarev, M., Reichelt, M. and Lin, K., Novel quantitative autophagy analysis by organelle flow cytometry after cell sonication. PLoS One. 2014. 9: e87707; Poot, M., Gibson, L. L. and Singer, V. L., Detection of apoptosis in live cells by MitoTracker CMXRos and SYTO dye flow cytometry. Cytometry. 1997. 27: 358 - 364.; Poot, M., Analysis of intracellular organelles by flow cytometry or microscopy. Curr. Protoc. Cytom. 2001. 14: 9.4:9.4.1 - 9.4.24.; Bailey, S. and Macardle, P. J., A flow cytometric comparison of Indo-1 to fluo-3 and Fura Red excited with low power lasers for detecting Ca(2+) flux. J. Immunol. Methods 2006. 311: 220 - 225.; Leverrier, S., Bergamaschi, D., Ghali, L., Ola, A., Warnes, G., Akgul, B. et al., Role of HPV E6 proteins in preventing UVB-induced release of pro-apoptotic factors from the mitochondria. Apoptosis. 2007. 12: 549 - 560.; Dolezel, J., Vrana, J., Safar, J., Bartos, J., Kubalakova, M. and Simkova, H., Chromosomes in the flow to simplify genome analysis. Funct. Integr. Genomics. 2012. 12: 97 - 416.; Davies, D. C., Monard, S. P. and Young, B. D. Chromosome analysis and sorting by flow cytometry. In MG Ormerod (Ed.), Flow cytometry: A practical approach, 3rd edition, Oxford University Press, Oxford, U.K., 2000.; Ng, B. L., Fu, B., Graham, J., Hall, C. and Thompson, S., Chromosome analysis using benchtop cell analysers and high speed cell sorters. Cytometry A 2018. 95: 323 - 331.; Rhys, H. I., Dell’Accio, F., Pitzalis, C., Moore, A., Norling, L. V. and Perretti, M., Neutrophil microvesicles from healthy control and rheumatoid arthritis patients prevent the inflammatory activation of macrophages. EBioMedicine. 2018. 29: 60 - 69.; Orozco, A. and Lewis, D., Flow cytometric analysis of circulating microparticles in plasma. Cytometry A. 2010. 77A: 502 - 514.; Zucker, R. M., Ortenzio, J. N. R., Boyes, W. K., Characterization, detection, and counting of metal nanoparticles using flow cytometry. Cytometry A. 2016. 89A: 69 - 183.; Morales-Kastresana, A., Telford, W., Musich, T. A., McKinnon, K., Clayborne, C., Braig, Z., Rosner, A. et al., Labeling extracellular vesicles for nanoscale flow cytometry. Sci. Rep. 2017. 7: 1878; Kastelowitz, N. and Yin, H., Exosomes and microvesicles: identification and targeting by particle size and lipid chemical probes. ChemBioChem. 2014. 15: 923 - 928.; Erdbrügger, U., Rudy, C. K., Etter, M. E., Dryden, K. A., Yeager, M., Kibanov, A. L. and Lannigan, J., Imaging flow cytometry elucidates limitations of microparticle analysis by conventional flow cytometry. Cytometry A. 2014. 85A: 756 - 770.; Marcoux, G., Duchez, A. C., Clouthier, N., Provost, P., Nigrovic, P. A. and Boilard, E., Revealing the diversity of extracellular vesicles using high-dimensional flow cytometry analyses. Sci. Rep. 2016. 6: 35928; Wallace, D. C., Mitochondria and cancer. Nat. Rev. Cancer 2012. 12: 685 - 698.; Wallace, D. C., Mitochondrial diseases in man and mouse. Science 1999. 283: 1482 - 1488.; Brand, M. D. and Nicholls, D. G., Assessing mitochondrial dysfunction in cells. Biochem. J. 2011. 435: 297 - 312.; Cottet-Rousselle, C., Ronot, X., Leverve, X. and Mayol, J. F., Cytometric assessment of mitochondria using fluorescent probes. Cytometry A 2011. 79: 405 - 425.; Lay, A. W. L. and Burton, A. C., Direct measurement of potential difference across the human red blood cell membrane. Biophys. J. 1969. 9: 115 - 121.; Perry, S. W., Norman, J. P., Barbieri, J., Brown, E. B. and Gelbard, H. A., Mitochondrial membrane potential probes and the proton gradient: A practical usage guide. Biotechniques 2011. 50: 98 - 115.; Petit, P. X., Susin, S. A., Zamzami, N., Mignotte, B. and Kroemer, G., Mitochondria and programmed cell death: Back to the future. FEBS Lett. 1996. 396: 7 - 13.; Rottenberg, H. and Wu, S., Quantitative assay by flow cytometry of the mitochondrial membrane potential in intact cells. Biochim. Biophys. Acta 1998. 1404: 393 - 404.; Johnson, L. V., Walsh, M. L. and Chen, L. B., Localization of mitochondria in living cells with rhodamine 123. Proc. Natl. Acad. Sci. U.S.A. 1980. 77: 990 - 994.; Troiano, L., Granata, A. R., Cossarizza, A., Kalashnikova, G., Bianchi, R., Pini, G., Tropea, F. et al., Mitochondrial membrane potential and DNA stainability in human sperm cells: a flow cytometry analysis with implications for male infertility. Exp. Cell. Res. 1998. 241: 384 - 393.; Ehrenberg, B., Montana, V., Wei, M. D., Wuskell, J. P. and Loew, L. M., Membrane potential can be determined in individual cells from the nernstian distribution of cationic dyes. Biophys. J. 1988. 53: 785 - 794.; Nicholls, D. G. and Ward, M. W., Mitochondrial membrane potential and neuronal glutamate excitotoxicity: Mortality and millivolts. Trends Neurosci. 2000. 23: 166 - 174.; Cossarizza, A., Baccarani-Contri, M., Kalashnikova, G. and Franceschi, C., A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5-,6,6--tetrachloro-1,1-,3,3-;-tetraethylbenzimidazolcarbocyanine iodide (JC-1). Biochem. Biophys. Res. Commun. 1993. 197: 40 - 45.; Smiley, S. T., Reers, M., Mottola-Hartshorn, C., Lin, M., Chen, A., Smith, T. W., Steele, G. D. et al., Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc. Natl. Acad. Sci. U.S.A. 1991. 88: 3671 - 3675.; Reers, M., Smith, T. W. and Chen, L. B., J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential. Biochemistry 1991. 30: 4480 - 4486.; Moudy, A. M., Handran, S. D., Goldberg, M. P., Ruffin, N., Karl, I., Kranz-Eble, P., DeVivo, D. C. et al., Abnormal calcium homeostasis and mitochondrial polarization in a human encephalomyopathy. Proc. Natl. Acad. Sci. U.S.A. 1995. 92: 729 - 733.; Perelman, A., Wachtel, C., Cohen, M., Haupt, S., Shapiro, H. and Tzur, A., JC-1: alternative excitation wavelengths facilitate mitochondrial membrane potential cytometry. Cell Death Dis. 2012. 3: e430.; De Biasi, S., Gibellini, L. and Cossarizza, A., Uncompensated polychromatic analysis of mitochondrial membrane potential using JC-1 and multilaser excitation. Curr. Prot. Cytom. 2015. 72: 7.32.1 - 7.32.11.; Troiano, L., Ferraresi, R., Lugli, E., Nemes, E., Roat, E., Nasi, M., Pinti, M. et al., Multiparametric analysis of cells with different mitochondrial membrane potential during apoptosis by polychromatic flow cytometry. Nat. Protoc. 2007. 2: 2719 - 2727.; Poot, M., Zhang, Y. Z., Kramer, J. A., Wells, K. S., Jones, L. J., Hanzel, D. K., Lugade, A. G. et al., Analysis of mitochondrial morphology and function with novel fixable fluorescent stains. J. Histochem. Cytochem. 1996. 44: 1363 - 1372.; Septinus, M., Seiffert, W. and Zimmermann, H. W., Hydrophobic acridine dyes for fluorescence staining of mitochondria in living cells. 1. Thermodynamic and spectroscopic properties of 10-n-alkylacridine orange chlorides. Histochemistry 1983. 79: 443 - 456.; Dickinson, B. C., Lin, V. S. and Chang, C. J., Preparation and use of MitoPY1 for imaging hydrogen peroxide in mitochondria of live cells. Nat. Protoc. 2013. 8: 1249 - 1259.; Mukhopadhyay, P., Rajesh, M., Hasko, G., Hawkins, B. J., Madesh, M. and Pacher, P., Simultaneous detection of apoptosis and mitochondrial superoxide production in live cells by flow cytometry and confocal microscopy. Nat. Protoc. 2007. 2: 2295 - 2301.; Mukhopadhyay, P., Rajesh, M., Yoshihiro, K., Hasko, G. and Pacher, P., Simple quantitative detection of mitochondrial superoxide production in live cells. Biochem. Biophys. Res. Commun. 2007. 358: 203 - 208.; Robinson, K. M., Janes, M. S., Pehar, M., Monette, J. S., Ross, M. F., Hagen, T. M., Murphy, M. P. et al., Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. Proc. Natl. Acad. Sci. U.S.A. 2006. 103: 15038 - 15043.; Cossarizza, A., Ferraresi, R., Troiano, L., Roat, E., Gibellini, L., Bertoncelli, L., Nasi, M. et al., Simultaneous analysis of reactive oxygen species and reduced glutathione content in living cells by polychromatic flow cytometry. Nat. Protoc. 2009. 4: 1790 - 1797.; Gibellini, L., Pinti, M., Bartolomeo, R., De Biasi, S., Cormio, A., Musicco, C., Carnevale, G. et al., Inhibition of Lon protease by triterpenoids alters mitochondria and is associated to cell death in human cancer cells. Oncotarget 2015. 6: 25466 - 25483.; Hawkins, B. J., Madesh, M., Kirkpatrick, C. J. and Fisher, A. B., Superoxide flux in endothelial cells via the chloride channel-3 mediates intracellular signaling. Mol. Biol. Cell 2007. 18: 2002 - 2012.; Iuso, A., Scacco, S., Piccoli, C., Bellomo, F., Petruzzella, V., Trentadue, R., Minuto, M. et al., Dysfunctions of cellular oxidative metabolism in patients with mutations in the NDUFS1 and NDUFS4 genes of complex I. Biol. Chem. 2006. 281: 10374 - 10380.; Rezvani, H. R., Dedieu, S., North, S., Belloc, F., Rossignol, R., Letellier, T., de Verneuil, H. et al., Hypoxia-inducible factor-1alpha, a key factor in the keratinocyte response to UVB exposure. J. Biol. Chem. 2007. 282: 16413 - 16422.; van der Pol, E., Böing, A. N., Harrison, P., Sturk, A. and Nieuwland, R., Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol. Rev. 2012. 64: 676 - 705.; Stoner, S. A., Duggan, E., Condello, D., Guerrero, A., Turk, J. R., Narayanan, P. K. and Nolan, J. P., High sensitivity flow cytometry of membrane vesicles. Cytometry A 2016. 89: 196 - 206.; van der Pol, E., Coumans, F. A. W., Grootemaat, A. E., Gardiner, C., Sargent, I. L., Harrison, P., Sturk, A. et al., Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J. Thromb. Haemost. 2014. 12: 1182 - 1192.; De Rond, L., Coumans, F. A. W., Nieuwland, R., Van Leeuwen, T. G. and van der Pol, E., Deriving extracellular vesicle size from scatter intensities measured by flow cytometry. Blood Coagul. Fibrinolysis 2018. 1 - 14.; van der Pol, E., de Rond, L., Coumans, F. A. W., Gool, E. L., Böing, A. N., Sturk, A., Nieuwland, R. et al., Absolute sizing and label-free identification of extracellular vesicles by flow cytometry. Nanomed. Nanotechnol. Biol. Med. 2018. 14: 801 - 810.; White, J. G., Platelet structure. In: Michelson AD, ed. Platelets. 2nd ed. Academic Press, San Diego, CA 2006: 45 - 73.; Arraud, N., Linares, R., Tan, S., Gounou, C., Pasquet, J. M., Mornet, S. and Brisson, A. R., Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration. J. Thromb. Haemost. 2014. 12: 614 - 627.; Brisson, A. R., Tan, S., Linares, R., Gounou, C. and Arraud, N., Extracellular vesicles from activated platelets: a semiquantitative cryo-electron microscopy and immuno-gold labeling study. Platelets. 2017. 28: 263 - 271.; Dragovic, R. A., Gardiner, C., Brooks, A. S., Tannetta, D. S., Ferguson, D. J. P., Hole, P., Carr, B. et al., Sizing and phenotyping of cellulars vesicles using nanoparticle tracking analysis. Nanomed. Nanotechnol. Biol. Med. 2011. 7: 780 - 788.; van der Pol, E., Hoekstra, A. G., Sturk, A., Otto, C., van Leeuwen, T. G. and Nieuwland, R., Optical and non-optical methods for detection and characterization of microparticles and exosomes. J. Thromb. Haemost. 2010. 8: 2596 - 2607.; van der Pol, E., Sturk, A., van Leeuwen, T. G., Nieuwland, R. and Coumans, F. A. W., Standardization of extracellular vesicle measurements by flow cytometry through vesicle diameter approximation. J. Thromb. Haemost. 2018. 16: 1236 - 1245.; van der Pol, E., van Gemert, M. J. C., Sturk, A., Nieuwland, R. and van Leeuwen, T. G., Single vs. swarm detection of microparticles and exosomes by flow cytometry. J. Thromb. Haemost. 2012. 10: 919 - 930.; Chandler, W. L., Yeung, W. and Tait, J. F., A new microparticle size calibration standard for use in measuring smaller microparticles using a new flow cytometer. J. Thromb. Haemost. 2011. 9: 1216 - 1224.; Coumans, F. A. W., Brisson, A. R., Buzas, E. I., Dignat-George, F., Drees, E. E. E., El-Andaloussi, S., Emanueli, C. et al., Methodological guidelines to study extracellular vesicles. Circ. Res. 2017. 120: 1632 - 1648.; Yuana, Y., Böing, A. N., Grootemaat, A. E., van der Pol, E., Hau, C. M., Cizmar, P., Buhr, E. et al., Handling and storage of human body fluids for analysis of extracellular vesicles. J. Extracell. Vesicles. 2015. 4: 29260.; Witwer, K. W., Buzás, E. I., Bemis, L. T., Bora, A., Lässer, C., Lötvall, J., Nolte--t Hoen, E. N. et al., Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J. Extracell. Vesicles 2013. 2: 1 - 25.; Lacroix, R., Judicone, C., Mooberry, M., Boucekine, M., Key, N. S., Dignat-George, F., Ambrozic, A. et al., Standardization of pre-analytical variables in plasma microparticle determination: results of the International Society on Thrombosis and Haemostasis SSC collaborative workshop. J. Thromb. Haemost. 2013. 11: 1190 - 1193.; Wachalska, M., Koppers-Lalic, D., van Eijndhoven, M., Pegtel, M., Geldof, A. A., Lipinska, A. D., van Moorselaar, R. J. et al., Protein complexes in urine interfere with extracellular vesicle biomarker studies. J. Circ. biomarkers. 2016. 5: 4.; Berckmans, R. J., Sturk, A., Schaap, M. C. and Nieuwland, R., Cell-derived vesicles exposing coagulant tissue factor in saliva. Blood. 2011. 117: 3172 - 3180.; Lippi, G., Salvagno, G. L., Montagnana, M., Franchini, M. and Guidi, G. C., Venous stasis and routine hematologic testing. Clin. Lab. Haematol. 2006. 28: 332 - 337.; Jy, W., Horstman, L. L., Jimenez, J. J. and Ahn, Y. S., Measuring circulating cell-derived microparticles. J. Thromb. Haemost. 2004. 2: 1842 - 1843.; Lippi, G., Salvagno, G. L., Montagnana, M., Poli, G. and Guidi, G. C., Influence of the needle bore size on platelet count and routine coagulation testing. Blood Coagul. Fibrinolysis 2006. 17: 557 - 561.; Piccin, A., Murphy, W. G. and Smith, O. P., Circulating microparticles: pathophysiology and clinical implications. Blood Rev. 2007. 21: 157 - 171.; Hefler, L., Grimm, C., Leodolter, S. and Tempfer, C., To butterfly or to needle: the pilot phase. Ann. Intern. Med. 2004. 140: 935 - 936.; Van Ierssel, S. H., Van Craenenbroeck, E. M., Conraads, V. M., Van Tendeloo, V. F., Vrints, C. J., Jorens, P. G. and Hoymans, V. Y., Flow cytometric detection of endothelial microparticles (EMP): effects of centrifugation and storage alter with the phenotype studied. Thromb. Res. 2010. 125: 332 - 339.; Rikkert, L. G., van der Pol, E., van Leeuwen, T. G., Nieuwland, R. and Coumans, F. A. W., Centrifugation affects the purity of liquid biopsy-based tumor biomarkers. Cytometry A 2018. 93: 1207 - 1212.; Böing, A. N., van der Pol, E., Grootemaat, A. E., Coumans, F. A. W., Sturk, A. and Nieuwland, R., Single-step isolation of extracellular vesicles by size-exclusion chromatography. J. Extracell. Vesicles. 2014. 3: 23430.; Yuana, Y., Bertina, R. M. and Osanto, S., Pre-analytical and analytical issues in the analysis of blood microparticles. Thromb. Haemost. 2011. 105: 396 - 408.; Biro, E., Sturk-Maquelin, K. N., Vogel, G. M. T., Meuleman, D. G., Smit, M. J., Hack, C. E., Sturk, A. et al., Human cell-derived microparticles promote thrombus formation in vivo in a tissue factor-dependent manner. J. Thromb. Haemost. 2003. 1: 2561 - 2568.; Simak, J. and Gelderman, M. P., Cell membrane microparticles in blood and blood products: Potentially pathogenic agents and diagnostic markers. Transfus. Med. Rev. 2006. 20: 1 - 26.; Trummer, A., De Rop, C., Tiede, A., Ganser, A. and Eisert, R., Recovery and composition of microparticles after snap-freezing depends on thawing temperature. Blood Coagul. Fibrinolysis 2009. 20: 52 - 56.; de Rond, L., van der Pol, E., Hau, C. M., Varga, Z., Sturk, A., van Leeuwen, T. G., Nieuwland, R. et al., Comparison of generic fluorescent markers for detection of extracellular vesicles by flow cytometry. Clin. Chem. 2018. 64: 680 - 689.; Baumgarth, N. and Roederer, M., A practical approach to multicolor flow cytometry for immunophenotyping. J. Immunol. Methods. 2000. 243: 77 - 97.; Chattopadhyay, P. K., Gaylord, B., Palmer, A., Jiang, N., Raven, M. A., Lewis, G., Reuter, M. A. et al., Brilliant violet fluorophores: a new class of ultrabright fluorescent compounds for immunofluorescence experiments. Cytometry A 2012. 81: 456 - 466.; Pieragostino, D., Lanuti, P., Cicalini, I., Cufaro, M. C., Ciccocioppo, F., Ronci, M., Simeone, P. et al., Proteomics characterization of extracellular vesicles sorted by flow cytometry reveals a disease-specific molecular cross-talk from cerebrospinal fluid and tears in multiple sclerosis. Proteomics. 2019. In press https://doi.org/10.1016/j.jprot.2019.103403Test; Nolan, J. P. and Stoner, S. A., A trigger channel threshold artifact in nanoparticle analysis. Cytometry A 2013. 83: 301 - 305.; Arraud, N., Gounou, C., Turpin, D. and Brisson, A. R. Fluorescence triggering: a general strategy for enumerating and phenotyping extracellular vesicles by flow cytometry. Cytometry A 2016. 89: 184 - 195.; Giesecke, C., Feher, K., von Volkmann, K., Kirsch, J., Radbruch, A. and Kaiser, T., Determination of background, signal-to-noise, and dynamic range of a flow cytometer: A novel practical method for instrument characterization and standardization. Cytometry A 2017. 91: 1104 - 1114.; Poncelet, P., Robert, S., Bouriche, T., Bez, J., Lacroix, R. and Dignat-George, F., Standardized counting of circulating platelet microparticles using currently available flow cytometers and scatter-based triggering: Forward or side scatter? Cytometry A 2016. 89: 148 - 158.; Hoen, E. N. M., van der Vlist, E. J., Aalberts, M., Mertens, H. C. H., Bosch, B. J., Bartelink, W., Mastrobattista, E. et al., Quantitative and qualitative flow cytometric analysis of nanosized cell-derived membrane vesicles. Nanomed. Nanotechnol. Biol. Med. 2012. 8: 712 - 720.; Lanuti, P., Rotta, G., Almici, C., Avvisati, G., Budillon, A., Doretto, P., Malara, N. et al., Endothelial progenitor cells, defined by the simultaneous surface expression of VEGFR 2 and CD 133, are not detectable in healthy peripheral and cord blood. Cytometry A 2016. 89: 259 - 270.; van der Vlist, E. J., Nolte--t Hoen, E. N. M., Stoorvogel, W., Arkesteijn, G. J. A. and Wauben, M. H. M., Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nat. Protoc. 2012. 7: 1311 - 26.; Osteikoetxea, X., Sódar, B., Németh, A., Szabó-Taylor, K., Pálóczi, K., Vukman, K. V., Tamási, V. et al., Differential detergent sensitivity of extracellular vesicle subpopulations. Org. Biomol. Chem. 2015. 13: 9775 - 9782.; Schwartz, A., Gaigalas, A. K., Wang, L., Marti, G. E., Vogt, R. F. and Fernandez-Repollet, E., Formalization of the MESF unit of fluorescence intensity. Cytometry B Clin. Cytom. 2004. 57: 1 - 6.; Wang, L., Gaigalas, A. K., Abbasi, F., Marti, G. E., Vogt, R. F. and Schwartz, A., Quantitating fluorescence intensity from fluorophores: practical use of MESF values. J. Res. Natl. Inst. Stand. Technol. 2002. 107: 339.; Wang, L. and Gaigalas, A. K., Development of multicolor flow cytometry calibration standards: assignment of equivalent reference fluorophores (ERF) unit. J. Res. Natl. Inst. Stand. Technol. 2011. 116: 671.; Welsh, J., Kepley, J., Rosner, A., Horak, P., Berzofsky, J. and Jones, J., Prospective use of high-refractive index materials for single molecule detection in flow cytometry. Sensors. 2018. 18: 2461.; Lacroix, R., Robert, S., Poncelet, P., Kasthuri, R. S., Key, N. S. and Dignat-George, F., Standardization of platelet-derived microparticle enumeration by flow cytometry with calibrated beads: results of the International Society on Thrombosis and Haemostasis SSC Collaborative workshop. J. Thromb. Haemost. 2010. 8: 2571 - 2574.; Lacroix, R., Robert, S., Poncelet, P. and Dignat-George, F., Overcoming limitations of microparticle measurement by flow cytometry. Semin. Thromb. Hemost. 2010. 36: 807 - 818.; Zhu, S., Ma, L., Wang, S., Chen, C., Zhang, W., Yang, L., Hang, W. et al., Light-scattering detection below the level of single fluorescent molecules for high-resolution characterization of functional nanoparticles. ACS Nano. 2014. 8: 10998 - 11006.; Welsh, J. A., Horak, P., Wilkinson, J. S., Ford, V. J., Jones, J. C., Smith, D., Holloway, J. A., and Englyst, N. A., FCMPASS Software Aids Extracellular Vesicle Light Scatter Standardization. Cytometry Part A. 2019. https://doi.org/10.1002/cyto.a.23782Test; Scheffold, A., Radbruch, A. and Assenmacher, M., Phenotyping and separation of leukocyte populations based on affinity labelling. Methods Microbiol. 2002. 32: 23 - 58.; Bradbury, A. M. and Plückthun, A., Antibodies: validate recombinants once. Nature. 2015. 520: 295.; Jain, R. and Gray, D. H., Isolation of thymic epithelial cells and analysis by flow cytometry. Curr. Protoc. Immunol. 2014. 107: 3.26.1 - 3.26.15.; Grützkau, A., Krüger-Krasagakes, S., Baumeister, H., Schwarz, C., Kögel, H., Welker, P., Lippert, U. et al., Synthesis, storage, and release of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) by human mast cells: implications for the biological significance of VEGF206. Mol. Biol. Cell. 1998. 9: 875 - 84.; Santangelo, C., Worthington Biochemical Corporation tissue dissociation guide. Worthington Biochemical Corporation, Lakewood, NJ 2008.; Wong, K. H. K., Sandlin, R. D., Carey, T. R., Miller, K. L., Shank, A. T., Oklu, R., Maheswaran, S. et al., The role of physical stabilization in whole blood preservation. Sci. Rep. 2016. 6: 21023.; Plate, M. M., Louzao, R., Steele, P. M., Greengrass, V., Morris, L. M., Lewis, J., Barnett, D. et al., Evaluation of the blood stabilizers TransFix and Cyto-Chex BCT for low-cost CD4 T-cell methodologies. Viral Immunol. 2009. 22: 329 - 32.; Hayashida, K., Bartlett, A. H., Chen, Y., Park, P. W., Molecular and cellular mechanisms of ectodomain shedding. Anat. Rec. 2010. 293: 925 - 37.; Berhanu, D., Mortari, F., De Rosa, S. C. and Roederer, M., Optimized lymphocyte isolation methods for analysis of chemokine receptor expression. J. Immunol. Methods. 2003. 279: 199 - 207.; Kivisäkk, P., Liu, Z., Trebst, C., Tucky, B., Wu, L., Stine, J., Mack, M. et al., Flow cytometric analysis of chemokine receptor expression on cerebrospinal fluid leukocytes. Methods 2003. 29: 319 - 325.; Liu, H., Rhodes, M., Wiest, D. L., Vignali, D. A., On the dynamic of TCR:CD3 complex cell surface expression and downmodulation. Immunity 2000. 192: 1529 - 1534.; Mueller, A., Kelly, E. and Strange, P. G., Pathways for internalization and recycling of the chemokine receptor CCR5. Blood 2002. 99: 785 - 791.; Campana, S., De Pasquale, C., Carrega, P., Ferlazzo, G. and Bonaccorsi, I., Cross-dressing: an alternative mechanism for antigen presentation. Immunol. Lett. 2015. 168: 349 - 354.; Anselmo, A., Mazzon, C., Borroni, E. M., Bonecchi, R., Graham, G. J. and Locati, M., Flow cytometry applications for the analysis of chemokine receptor expression and function. Cytometry A 2014. 85: 292 - 301.; Pockley, A. G., Foulds, G. A., Oughton, J. A., Kerkvliet, N. I. and Multhoff, G., Immune cell phenotyping using flow cytometry. Curr. Protoc. Toxicol. 2015. 66:18.8. 1-18.8.34.; Darzynkiewicz, Z., Halicka, H. D. and Zhao, H., Analysis of cellular DNA content by flow and laser scanning cytometry. Adv. Exp. Med. Biol. 2010. 676: 137 - 147.; Hamelik, R. M. and Krishan, A., Click-iT assay with improved DNA distribution histograms. Cytometry A. 2009. 75: 862 - 865.; Krishan, A. and Hamelik, R. M., Click-iT proliferation assay with improved DNA histograms. Curr. Protoc. Cytom. 2010. Chapter 7:Unit7 36.; Lyons, A. B. and Parish, C. R., Determination of lymphocyte division by flow cytometry. J. Immunol. Methods 1994. 171: 131 - 137.; Wersto, R. P., Chrest, F. J., Leary, J. F., Morris, C., Stetler-Stevenson, M. A. and Gabrielson, E., Doublet discrimination in DNA cell-cycle analysis. Cytometry 2001. 46: 296 - 306.; van Engeland, M., Nieland, L. J., Ramaekers, F. C., Schutte, B. and Reutelingsperger, C. P., Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry 1998. 31: 1 - 9.; Gehrmann, M., Doss, B. T., Wagner, M., Zettlitz, K. A., Kontermann, R. E., Foulds, G. et al., A novel expression and purification system for the production of enzymatic and biologically active human granzyme B. J. Immunol. Methods 2011. 371: 8 - 17.; Gehrmann, M., Stangl, S., Kirschner, A., Foulds, G. A., Sievert, W., Doss, B. T. et al., Immunotherapeutic targeting of membrane HSP70-expressing tumors using recombinant human granzyme B. PLoS One 2012. 7: e41341; Bassøe, C. F., Assessment of phagocyte functions by flow cytometry. Curr. Prot. Cytom. 2002. 21: 9.19.1 - 9.19.22.; Abate, M, Festa, A, Falco, M, Lombardi, A, Luce, A, Grimaldi, A, Zappavigna, S et al., Mitochondria as playmakers of apoptosis, autophagy and senescence. Semin Cell Dev Biol. 2019. S1084-9521(18)30187-3.; Shalini, S., Dorstyn, L., Dawar, S. and Kumar, S., Old, new and emerging functions of caspases. Cell Death Differ. 2015. 22: 526 - 539.; Galluzzi, L., Lopez-Soto, A., Kumar, S. and Kroemer, G., Caspases connect cell-death signaling to organismal homeostasis. Immunity 2016. 44: 221 - 231.; Van Opdenbosch, N and Lamkanfi, M, Caspases in cell death, inflammation, and disease. Immunity. 2019. 50: 1352 - 1364.; Galluzzi, L., Vitale, I., Aaronson, S. A., Abrams, J. M., Adam, D., Agostinis, P., Alnemri, E. S. et al., Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018. 25: 486 - 541.; Galluzzi, L., Kepp, O., Chan, F. K. and Kroemer, G., Necroptosis: mechanisms and relevance to disease. Annu. Rev. Pathol. Mech. Dis. 2017. 12: 103 - 130.; He, S. and Wang, X., RIP kinases as modulators of inflammation and immunity. Nat. Immunol. 2018. 19: 912 - 922.; Frank, D. and Vince, J. E., Pyroptosis versus necroptosis: similarities, differences, and crosstalk. Cell Death Differ. 2019. 26: 99 - 114.; Weinlich, R., Oberst, A., Beere, H. M. and Green, D. R., Necroptosis in development, inflammation and disease. Nat. Rev. Mol. Cell Biol. 2017. 18: 127 - 136.; Fuchslocher Chico, J., Saggau, C. and Adam, D., Proteolytic control of regulated necrosis. Biochim. Biophys. Acta 2017. 1864: 2147 - 2161.; Newton, K. and Manning, G., Necroptosis and inflammation. Annu. Rev. Biochem. 2016. 85: 743 - 763.; Lin, Y., Devin, A., Rodriguez, Y. and Liu, Z. G., Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev. 1999. 13: 2514 - 2526.; Feng, S., Yang, Y., Mei, Y., Ma, L., Zhu, D. E., Hoti, N., Castanares, M. et al., Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain. Cell Signal. 2007. 19: 2056 - 2067.; O’Donnell, M. A., Perez-Jimenez, E., Oberst, A., Ng, A., Massoumi, R., Xavier, R., Green, D. R. et al., Caspase 8 inhibits programmed necrosis by processing CYLD. Nat. Cell Biol. 2011. 13: 1437 - 1442.; Vandenabeele, P., Galluzzi, L., Vanden Berghe, T. and Kroemer, G., Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat. Rev. Mol. Cell Biol. 2010. 11: 700 - 714.; Tait, S. W., Oberst, A., Quarato, G., Milasta, S., Haller, M., Wang, R., Karvela, M. et al., Widespread mitochondrial depletion via mitophagy does not compromise necroptosis. Cell Rep. 2013. 5: 878 - 885.; He, S., Huang, S. and Shen, Z., Biomarkers for the detection of necroptosis. Cell Mol. Life Sci. 2016. 73: 2177 - 2181.; Ting, A. T. (Ed.), Programmed necrosis-Methods and protocols. Humana Press, New York, NY, 2018.; Zargarian, S., Shlomovitz, I., Erlich, Z., Hourizadeh, A., Ofir-Birin, Y., Croker, B. A., Regev-Rudzki, N. et al., Phosphatidylserine externalization, -necroptotic bodies" release, and phagocytosis during necroptosis. PLoS Biol. 2017. 15: e2002711.; Gong, Y. N., Guy, C., Olauson, H., Becker, J. U., Yang, M., Fitzgerald, P., Linkermann, A. et al., Escrt-III acts downstream of MLKL to regulate necroptotic cell death and its consequences. Cell 2017. 169: 286 - 300.; Lee, H. L., Pike, R., Chong, M. H. A., Vossenkamper, A. and Warnes, G., Simultaneous flow cytometric immunophenotyping of necroptosis, apoptosis and RIP1-dependent apoptosis. Methods 2018. 134-135: 56 - 66.; Moriwaki, K., Balaji, S., Bertin, J., Gough, P. J. and Chan, F. K., Distinct kinase-independent role of RIPK3 in CD11c+ mononuclear phagocytes in cytokine-induced tissue repair. Cell Rep. 2017. 18: 2441 - 2451.; Pietkiewicz, S., Schmidt, J. H. and Lavrik, I. N., Quantification of apoptosis and necroptosis at the single cell level by a combination of Imaging Flow Cytometry with classical Annexin V/propidium iodide staining. J. Immunol. Methods 2015. 423: 99 - 103.; Giampietri, C., Starace, D., Petrungaro, S., Filippini, A. and Ziparo, E., Necroptosis: molecular signalling and translational implications. Int. J. Cell Biol. 2014. 2014: 490275.; Richter, J., Schlesner, M., Hoffmann, S., Kreuz, M., Leich, E., Burkhardt, B., Rosolowski, M. et al., Recurrent mutation of the ID3 gene in Burkitt lymphoma identified by integrated genome, exome and transcriptome sequencing. Nat. Genet. 2012. 44: 1316 - 1320.; Lüschen, S., Ussat, S., Scherer, G., Kabelitz, D. and Adam-Klages, S., Sensitization to death receptor cytotoxicity by inhibition of Fas-associated death domain protein (FADD)/caspase signaling - Requirement of cell cycle progression. J. Biol. Chem. 2000. 275: 24670 - 24678.; Falk, M., Ussat, S., Reiling, N., Wesch, D., Kabelitz, D. and Adam-Klages, S., Caspase inhibition blocks human T cell proliferation by suppressing appropriate regulation of IL-2, CD25, and cell cycle-associated proteins. J. Immunol. 2004. 173: 5077 - 5085.; Philipp, S., Sosna, J., Plenge, J., Kalthoff, H. and Adam, D., Homoharringtonine, a clinically approved anti-leukemia drug, sensitizes tumor cells for TRAIL-induced necroptosis. Cell Commun. Signal. 2015. 13: 25.; Aglietti, R. A. and Dueber, E. C., Recent insights into the molecular mechanisms underlying pyroptosis and gasdermin family functions. Trends Immunol. 2017. 38: 261 - 271.; Man, S. M., Karki, R. and Kanneganti, T. D., Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol. Rev. 2017. 277: 61 - 75.; Jorgensen, I., Rayamajhi, M. and Miao, E. A., Programmed cell death as a defence against infection. Nat. Rev. Immunol. 2017. 17: 151 - 164.; den Hartigh, A. B. and Fink, S. L., Pyroptosis induction and detection. Curr. Protoc. Immunol. 2018. e52.; Zhang, Y., Chen, X., Gueydan, C. and Han, J., Plasma membrane changes during programmed cell deaths. Cell Res. 2018. 28: 9 - 21.; Yuan, J., Najafov, A. and Py, B. F., Roles of caspases in necrotic cell death. Cell 2016. 167: 1693 - 1704.; Sester, D. P., Zamoshnikova, A., Thygesen, S. J., Vajjhala, P. R., Cridland, S. O., Schroder, K. and Stacey, K. J., Assessment of inflammasome formation by flow cytometry. Curr. Protoc. Immunol. 2016. 114: 14.40.11 - 14.40.29.; Cui, J., Zhou, Z., Yang, H., Jiao, F., Li, N., Gao, Y., Wang, L. et al., MST1 suppresses pancreatic cancer progression via ROS-induced pyroptosis. Mol. Cancer Res. 2019. 17: 1316 - 1325.; Paddenberg, R., Wulf, S., Weber, A., Heimann, P., Beck, L. A. and Mannherz, H. G., Internucleosomal DNA fragmentation in cultured cells under conditions reported to induce apoptosis may be caused by mycoplasma endonucleases. Eur. J. Cell Biol. 1996. 71: 105 - 119.; Zhang, D. W., Shao, J., Lin, J., Zhang, N., Lu, B. J., Lin, S. C., Dong, M. Q. et al., RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 2009. 325: 332 - 336.; Pozarowski, P., Huang, X., Halicka, D. H., Lee, B., Johnson, G. and Darzynkiewicz, Z., Interactions of fluorochrome-labeled caspase inhibitors with apoptotic cells: a caution in data interpretation. Cytometry A 2003. 55: 50 - 60.; Darzynkiewicz, Z., Zhao, H., Dorota Halicka, H., Pozarowski, P. and Lee, B., Fluorochrome-labeled inhibitors of caspases: expedient in vitro and in vivo markers of apoptotic cells for rapid cytometric analysis. Methods Mol. Biol. 2017. 1644: 61 - 73.; Tran, T. A. T., Grievink, H. W., Lipinska, K., Kluft, C., Burggraaf, J., Moerland, M., Tasev, D. et al., Whole blood assay as a model for in vitro evaluation of inflammasome activation and subsequent caspase-mediated interleukin-1 beta release. PLoS One 2019. 14: e0214999.; Sokolovska, A., Becker, C. E., Ip, W. K., Rathinam, V. A., Brudner, M., Paquette, N., Tanne, A. et al., Activation of caspase-1 by the NLRP3 inflammasome regulates the NADPH oxidase NOX2 to control phagosome function. Nat. Immunol. 2013. 14: 543 - 553.; Fuchslocher Chico, J., Falk-Paulsen, M., Luzius, A., Ruder, B., Bolik, J., Schmidt-Arras, D., Linkermann, A. et al., The enhanced susceptibility of ADAM-17 hypomorphic mice to DSS-induced colitis is not ameliorated by loss of RIPK3, revealing an unexpected function of ADAM-17 in necroptosis. Oncotarget 2018. 9: 12941 - 12958.; Gordon, S., Phagocytosis: An Immunobiologic Process. Immunity. 2016. 44: 463 - 475.; Cooper, E. L., Kauschke, E. and Cossarizza, A., Digging for innate immunity since Darwin and Metchnikoff. Bioessays 2002. 24: 319 - 333.; Navarre, W. W. and Zychlinsky, A., Pathogen-induced apoptosis of macrophages: a common end for different pathogenic strategies. Cell Microbiol. 2000. 2: 265 - 273.; Savill, J., Recognition and phagocytosis of cells undergoing apoptosis. Br. Med. Bull. 1997. 53: 491 - 508.; Brown, G. C., Vilalta, A. and Fricker, M., Phagoptosis-cell death by phagocytosis plays central roles in physiology, host defense and pathology. Curr. Mol. Med. 2015. 15: 842 - 851.; Lunov, O., Syrovets, T., Loos, C., Beil, J., Delacher, M., Tron, K., Nienhaus, G. U. et al., Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line, ACS Nano 2011. 5: 1657 - 1669.; Valet, G., Jenssen, H. L., Krefft, M. and Ruhenstroth-Baued, G., Flow-cytometric measurements of the transmembrane potential, the surface charge density and the phagocytic activity of guinea pig macrophages after incubation with lymphokines. Blut 1981. 42: 379 - 382.; Dunn, P. A. and Tyrer, H. W., Quantitation of neutrophil phagocytosis, using fluorescent latex beads. Correlation of microscopy and flow cytometry. J. Lab. Clin. Med. 1981. 98: 374 - 381.; Bjerknes, R. and Bassøe, C. F., Human leukocyte phagocytosis of zymosan particles measured by flow cytometry. Acta Pathol. Microbiol. Immunol. Scand. C. 1983. 91: 341 - 348.; Lehmann, A. K., Sørnes, S. and Halstensen, A., Phagocytosis: measurement by flow cytometry. J. Immunol. Methods 2000. 243: 229 - 242.; Simons, E. R., Measurement of phagocytosis and of the phagosomal environment in polymorphonuclear phagocytes by flow cytometry. Curr. Protoc. Cytom. 2010. 9.31.1 - 9.31.10.; Sokolovska, A., Becker, C. E. and Stuart, L. M., Measurement of phagocytosis, phagosome acidification, and intracellular killing of Staphylococcus aureus. Curr. Protoc. Immunol. 2012. 99: 14.30.1 - 14.30.12.; Elbim, C. and Lizard, G., Flow cytometric investigation of neutrophil oxidative burst and apoptosis physiological and pathological situation. Cytometry Part A. 2009. 75A: 475 - 481.; Thomason, J., Archer, T., Mackin, A., Stokes, J. and Pinchuk, L., Applications of flow cytometry in veterinary research and small animal clinical practice. J. Vet. Med. Res. 2014. 1: 1004 - 1012.; Keogh, M. J., Spoon, T., Ridgway, S. H., Jensen, E., Van Bonn, W. and Romano, T. A., Simultaneous measurement of phagocytosis and respiratory burst of leukocytes in whole blood from bottlenose dolphins ( Tursiops truncatus ) utilizing flow cytometry. Vet. Immunol. Immunopathol. 2011. 144: 468 - 475.; Frankenberg, T., Kirschnek, S., Häcker, H. and Häcker, G., Phagocytosis-induced apoptosis of macrophages is linked to uptake, killing and degradation of bacteria. Eur. J. Immunol. 2008. 38: 204 - 215.; Tartaro, K., VanVolkenburg, M., Wilkie, D., Coskran, T. M., Kreeger, J. M., Kawabata, T. T. and Casinghino, S., Development of a fluorescence-based in vivo phagocytosis assay to measure mononuclear phagocyte system function in the rat. J. Immunotoxicol. 2015. 12: 239 - 246.; Webb, C., McCord, K. and Dow, S., Neutrophil function in septic dogs. J. Vet. Intern. Med. 2007. 21: 982 - 989.; Rossi, G, Capitani, L., Ceciliani, F., Restelli, L. and Paltrinieri, S., Hyposialylated α1-acid glycoprotein inhibits phagocytosis of feline neutrophils. Res. Vet. Sci. 2013. 95: 465 - 471.; Moya, S. L., Gómez, M. A., Boyle, L. A., Mee, J. F., O’Brien, B. and Arkins, S., Effects of milking frequency on phagocytosis and oxidative burst activity of phagocytes from primiparous and multiparous dairy cows during early lactation. J. Dairy Sci. 2008. 91: 587 - 595.; Stent, G., Reece, J. C., Baylis, D. C., Ivinson, K., Paukovics, G., Thomson, M. and Cameron, P. U., Heterogeneity of freshly isolated human tonsil dendritic cells demonstrated by intracellular markers, phagocytosis, and membrane dye transfer. Cytometry. 2002. 48: 167 - 176.; Becker, S., Halme, J. and Haskill, S., Heterogeneity of human peritoneal macrophages: Cytochemical and flow cytometric studies. J. Reticuloendothelial Soc. 1983. 33: 127 - 138.; Jersmann, H. P. A., Ross, K. A., Vivers, S., Brown, S. B., Haslett, C. and Dransfield, I., Phagocytosis of apoptotic cells by human macrophages: analysis by multiparameter flow cytometry. Cytometry A. 2003. 51A: 7 - 15.; Linehan, E., Dombrowski, Y., Snoddy, R., Fallon, P. G., Kissenpfennig, A. and Fitzgerald, D. C., Aging impairs peritoneal but not bone marrow-derived macrophage phagocytosis. Aging Cell. 2014. 13: 699 - 708.; Fuller-Espie, S. L., Using flow cytometry to measure phagocytic uptake in earthworms. J. Microbiol. Biol. Educ. 2010. 11: 144 - 151.; http://www.lgcstandards-atcc.orgTest/; Rothwell, D. J. and Doumas, B. T., The effect of heparin and EDTA on the NBT test. J. Lab. Clin. Med. 1975. 85: 950 - 956.; Li, W. and Chung, S. C., Flow cytometric evaluation of leukocyte function in rat whole blood. In Vitro Cell Dev. Biol. Anim. 2003. 39 ( 10 ): 413 - 419.; Ducusin, R. J., Sarashina, T., Uzuka, Y., Tanabe, S. and Ohtani, M., Phagocytic response of bovine polymorphonuclear leukocytes to different incubation conditions and following exposure to some effectors of phagocytosis and different anticoagulants in vitro. Can. J. Vet. Res. 2001. 65: 38 - 44.; van der Maten, E., de Jonge, M. I., de Groot, R., van der Flier, M. and Langereis, J. D., A versatile assay to determine bacterial and host factors contributing to opsonophagocytotic killing in hirudin-anticoagulated whole blood. Sci. Rep. 2017. 7: 42137.; Sustrova, T., Ondrackova, P., Leva, L. and Sladek, Z., Isolation techniques of neutrophils and peripheral blood mononuclear cells for the comparative experiments in humans and pigs model organisms in flow cytometry. Mendelnet 2014. 516 - 521.; Carneiro, C., Vaz, C., Carvalho-Pereira, J., Pais, C. and Sampaio, P., A new method for yeast phagocytosis analysis by flow cytometry. J. Microbiol. Methods 2014. 101: 56 - 62.; Murciano, C., Villamón, E., O’Connor, J. E., Gozalbo, D. and Gil, M. L., Killed candida albicans yeasts and hyphae inhibit gamma interferon release by murine natural killer cells. Infect. Immun. 2006. 74: 1403 - 1406.; Anding, K., Rost, J. M., Jacobs, E. and Daschner, F. D., Flow cytometric measurements of neutrophil functions: the dependence on the stimulus to cell ratio. FEMS Immunol. Med. Microbiol. 2003. 35: 147 - 152.; Chan, C. L., Rénia, L. and Tan, K. S. W., A simplified, sensitive phagocytic assay for malaria cultures facilitated by flow cytometry of differentially-stained cell populations. PLoS One. 2012. 7: e38523.; Nagata, S. and Golstein, P., The Fas death factor. Science 1995. 267: 1449 - 1456.; Lee, C. Y., Herant, M. and Heinrich, M., Target-specific mechanics of phagocytosis: Protrusive neutrophil response to zymosan differs from the uptake of antibody-tagged pathogens. Cell Sci. 2011. 124: 1106 - 1114.; Salih, H. R., Husfeld, L. and Adam, D., Simultaneous cytofluorometric measurement of phagocytosis, burst production and killing of human phagocytes using Candida albicans and Staphylococcus aureus as target organisms. Clin. Microbiol. Infect. 2000. 6: 251 - 258.; Li, F., Yang, M., Wang, L., Williamson, I., Tian, F., Qin, M., Shah, P. K. et al., Autofluorescence contributes to false-positive intracellular Foxp3 staining in macrophages: a lesson learned from flow cytometry. J. Immunol. Meth. 2012. 386: 101 - 107.; Yáñez, A., Flores, A., Murciano, C., O’Connor, J. E., Gozalbo, D. and Gil, M. L., Signalling through TLR2/MyD88 induces differentiation of murine bone marrow stem and progenitor cells to functional phagocytes in response to Candida albicans. Cell. Microbiol. 2010. 12: 114 - 128.; Bicker, H., Höflich, C., Wolk, K., Vogt, K., Volk, H. D. and Sabat, R., A simple assay to measure phagocytosis of live bacteria. Clin. Chem. 2008. 54: 5 911 - 915.; Schreiner, L., Huber-Lang, M., Weiss, M. E., Hohmann, H., Schmolz, M. and Schneider, E. M., Phagocytosis and digestion of pH-sensitive fluorescent dye (Eos-FP) transfected E. coli in whole blood assays from patients with severe sepsis and septic shock. J. Cell. Commun. Signal. 2011. 5: 135 - 144.; Bajno, L. and Grinstein, S., Fluorescent proteins: powerful tools in phagocyte biology. J. Immunol. Methods. 1999. 232: 67 - 75.; Zawada, A. M., Rogacev, K. S., Schirmer, S. H., Sester, M., Böhm, M., Fliser, D. and Heine, G. H., Monocyte heterogeneity in human cardiovascular disease. Immunobiology. 2012. 217: 1273 - 1284.; Neaga, A., Lefor, J., Lich, K. E., Liparoto, S. F. and Xiao, Y. Q., Development and validation of a flow cytometric method to evaluate phagocytosis of pHrodo- BioParticles® by granulocytes in multiple species. J. Immunol. Methods. 2013. 390: 9 - 17.; Schrijvers, D. M, Martinet, W., De Meyer, G. R. Y, Andries, L. Herman and Kockx, M. M., Flow cytometric evaluation of a model for phagocytosis of cells undergoing apoptosis. J. Immunol. Methods 2004. 287: 101 - 108.; Basiji, D. A., Ortyn, W. E., Liang, L., Venkatachalam, V. and Morrissey, P., Cellular image analysis and imaging by flow cytometry. Clin. Lab. Med. 2007. 27: 653 - 670.; Kapellos, T. S., Taylor, L., Lee, H., Cowley, S. A., James, W. S., Iqbal, A. J. and Greaves, D. R., A novel real time imaging platform to quantify macrophage phagocytosis. Biochem. Pharmacol. 2016. 116: 107 - 119.; Lu, S. M., Grinstein, S. and Fairn, G. D., Quantitative live-cell fluorescence microscopy during phagocytosis. Methods Mol. Biol. 2017. 1519: 79 - 91.; McFarlin, B. K., Williams, R. R., Venable, A. S., Dwyer, K. C. and, Haviland, D. L., Image-based cytometry reveals three distinct subsets of activated granulocytes based on phagocytosis and oxidative burst. Cytometry A. 2013. 83A: 745 - 751.; Pul, R., Morbiducci, F., Å kuljec, J., Skripuletz, T., Singh, V., Diederichs, U., Garde, N. et al., Glatiramer acetate increases phagocytic activity of human monocytes in vitro and in multiple sclerosis patients. PLoS One. 2012. 7: e51867.; Boya, P., Reggiori, F. and Codogno, P., Emerging regulation and functions of autophagy. Nat. Cell Biol. 2013. 15: 713 - 720.; Cuervo, A. M. and Wong, E., Chaperone-mediated autophagy: roles in disease and aging. Cell Res. 2014. 24: 92 - 104.; Li, W. W., Li, J., Bao, J. K., Microautophagy: lesser-known self-eating. Cell Mol. Life Sci. 2012. 69: 1125 - 1136.; Mizushima, N., Yoshimori, T. and Ohsumi, Y., The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 2011. 27: 107 - 132.; Zhang, H., Puleston, D. J. and Simon, A. K., Autophagy and immune senescence. Trends Mol. Med. 2016. 22: 671 - 686.; Pasquier, B., Autophagy inhibitors. Cell Mol. Life Sci. 2016. 73: 985 - 1001.; Mauthe, M., Orhon, I., Rocchi, C., Zhou, X., Luhr, M., Hijlkema, K. J., Coppes, R. P. et al., Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy 2018. 14: 1435 - 1455.; Mauvezin, C., Nagy, P., Juhasz, G. and Neufeld, T. P., Autophagosome-lysosome fusion is independent of V-ATPase-mediated acidification. Nat. Commun. 2015. 6: 7007.; Klionsky, D. J., Abdelmohsen, K., Abe, A., Abedin, M. J., Abeliovich, H., Acevedo Arozena, A., Adachi, H. et al., Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 2016. 12: 1 - 222.; Eng, K. E., Panas, M. D., Karlsson Hedestam, G. B. and McInerney, G. M., A novel quantitative flow cytometry-based assay for autophagy. Autophagy 2010. 6: 634 - 641.; Chikte, S., Panchal, N. and Warnes, G., Use of LysoTracker dyes: a flow cytometric study of autophagy. Cytometry A 2014. 85: 169 - 178.; Calado, R. T. and Dumitriu, B., Telomere dynamics in mice and humans. Semin. Hematol. 2013. 50: 165 - 174.; Phadwal, K., Alegre-Abarrategui, J., Watson, A. S., Pike, L., Anbalagan, S., Hammond, E. M., Wade-Martins, R. et al., A novel method for autophagy detection in primary cells: impaired levels of macroautophagy in immunosenescent T cells. Autophagy 2012. 8: 677 - 689.; Puleston, D. J., Zhang, H., Powell, T. J., Lipina, E., Sims, S., Panse, I., Watson, A. S. et al., Autophagy is a critical regulator of memory CD8(+) T cell formation. eLife 2014. 3: 03706.; Watson, A. S., Riffelmacher, T., Stranks, A., Williams, O., De Boer, J., Cain, K., MacFarlane, M. et al., Autophagy limits proliferation and glycolytic metabolism in acute myeloid leukemia. Cell Death Discov. 2015. 1: 15008.; Clarke, A. J. and Simon, A. K., Autophagy in the renewal, differentiation and homeostasis of immune cells. Nat. Rev. Immunol. 2018. 19: 170 - 183.; Song, Y. M., Song, S. O., Jung, Y. K., Kang, E. S., Cha, B. S., Lee, H. C. and Lee, B. W., Dimethyl sulfoxide reduces hepatocellular lipid accumulation through autophagy induction. Autophagy 2012. 8: 1085 - 1097.; Caro, L. H., Plomp, P. J., Wolvetang, E. J., Kerkhof, C. and Meijer, A. J., 3-Methyladenine, an inhibitor of autophagy, has multiple effects on metabolism. Eur. J. Biochem. 1988. 175: 325 - 329.; Klionsky, D. J., Elazar, Z., Seglen, P. O. and Rubinsztein, D. C., Does bafilomycin A1 block the fusion of autophagosomes with lysosomes? Autophagy 2008. 4: 849 - 850.; Spielberg, S. P., Boxer, L. A., Oliver, J. M., Allen, J. M. and Schulman, J. D., Oxidative damage to neutrophils in glutathione synthetase deficiency. Br. J. Haematol. 1979. 42: 215 - 223.; Min-Wen, J. C., Jun-Hao, E. T. and Shyh-Chang, N., Stem cell mitochondria during aging. Semin Cell Dev. Biol. 2016. 52: 110 - 118.; Watanabe, R., Fujii, H., Shirai, T., Saito, S., Ishii, T. and Harigae, H., Autophagy plays a protective role as an anti-oxidant system in human T cells and represents a novel strategy for induction of T-cell apoptosis. Eur. J. Immunol. 2014. 44: 2508 - 2520.; Chen, L. M., Peng, F., Li, G. D., Jie, X. M., Cai, K. R., Cai, C., Zhong, Y. et al., The studies on the cytotoxicity in vitro, cellular uptake, cell cycle arrest and apoptosis-inducing properties of ruthenium methylimidazole complex [Ru(MeIm)4(p-cpip)](2.). J. Inorg. Biochem. 2016. 156: 64 - 74.; Alfadda, A. A. and Sallam, R. M., Reactive oxygen species in health and disease. J. Biomed. Biotechnol. 2012. 2012: 936486.; Ilkun, O. and Boudina, S., Cardiac dysfunction and oxidative stress in the metabolic syndrome: an update on antioxidant therapies. Curr. Pharm. Des. 2013. 19: 4806 - 4817.; Zhou, T., Chuang, C. C. and Zuo, L., Molecular characterization of reactive oxygen species in myocardial ischemia-reperfusion injury. Biomed. Res. Int. 2015. 2015: 864946.; Gabelloni, M. L., Sabbione, F., Jancic, C., Fuxman Bass, J., Keitelman, I., Iula, L., Oleastro, M. et al., NADPH oxidase derived reactive oxygen species are involved in human neutrophil IL-1beta secretion but not in inflammasome activation. Eur. J. Immunol. 2013. 43: 3324 - 3335.; Vogel, D. Y., Kooij, G., Heijnen, P. D., Breur, M., Peferoen, L. A., van der Valk, P., de Vries, H. E., Amor, S. and Dijkstra, C. D., GM-CSF promotes migration of human monocytes across the blood brain barrier. Eur. J. Immunol. 2015. 45: 1808 - 1819.; D’Autreaux, B. and Toledano, M. B., ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 2007. 8: 813 - 824.; Ray, P. D., Huang, B. W. and Tsuji, Y., Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012. 24: 981 - 990.; Reth, M., Hydrogen peroxide as second messenger in lymphocyte activation. Nat. Immunol. 2002. 3: 1129 - 1134.; Nathan, C., Specificity of a third kind: reactive oxygen and nitrogen intermediates in cell signaling. J. Clin. Invest. 2003. 111: 769 - 778.; Nathan, C. and Cunningham-Bussel, A, Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat. Rev. Immunol. 2013. 13: 349 - 361.; Solaini, G., Baracca, A., Lenaz, G. and Sgarbi, G., Hypoxia and mitochondrial oxidative metabolism. Biochim. Biophys. Acta. 2010. 1797: 1171 - 1177.; Wang, L., Duan, Q., Wang, T., Ahmed, M., Zhang, N., Li, Y., Li, L. et al., Mitochondrial respiratory chain inhibitors involved in ROS production induced by acute high concentrations of iodide and the effects of SOD as a protective factor. Oxid. Med. Cell Longev. 2015. 2015: 217670.; Halliwell, B. and Gutteridge, J. M., Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 1984. 219: 1 - 14.; Diacovich, L. and Gorvel, J. P., Bacterial manipulation of innate immunity to promote infection. Nat. Rev. Microbiol. 2010. 8: 117 - 128.; Nauseef, W. M., Biological roles for the NOX family NADPH oxidases. J. Biol. Chem. 2008. 283: 16961 - 16965.; Belaaouaj, A., Neutrophil elastase-mediated killing of bacteria: lessons from targeted mutagenesis. Microbes Infect. 2002. 4: 1259 - 1264.; Nathan, C. and Shiloh, M. U., Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc. Natl. Acad. Sci. U.S.A. 2000. 97 ( 16 ): 8841 - 8848.; Bogdan, C., Röllinghoff, M. and Diefenbach, A., Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr. Opin. Immunol. 2000. 12 ( 1 ): 64 - 76.; Nauseef, W. M., Nox enzymes in immune cells. Semin. Immunopathol. 2008. 30 ( 3 ): 195 - 208.; Gonzalez-Navajas, J. M., Corr, M. P. and Raz, E., The immediate protective response to microbial challenge. Eur. J. Immunol. 2014. 44: 2536 - 2549.; Fang, F. C., Antimicrobial actions of reactive oxygen species. MBio. 2011. 2: e00141 -11.; Rahal, A., Kumar, A., Singh, V., Yadav, B., Tiwari, R., Chakraborty, S. and Dhama, K., Oxidative stress, prooxidants, and antioxidants: the interplay. Biomed. Res. Int. 2014. 2014: 761264.; Schieber, M. and Chandel, N. S., ROS function in redox signaling and oxidative stress. Curr. Biol. 2014. 24: R453 - R462.; Wu, Z., Zhao, Y. and Zhao, B., Superoxide anion, uncoupling proteins and Alzheimer’s disease. J. Clin. Biochem. Nutr. 2010. 46: 187 - 194.; Baehner, R. L., Murrmann, S. K., Davis, J. and Johnston, R. B., Jr., The role of superoxide anion and hydrogen peroxide in phagocytosis-associated oxidative metabolic reactions. J. Clin. Invest. 1975. 56: 571 - 576.; Kohen, R. and Nyska, A., Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol. Pathol. 2002. 30: 620 - 650.; Tafazoli, S. and O’Brien, P. J., Amodiaquine-induced oxidative stress in a hepatocyte inflammation model. Toxicology 2009. 256: 101 - 109.; Klebanoff, S. J., Kettle, A. J., Rosen, H., Winterbourn, C. C. and Nauseef, W. M., Myeloperoxidase: a front-line defender against phagocytosed microorganisms. J. Leukoc. Biol. 2013. 93 ( 2 ): 185 - 198.; Okado-Matsumoto, A. and Fridovich, I., Assay of superoxide dismutase: cautions relevant to the use of cytochrome c, a sulfonated tetrazolium, and cyanide. Anal. Biochem. 2001. 298: 337 - 342.; Trevithick, J. R. and Dzialoszynski, T., A new technique for enhancing luminol luminescent detection of free radicals and reactive oxygen species. Biochem. Mol. Biol. Int. 1994. 33: 1179 - 1190.; Soh, N., Recent advances in fluorescent probes for the detection of reactive oxygen species. Anal. Bioanal. Chem. 2006. 386: 532 - 543.; Emmendorffer, A., Hecht, M., Lohmann-Matthes, M. L. and Roesler, J., A fast and easy method to determine the production of reactive oxygen intermediates by human and murine phagocytes using dihydrorhodamine 123. J. Immunol. Methods 1990. 131: 269 - 275.; Amini, P., Stojkov, D., Wang, X., Wicki, S., Kaufmann, T., Wong, W. W., Simon, H. U. et al., NET formation can occur independently of RIPK3 and MLKL signaling. Eur. J. Immunol. 2016. 46: 178 - 184.; Sheyn, U., Rosenwasser, S., Ben-Dor, S., Porat, Z. and Vardi, A., Modulation of host ROS metabolism is essential for viral infection of a bloom-forming coccolithophore in the ocean. ISME J. 2016. 10: 1742 - 1754.; van Eeden, S. F., Klut, M. E., Walker, B. A. and Hogg, J. C., The use of flow cytometry to measure neutrophil function. J. Immunol. Methods 1999. 232: 23 - 43.; Fornas, O., Garcia, J. and Petriz, J., Flow cytometry counting of CD34+ cells in whole blood. Nat. Med. 2000. 6: 833 - 836.; Fornas, O., Domingo, J. C., Marin, P. and Petriz, J., Flow cytometric-based isolation of nucleated erythroid cells during maturation: an approach to cell surface antigen studies. Cytometry 2002. 50: 305 - 312.; Berridge, M. J., Lipp, P. and Bootman, M. D., The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 2000. 1: 11 - 21.; Feske, S., Okamura, H., Hogan, P. G. and Rao, A., Ca2+/calcineurin signalling in cells of the immune system. Biochem. Biophys. Res. Commun. 2003. 311: 1117 - 1132.; Gwack, Y., Feske, S., Srikanth, S., Hogan, P. G. and Rao, A., Signalling to transcription: store-operated Ca2+ entry and NFAT activation in lymphocytes. Cell Calcium 2007. 42: 145 - 156.; Trebak, M. and Kinet, J. P., Calcium signalling in T cells. Nat. Rev. Immunol. 2019. 19: 154 - 169.; Varga-Szabo, D., Braun, A. and Nieswandt, B., Calcium signaling in platelets. J. Thromb. Haemost. 2009. 7: 1057 - 1066.; Feske, S., Skolnik, E. Y. and Prakriya, M., Ion channels and transporters in lymphocyte function and immunity. Nat. Rev. Immunol. 12: 532 - 547.; Putney, J. W., Jr., A model for receptor-regulated calcium entry. Cell Calcium 1986. 7: 1 - 12.; Armstrong, D. L., Erxleben, C. and White, J. A., Patch clamp methods for studying calcium channels. Methods Cell Biol. 2010. 99: 183 - 197.; Grynkiewicz, G., Poenie, M. and Tsien, R. Y., A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 1985. 260: 3440 - 3450.; Greimers, R., Trebak, M., Moutschen, M., Jacobs, N. and Boniver, J., Improved four-color flow cytometry method using fluo-3 and triple immunofluorescence for analysis of intracellular calcium ion ([Ca2+]i) fluxes among mouse lymph node B- and T-lymphocyte subsets. Cytometry 1996. 23: 205 - 217.; Minta, A. and Tsien, R. Y., Fluorescent indicators for cytosolic sodium. J. Biol. Chem. 1989. 264: 19449 - 19457.; Burchiel, S. W., Edwards, B. S., Kuckuck, F. W., Lauer, F. T., Prossnitz, E. R., Ransom, J. T. and Sklar, L. A. Analysis of free intracellular calcium by flow cytometry: multiparameter and pharmacologic applications. Methods 2000. 21: 221 - 230.; Wendt, E. R., Ferry, H., Greaves, D. R. and Keshav, S., Ratiometric analysis of fura red by flow cytometry: a technique for monitoring intracellular calcium flux in primary cell subsets. PLoS One 2015. 10: e0119532.; Foerster, C., Voelxen, N., Rakhmanov, M., Keller, B., Gutenberger, S., Goldacker, S., Thiel, J. et al., B cell receptor-mediated calcium signaling is impaired in B lymphocytes of type Ia patients with common variable immunodeficiency. J. Immunol. 184: 7305 - 7313.; Dolmetsch, R. E., Lewis, R. S., Goodnow, C. C. and Healy, J. I., Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 1997. 386: 855 - 858.; Griesbeck, M., Ziegler, S., Laffont, S., Smith, N., Chauveau, L., Tomezsko, P., Sharei, A. et al., Sex differences in plasmacytoid dendritic cell levels of IRF5 drive higher IFNα production in women. J. Immunol. 2015. 195: 5327 - 5336.; Martrus, G., Niehrs, A., Cornelis, R., Rechtien, A., Garc´ıa-Beltran, W., Löutgehetmann, M., Hoffmann, C. et al., Kinetics of HIV-1 latency reversal quantified on the single-cell level using a novel flow-based technique. J. Virol. Sep. 2016. 90: 9018 - 9028.; Baxter, A. E., Niessl, J., Fromentin, R., Richard, J., Porichis, F., Charlebois, R., Massanella, M. et al., Single-cell characterization of viral translation-competent reservoirs in HIV-infected individuals. Cell Host Microbe 2016. 20: 368 - 380.; Taghizadeh, R. R., Cetrulo, K. J. and Cetrulo, C. L., Collagenase impacts the quantity and quality of native mesenchymal stem/stromal cells derived during processing of umbilical cord tissue. Cell Transplant. 2018. 27: 181 - 193.; Martrus, G., Kautz, T., Lunemann, S., Richert, L., Glau, L., Salzberger, W., Goebels, H. et al., Proliferative capacity exhibited by human liver-resident CD49a+CD25+ NK cells. PLoS One. 2017. 12: e0182532.; Sun, H., Sun, R., Hao, M., Wang, Y., Zhang, X., Liu, Y., Cong, X., Effect of duration of ex vivo ischemia time and storage period on RNA quality in biobanked human renal cell carcinoma tissue. Ann. Surg. Oncol. 2016. 23: 297 - 304.; Garcia-Beltran, W. F., Hölzemer, A., Martrus, G., Chung, A. W., Pacheco, Y., Simoneau, C. R., Rucevic, M. et al., Open conformers of HLA-F are high-affinity ligands of the activating NK-cell receptor KIR3DS1. Nat. Immunol. Sep. 2016. 17: 1067 - 1074.; Thaler, B., Hohensinner, P. J., Krychtiuk, K. A., Matzneller, P., Koller, L., Brekalo, M., Maurer, G. et al., Differential in vivo activation of monocyte subsets during low-grade inflammation through experimental endotoxemia in humans. Sci. Rep. 2016. 6: 30162.; Krutzik, P. O. and Nolan, G. P., Intracellular phospho-protein staining techniques for flow cytometry: monitoring single cell signaling events. Cytometry 2003. 55: 61 - 70.; Pozarowski, P. and Darzykiewicz, Z., Analysis of cell cycle by flow cytometry. In A. H. Schönthal, (Ed.) Checkpoint controls and cancer. Methods in molecular biology, vol 281. Humana Press, Totowa, NJ 2004, 301 - 311.; Schmid, I. and Sakamoto, K. M., Analysis of DNA content and green fluorescent protein expression. Curr. Protoc. Cytom. 2001. 16: 7.16.1 - 7.16.10.; Lanier, L. L. and Warner, N. L., Paraformaldehyde fixation of hematopoietic cells for quantitative flow cytometry (FACS) analysis. J. Immunol. Methods 1981. 47: 25 - 30.; Filby, A., Seddon, B., Kleczkowska, J., Salmond, R., Tomlinson, P., Smida, M., Lindquist, J. A. et al., Fyn regulates the duration of TCR engagement needed for commitment to effector function. The J. Immunol. 2007. 179: 4635 - 4644.; Filby, A., Perucha, E., Summers, H., Rees, P., Chana, P., Heck, S., Lord, G. M. et al., An imaging flow cytometric method for measuring cell division history andmolecular symmetry duringmitosis. Cytometry Part A 2011. 79: 496 - 506.; Fan, J., Nishanian, P., Breen, E. C., McDonald, M. and Fahey, J. L., Cytokine gene expression in normal human lymphocytes in response to stimulation. Clin. Diagn. Lab. Immunol. 1998. 5: 335 - 340.; Löhning, M., Richter, A. and Stamm, T., Establishment of memory for IL-10 expression in developing T helper 2 cells requires repetitive IL-4 costimulation and does not impair proliferation. Proc. Natl. Acad. Sci. U.S.A. 2003. 100: 12307 - 12312.; Sanos, S. L., Vonarbourg, C., Mortha, A. and Diefenbach, A., Control of epithelial cell function by interleukin-22-producing RORgammat+ innate lymphoid cells. Immunology 2011. 132: 453 - 465.; Robinson, D., Shibuya, K., Mui, A., Zonin, F., Murphy, E., Sana, T., Hartley, S. B. et al., IGIF does not drive Th1 development but synergizes with IL-12 for interferon-gamma production and activates IRAK and NFκB. Immunity 1997. 7: 571 - 581.; Sattler, A., Wagner, U., Rossol, M., Sieper, J., Wu, P., Krause, A., Schmidt, W. A. et al., Cytokine-induced human IFN-γ-secreting effector-memory Th cells in chronic autoimmune inflammation. Blood 2009. 113: 1948 - 1956.; Zimmermann, J., Radbruch, A. and Chang, H. D., A Ca(2+) concentration of 1.5 mM, as present in IMDM but not in RPMI, is critical for maximal response of Th cells to PMA/ionomycin. Eur. J. Immunol. 2015. 45: 1270 - 1273.; Lohning, M., Richter, A., Stamm, T., Hu-Li, J., Assenmacher, M., Paul, W. E. and Radbruch, A., Establishment of memory for IL-10 expression in developing T helper 2 cells requires repetitive IL-4 costimulation and does not impair proliferation. Proc. Natl. Acad. Sci. U. S. A. 2003. 100: 12307 - 12312.; Assenmacher, M., Schmitz, J. and Radbruch, A., Flow cytometric determination of cytokines in activated murine T helper lymphocytes: Expression of interleukin-10 in interferon-gamma and in interleukin-4-expressing cells. Eur. J. Immunol. 1994. 24: 1097 - 1101.; Lorenz, H., Hailey, D. W., Wunder, C. and Lippincott-Schwartz, J., The fluorescence protease protection (FPP) assay to determine protein localization and membrane topology. Nat. Protoc. 2006. 1: 276 - 279.; Francis, G., Kerem, Z., Makkar, H. P. and Becker, K., The biological action of saponins in animal systems: a review. Br. J. Nutr. 2002. 88: 587 - 605.; Moller, B. K., Andresen, B. S., Christensen, E. I. and Petersen, C. M., Surface membrane CD4 turnover in phorbol ester stimulated T-lymphocytes. Evidence of degradation and increased synthesis. FEBS Lett. 1990. 276: 59 - 62.; Boyer, C., Auphan, N., Luton, F., Malburet, J. M., Barad, M., Bizozzero, J. P., Reggio, H. et al., T cell receptor/CD3 complex internalization following activation of a cytolytic T cell clone: evidence for a protein kinase C-independent staurosporine-sensitive step. Eur. J. Immunol. 1991. 21: 1623 - 1634.; Grupillo, M., Lakomy, R., Geng, X., Styche, A., Rudert, W. A., Trucco, M. and Fan, Y., An improved intracellular staining protocol for efficient detection of nuclear proteins in YFP-expressing cells. Biotechniques 2011. 51: 417 - 420.; Heinen, A. P., Wanke, F., Moos, S., Attig, S., Luche, H., Pal, P. P., Budisa, N. et al., Improved method to retain cytosolic reporter protein fluorescence while staining for nuclear proteins: transcription factor staining with retention of fluorescent proteins. Cytometry 2014. 85: 621 - 627.; Watson, M., Chow, S., Barsyte, D., Arrowsmith, C., Shankey, T. V., Minden, M. and Hedley, D., The study of epigenetic mechanisms based on the analysis of histone modification patterns by flow cytometry. Cytometry 2013. 85: 78 - 87.; Guha, M. and Mackman, N., LPS induction of gene expression in human monocytes. Cell. Signal. 2001. 13: 85 - 94.; Gantke, T., Sriskantharajah, S. and Ley, S. C., Regulation and function of TPL-2, an IκB kinase-regulated MAP Kinase Kinase. Cell Res. 2011. 21: 131 - 134.; Dufner, A. and Thomas, G., Ribosomal S6 kinase signaling and the control of translation. Exp. Cell Res. 1999. 253: 100 - 109.; Firaguay, G. F. and Nunès, J. A., Analysis of signaling events by dynamic phosphoflow cytometry. Sci. Signal 2009. 2: pl3.; West, M. A., Koons, A., Crandall, M., Skinner, R., Worley, M. and Shapiro, M. B., Whole blood leukocyte mitogen activated protein kinases activation differentiates intensive care unit patients with systemic inflammatory response syndrome and sepsis. J. Trauma 2007. 62: 805 - 811.; Donnelly, R. P. and Finlay, D. K., Glucose, glycolysis and lymphocyte responses. Mol. Immunol. 2015. 68: 513 - 519.; Caro-Maldonado, A., Wang, R., Nichols, A. G., Kuraoka, M., Milasta, S., Sun, L. D., Gavin, A. L. et al., Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells. J. Immunol. 2014. 192: 3626 - 3636.; Warburg, O. On the Origin of Cancer Cells. Science 1956. 123: 309 - 14.; Michalek, R. D., Gerriets, V. A., Jacobs, S. R., Macintyre, A. N., MacIver, N. J., Mason, E. F., Sullivan, S. A. et al., CD4+, cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory cell, T subsets. J Immunol. Author. 2012. 186: 3299 - 3303.; Berod, L., Friedrich, C., Nandan, A., Freitag, J., Hagemann, S., Harmrolfs, K., Sandouk, A. et al., De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat. Med. 2014. 20: 1327 - 1333.; Hale, L. P., Braun, R. O. D. D., Gwinn, W. M., Greer, P. K., Dewhirst, M. W., Laura, P., Braun, R. O. D. D. et al., Hypoxia in the thymus: role of oxygen tension in thymocyte survival. Am. J. Physiol. Heart Circ. Physiol. 2002. 282: H1467 - H1477.; Parmar, K., Mauch, P., Vergilio, J.-A., Sackstein, R. and Down, J. D., Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc. Natl. Acad. Sci. U.S.A. 2007. 104: 5431 - 5436.; Chandel, N. S., McClintock, D. S., Feliciano, C. E., Wood, T. M., Melendez, J. A., Rodriguez, A. M. and Schumacker, P. T., Reactive oxygen species generated at mitochondrial Complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O 2 sensing. J. Biol. Chem. 2000. 275: 25130 - 25138.; Bigarella, C. L., Liang, R. and Ghaffari, S., Stem cells and the impact of ROS signaling. Development. 2014. 141: 4206 - 4218.; Jang, K.-J., Mano, H., Aoki, K., Hayashi, T., Muto, A., Nambu, Y., Takahashi, K. et al., Mitochondrial function provides instructive signals for activation-induced B-cell fates. Nat. Commun. 2015. 6: 6750.; Barros, L. F., Bittner, C. X., Loaiza, A., Ruminot, I., Larenas, V., Moldenhauer, H., Oyarzún, C. et al., Kinetic validation of 6-NBDG as a probe for the glucose transporter GLUT1 in astrocytes. J Neurochem. 2009. 109: 94 - 100.; Zou, C., Wang, Y. and Shen, Z., 2-NBDG as a fluorescent indicator for direct glucose uptake measurement. J. Biochem. Biophys. Methods 2005. 64: 207 - 215.; Lam, W. Y., Jash, A., Yao, C. H., D’Souza, L., Wong, R., Nunley, R. M., Meares, G. P. et al., Metabolic and transcriptional modules independently diversify plasma cell lifespan and function. Cell Rep. 2018. 24: 2479 - 2492.e6.; Byersdorfer, C. A., Tkachev, V., Opipari, A. W., Goodell, S., Swanson, J., Sandquist, S., Glick, G. D. et al., Effector T cells require fatty acid metabolism during murine graft-versus-host disease. Blood. 2013. 122: 3230 - 3237.; Kolahi, K., Louey, S., Varlamov, O. and Thornburg, K., Real-time tracking of BODIPY-C12 long-chain fatty acid in human term placenta reveals unique lipid dynamics in cytotrophoblast cells. PLoS One. 2016. 11: e0153522.; Muroski, M. E., Miska, J., Chang, A. L., Zhang, P., Rashidi, A., Moore, H., Lopez-Rosas, A. et al., Fatty acid uptake in T cell subsets using a quantum dot fatty acid conjugate. Sci. Rep. 2017. 7: 5790.; Xiao, B., Deng, X., Zhou, W. and Tan, E.-K., Flow cytometry-based assessment of mitophagy using MitoTracker. Front. Cell. Neurosci. 2016. 10: 76.; Avramidou, A., Kroczek, C., Lang, C., Schuh, W., Jäck, H.-M. and Mielenz, D., The novel adaptor protein Swiprosin-1 enhances BCR signals and contributes to BCR-induced apoptosis. Cell Death Differ. 2007. 14: 1936 - 1947.; Pracht, K., Meinzinger, J., Daum, P., Schulz, S. R., Reimer, D., Hauke, M., Roth, E. et al., A new staining protocol for detection of murine antibody-secreting plasma cell subsets by flow cytometry. Eur. J. Immunol. 2017. 47: 1389 - 1392.; Eruslanov, E. and Kusmartsev, S. Identification of ROS using oxidized DCFDA and flow-cytometry. Methods Mol. Biol. 2010. 594: 57 - 72.; Kalyanaraman, B., Darley-Usmar, V., Davies, K. J. A., Dennery, P. A., Forman, H. J., Grisham, M. B., Mann, G. E. et al., Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic. Biol. Med. 2012. 52: 1 - 6.; Hempel, S. L., Buettner, G. R., O’Malley, Y. Q., Wessels D. A. and Flaherty D. M., Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 2-,7--dichlorodihydrofluorescein diacetate, 5 (and 6)-caboxy-2-,7--dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Radic. Biol. Med. 1999. 27: 146 - 159.; Anon. Thermo Fisher. CellROX® Oxidative Stress Reagents: User manual. Available at: https://assets.thermofisher.com/TFS-Assets/LSG/manuals/mp10422.pdfTest; Anon. Thermo Fisher. MitoSOX- Red mitochondrial superoxide indicator *for live-cell imaging* (M36008): User manual. Available at: https://assets.thermofisher.com/TFS-Assets/LSG/manuals/mp36008.pdfTest; Tzur, A., Moore, J. K., Jorgensen, P., Shapiro, H. M. and Kirschner, M. W., Optimizing optical flow cytometry for cell volume-based sorting and analysis. PLoS One. 2011. 6: 1 - 9.; Stein, M., Dütting, S., Di, M., Bösl, M., Fritsch, K., Reimer, D., Urbanczyk, S. et al., A defined metabolic state in pre B cells governs B-cell development and is counterbalanced by Swiprosin-2/EFhd1. Cell Death Differ. 2017. 24: 1239 - 1252.; Henzi, T. and Schwaller, B. Antagonistic regulation of parvalbumin expression and mitochondrial calcium handling capacity in renal epithelial cells. PLoS One. 2015. 10: e0142005.; Santarlasci, V., Maggi, L., Capone, M., Querci, V., Beltrame, L., Cavalieri, D., D’Aiuto, E. et al., Rarity of human T helper 17 cells is due to retinoic acid orphan receptor-dependent mechanisms that limit their expansion. Immunity. 2012. 36: 201 - 214.; Santarlasci, V, Mazzoni, A, Capone, M, Rossi, MC, Maggi, L, Montaini, G, Rossettini, B et al., Musculin inhibits human T-helper 17 cell response to interleukin 2 by controlling STAT5B activity. Eur. J. Immunol. 2017. 47: 1427 - 1442.; Altman, J. D., Moss, P. A., Goulder, P. J., Barouch, D. H., McHeyzer-Williams, M. G., Bell, J. I., McMichael, A. J. et al., Phenotypic analysis of antigen-specific T lymphocytes. Science 1996. 274: 94 - 96.; Newell, E. W., Klein, L. O., Yu, W. and Davis, M. M., Simultaneous detection of many T-cell specificities using combinatorial tetramer staining. Nat. Methods 2009. 6: 497 - 499.; Hadrup, S. R., Bakker, A. H., Shu, C. J., Andersen, R. S., van Veluw, J., Hombrink, P., Castermans, E. et al., Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers. Nat. Methods 2009. 6: 520 - 526.; Newell, E. W., Sigal, N., Nair, N., Kidd, B. A., Greenberg, H. B. and Davis, M. M., Combinatorial tetramer staining and mass cytometry analysis facilitate T-cell epitope mapping and characterization. Nat. Biotechnol. 2013. 31: 623 - 629.; Bentzen, A. K., Marquard, A. M., Lyngaa, R., Saini, S. K., Ramskov, S., Donia, M., Such, L. et al., Large-scale detection of antigen-specific T cells using peptide-MHC-I multimers labeled with DNA barcodes. Nat. Biotechnol. 2016. 34: 1037 - 1045.; Dolton, G., Zervoudi, E., Rius, C., Wall, A., Thomas, H. L., Fuller, A., Yeo, L. et al., Optimized peptide-MHC multimer protocols for detection and isolation of autoimmune T-cells. Front Immunol. 2018. 9: 1378.; Zhang, S. Q., Ma, K. Y., Schonnesen, A. A., Zhang, M., He, C., Sun, E., Williams, C. M. et al., High-throughput determination of the antigen specificities of T cell receptors in single cells. Nat. Biotechnol. 2018. 36: 1156.; Toebes, M., Coccoris, M., Bins, A., Rodenko, B., Gomez, R., Nieuwkoop, N. J., van de Kasteele, W. et al., Design and use of conditional MHC class I ligands. Nat. Med. 2006. 12: 246 - 251.; Luimstra, J. J., Garstka, M. A., Roex, M. C., Redeker, A., Janssen, G. M., van Veelen, P. A. and Neefjes, J., A flexible MHC class I multimer loading system for large-scale detection of antigen-specific T cells. J. Exp. Med. 2018. 215 ( 5 ): 1493 - 1504.; Amore, A., Wals, K., Koekoek, E., Hoppes, R., Toebes, M., Schumacher, T. N., Rodenko, B. et al., Development of a hypersensitive periodate-cleavable amino acid that is methionine-and disulfide-compatible and its application in MHC exchange reagents for T cell characterisation. ChemBioChem 2013. 14: 123 - 131.; Choo, J. A., Thong, S. Y., Yap, J., van Esch, W. J., Raida, M., Meijers, R., Lescar, J. et al., Bioorthogonal cleavage and exchange of major histocompatibility complex ligands by employing azobenzene-containing peptides. Angew. Chem. Int. Ed. 2014. 53: 13390 - 13394.; Saini, S. K., Schuster, H., Ramnarayan, V. R., Rammensee, H.-G., StevanoviÄ , S. and Springer, S., Dipeptides catalyze rapid peptide exchange on MHC class I molecules. Proc. Natl. Acad. Sci. USA 2015. 112: 202 - 207.; Kuball, J., Hauptrock, B., Malina, V., Antunes, E., Voss, R. H., Wolfl, M., Strong, R. et al., Increasing functional avidity of TCR-redirected T cells by removing defined N-glycosylation sites in the TCR constant domain. J. Exp. Med. 2009. 206: 463 - 475.; Kvistborg, P., Philips, D., Kelderman, S., Hageman, L., Ottensmeier, C., Joseph-Pietras, D., Welters, M. J. et al., Anti-CTLA-4 therapy broadens the melanoma-reactive CD8+ T cell response. Sci. Transl. Med. 2014. 6: 254ra128.; Kvistborg, P., Shu, C. J., Heemskerk, B., Fankhauser, M., Thrue, C. A., Toebes, M., van Rooij, N. et al., TIL therapy broadens the tumor-reactive CD8(+) T cell compartment in melanoma patients. Oncoimmunology 2012. 1: 409 - 418.; Rizvi, N. A., Hellmann, M. D., Snyder, A., Kvistborg, P., Makarov, V., Havel, J. J., Lee, W. et al., Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 2015. 348: 124 - 128.; van Rooij, N., van Buuren, M. M., Philips, D., Velds, A., Toebes, M., Heemskerk, B., van Dijk, L. J. et al., Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J. Clin. Oncol. 2013. 31: e439 - 442.; Schneck, J. P., Monitoring antigen-specific T cells using MHC-Ig dimers. Immunol. Invest. 2000. 29: 163 - 169.; Selin, L. K., Vergilis, K., Welsh, R. M. and Nahill, S. R., Reduction of otherwise remarkably stable virus-specific cytotoxic T lymphocyte memory by heterologous viral infections. J. Exp. Med. 1996. 183: 2489 - 2499.; Martinez, R. J., Andargachew, R., Martinez, H. A. and Evavold, B. D., Low-affinity CD4+ T cells are major responders in the primary immune response. Nat. Commun. 2016. 7: 13848.; Xiao, Z., Mescher, M. F. and Jameson, S. C., Detuning CD8 T cells: down-regulation of CD8 expression, tetramer binding, and response during CTL activation. J. Exp. Med. 2007. 204: 2667 - 2677.; Bakker, A. H., Schumacher TNM. MHC multimer technology: current status and future prospects. Curr. Opin. Immunol. 2005. 17: 428 - 433.; McMichael, A. J. and O’Callaghan, C. A., A new look at T cells. J. Exp. Med. 1998. 187: 1367 - 1371.; Ogg, G. S., King, A. S., Dunbar, P. R. and McMichael, A. J., Isolation of HIV-1-specific cytotoxic T lymphocytes using human leukocyte antigen-coated beads. AIDS 1999. 13: 1991 - 1993.; Luxembourg, A. T., Borrow, P., Teyton, L., Brunmark, A. B., Peterson, P. A. and Jackson, M. R., Biomagnetic isolation of antigen-specific CD8+ T cells usable in immunotherapy. Nat. Biotechnol. 1998. 16: 281 - 285.; Dimitrov, S., Lange, T. and Born, J., Selective mobilization of cytotoxic leukocytes by epinephrine. J. Immunol. 2010. 184: 503 - 511.; Xu, X. N., Purbhoo, M. A., Chen, N., Mongkolsapaya, J., Cox, J. H., Meier, U. C., Tafuro, S. et al., A novel approach to antigen-specific deletion of CTL with minimal cellular activation using alpha3 domain mutants of MHC class I/peptide complex. Immunity 2001. 14: 591 - 602.; Whelan, J. A., Dunbar, P. R., Price, D. A., Purbhoo, M. A., Lechner, F., Ogg, G. S., Griffiths, G. et al., Specificity of CTL interactions with peptide-MHC class I tetrameric complexes is temperature dependent. J. Immunol. 1999. 163: 4342 - 4348.; Daniels, M. A. and Jameson, S. C. Critical role for CD8 in T cell receptor binding and activation by peptide/major histocompatibility complex multimers. J. Exp. Med. 2000. 191: 335 - 346.; Knabel, M., Franz, T. J., Schiemann, M., Wulf, A., Villmow, B., Schmidt, B., Bernhard, H. et al., Reversible MHC multimer staining for functional isolation of T-cell populations and effective adoptive transfer. Nat. Med. 2002. 8: 631 - 637.; Neuenhahn, M., Albrecht, J., Odendahl, M., Schlott, F., Dössinger, G., Schiemann, M., Lakshmipathi, S. et al., Transfer of minimally manipulated CMV-specific T cells from stem cell or third-party donors to treat CMV infection after allo-HSCT. Leukemia 2017. 31: 2161 - 2171.; Nauerth, M., Weià brich, B., Knall, R., Franz, T., Dössinger, G., Bet, J., Paszkiewicz, P. J. et al., TCR-ligand koff rate correlates with the protective capacity of antigen-specific CD8+ T cells for adoptive transfer. Sci. Transl. Med. 2013. 5: 192ra87.; Nauerth, M., Stemberger, C., Mohr, F., Weià brich, B., Schiemann, M., Germeroth, L. and Busch, D. H., Flow cytometry-based TCR-ligand K off -rate assay for fast avidity screening of even very small antigen-specific T cell populations ex vivo. Cytometry A 2016. 89: 816 - 825.; Stemberger, C., Dreher, S., Tschulik, C., Piossek, C., Bet, J., Yamamoto, T. N., Schiemann, M. et al., Novel serial positive enrichment technology enables clinical multiparameter cell sorting. PLoS One 2012. 7: e35798.; Davis, D. M., Reyburn, H. T., Pazmany, L., Chiu, I., Mandelboim, O. and Strominger, J. L., Impaired spontaneous endocytosis of HLA-G. Eur. J. Immunol. 1997. 27: 2714 - 2719.; Effenberger, M., Stengl, A., Schober, K., Gerget, M., Kampick, M., Müller, T. R., Schumacher, D. et al., FLEXamers: a double tag for universal generation of versatile peptide-MHC multimers. J. Immunol. 2019. https://doi.org/10.4049/jimmunol.1801435Test; Lund-Johansen, F., Bjerknes, R. and Laerum, O. D., Flow cytometric assay for the measurement of human bone marrow phenotype, function and cell cycle. Cytometry 1990. 11: 610 - 616.; Vollers, S. S. and Stern, L. J., Class II major histocompatibility complex tetramer staining: progress, problems, and prospects. Immunology 2008. 123: 305 - 313.; James, E. A., LaFond, R., Durinovic-Bello, I. and Kwok, W., Visualizing antigen specific CD4+ T cells using MHC class II tetramers. J. Vis. Exp. 2009: 1 - 4.; Scheffold, A., Busch, D. H. and Kern, F., Detection of antigen-specific T-cells using major histocompatibility complex multimers or functional parameters. In Sack, U. (Eds.), Cellular diagnostics. KARGER, Basel 2008: 476 - 502.; Chattopadhyay, P. K., Gierahn, T. M., Roederer, M. and Love, J. C., Single-cell technologies for monitoring immune systems. Nat. Immunol. 2014. 15: 128 - 135.; Chattopadhyay, P. K. and Roederer, M., A mine is a terrible thing to waste: high content, single cell technologies for comprehensive immune analysis. Am. J. Transplant. 2015. 15: 1155 - 1161.; Kvistborg, P., Gouttefangeas, C., Aghaeepour, N., Cazaly, A., Chattopadhyay, P. K., Chan, C., Eckl, J. et al., Thinking outside the gate: single-cell assessments in multiple dimensions. Immunity 2015. 42: 591 - 592.; Mahnke, Y. D. and Roederer, M., Optimizing a multicolor immunophenotyping assay. Clin. Lab. Med. 2007. 27: 469 - 485.; Newell, E. W. and Davis, M. M., Beyond model antigens: high-dimensional methods for the analysis of antigen-specific T cells. Nat. Biotechnol. 2014. 32: 149 - 157.; Bacher, P. and Scheffold, A., Flow-cytometric analysis of rare antigen-specific T cells. Cytometry A 2013. 83: 692 - 701.; Dimitrov, S., Gouttefangeas, C., Besedovsky, L., Jensen, A. T. R., Chandran, P. A., Rusch, E., Businger, R. et al., Activated integrins identify functional antigen-specific CD8(+) T cells within minutes after antigen stimulation. Proc. Natl. Acad. Sci. USA 2018. 115: E5536 - E5545.; Kutscher, S., Dembek, C. J., Deckert, S., Russo, C., Korber, N., Bogner, J. R., Geisler, F. et al., Overnight resting of PBMC changes functional signatures of antigen specific T- cell responses: impact for immune monitoring within clinical trials. PLoS One 2013. 8: e76215.; Owen, R. E., Sinclair, E., Emu, B., Heitman, J. W., Hirschkorn, D. F., Epling, C. L., Tan, Q. X. et al., Loss of T cell responses following long-term cryopreservation. J. Immunol. Methods 2007. 326: 93 - 115.; Romer, P. S., Berr, S., Avota, E., Na, S. Y., Battaglia, M., ten Berge, I., Einsele, H. et al., Preculture of PBMCs at high cell density increases sensitivity of T-cell responses, revealing cytokine release by CD28 superagonist TGN1412. Blood 2011. 118: 6772 - 6782.; Wegner, J., Hackenberg, S., Scholz, C. J., Chuvpilo, S., Tyrsin, D., Matskevich, A. A., Grigoleit, G. U. et al., High-density preculture of PBMCs restores defective sensitivity of circulating CD8 T cells to virus- and tumor-derived antigens. Blood 2015. 126: 185 - 194.; Lamoreaux, L., Roederer, M. and Koup, R., Intracellular cytokine optimization and standard operating procedure. Nat. Protoc. 2006. 1: 1507 - 1516.; Maecker, H. T., Rinfret, A., D’Souza, P., Darden, J., Roig, E., Landry, C., Hayes, P. et al., Standardization of cytokine flow cytometry assays. BMC Immunol. 2005. 6: 13.; Reddy, M., Eirikis, E., Davis, C., Davis, H. M. and Prabhakar, U., Comparative analysis of lymphocyte activation marker expression and cytokine secretion profile in stimulated human peripheral blood mononuclear cell cultures: an in vitro model to monitor cellular immune function. J. Immunol. Methods 2004. 293: 127 - 142.; Redmond, W. L., Ruby, C. E. and Weinberg, A. D., The role of OX40-mediated co-stimulation in T-cell activation and survival. Crit. Rev. Immunol. 2009. 29: 187 - 201.; Zaunders, J. J., Munier, M. L., Seddiki, N., Pett, S., Ip, S., Bailey, M., Xu, Y. et al., High levels of human antigen-specific CD4+ T cells in peripheral blood revealed by stimulated coexpression of CD25 and CD134 (OX40). J. Immunol. 2009. 183: 2827 - 2836.; Chattopadhyay, P. K., Yu, J. and Roederer, M., A live-cell assay to detect antigen-specific CD4+ T cells with diverse cytokine profiles. Nat. Med. 2005. 11: 1113 - 1117.; Frentsch, M., Arbach, O., Kirchhoff, D., Moewes, B., Worm, M., Rothe, M., Scheffold, A. et al., Direct access to CD4+ T cells specific for defined antigens according to CD154 expression. Nat. Med. 2005. 11: 1118 - 1124.; Bacher, P., Kniemeyer, O., Schonbrunn, A., Sawitzki, B., Assenmacher, M., Rietschel, E., Steinbach, A. et al., Antigen-specific expansion of human regulatory T cells as a major tolerance mechanism against mucosal fungi. Mucosal. Immunol. 2014. 7: 916 - 928.; Schoenbrunn, A., Frentsch, M., Kohler, S., Keye, J., Dooms, H., Moewes, B., Dong, J. et al., A converse 4-1BB and CD40 ligand expression pattern delineates activated regulatory T cells (Treg) and conventional T cells enabling direct isolation of alloantigen-reactive natural Foxp3+ Treg. J. Immunol. 2012. 189: 5985 - 5994.; Bacher, P., Heinrich, F., Stervbo, U., Nienen, M., Vahldieck, M., Iwert, C., Vogt, K. et al., Regulatory T cell specificity directs tolerance versus allergy against aeroantigens in humans. Cell 2016. 167: 1067 - 1078.; Wolfl, M., Kuball, J., Eyrich, M., Schlegel, P. G. and Greenberg, P. D., Use of CD137 to study the full repertoire of CD8+ T cells without the need to know epitope specificities. Cytometry A 2008. 73: 1043 - 1049.; Wolfl, M., Kuball, J., Ho, W. Y., Nguyen, H., Manley, T. J., Bleakley, M. and Greenberg, P. D., Activation-induced expression of CD137 permits detection, isolation, and expansion of the full repertoire of CD8+ T cells responding to antigen without requiring knowledge of epitope specificities. Blood 2007. 110: 201 - 210.; Brosterhus, H., Brings, S., Leyendeckers, H., Manz, R. A., Miltenyi, S., Radbruch, A., Assenmacher, M. et al., Enrichment and detection of live antigen-specific CD4(+) and CD8(+) T cells based on cytokine secretion. Eur. J. Immunol. 1999. 29: 4053 - 4059.; Manz, R., Assenmacher, M., Pfluger, E., Miltenyi, S. and Radbruch, A., Analysis and sorting of live cells according to secreted molecules, relocated to a cell-surface affinity matrix. Proc. Natl. Acad. Sci. USA 1995. 92: 1921 - 1925.; Jung, T., Schauer, U., Heusser, C., Neumann, C. and Rieger, C., Detection of intracellular cytokines by flow cytometry. J. Immunol. Methods 1993. 159: 197 - 207.; O’Neil-Andersen, N. J. and Lawrence, D. A., Differential modulation of surface and intracellular protein expression by T cells after stimulation in the presence of monensin or brefeldin A. Clin. Diagn. Lab. Immunol. 2002. 9: 243 - 250.; Bacher, P., Schink, C., Teutschbein, J., Kniemeyer, O., Assenmacher, M., Brakhage, A. A. and Scheffold, A., Antigen-reactive T cell enrichment for direct, high-resolution analysis of the human naive and memory Th cell repertoire. J. Immunol. 2013. 190: 3967 - 3976.; Bacher, P., Hohnstein, T., Beerbaum, E., Rocker, M., Blango, M. G., Kaufmann, S., Rohmel, J. et al., Human Anti-fungal Th17 Immunity and Pathology Rely on Cross-Reactivity against Candida albicans. Cell 2019. 176: 1340 - 1355.e1315.; Wehler, T. C., Karg, M., Distler, E., Konur, A., Nonn, M., Meyer, R. G., Huber, C. et al., Rapid identification and sorting of viable virus-reactive CD4(+) and CD8(+) T cells based on antigen-triggered CD137 expression. J. Immunol. Methods 2008. 339: 23 - 37.; Betts, M. R., Brenchley, J. M., Price, D. A., De Rosa, S. C., Douek, D. C., Roederer, M. and Koup, R. A., Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J. Immunol. Methods 2003. 281: 65 - 78.; Betts, M. R. and Koup, R. A., Detection of T-cell degranulation: CD107a and b. Methods Cell Biol. 2004. 75: 497 - 512.; Dimitrov, S., Benedict, C., Heutling, D., Westermann, J., Born, J. and Lange, T., Cortisol and epinephrine control opposing circadian rhythms in T cell subsets. Blood 2009. 113: 5134 - 5143.; Day, C. L., Seth, N. P., Lucas, M., Appel, H., Gauthier, L., Lauer, G. M., Robbins, G. K. et al., Ex vivo analysis of human memory CD4 T cells specific for hepatitis C virus using MHC class II tetramers. J. Clin. Invest. 2003. 112: 831 - 842.; Miltenyi, S., Muller, W., Weichel, W. and Radbruch, A., High gradient magnetic cell separation with MACS. Cytometry 1990. 11: 231 - 238.; Moon, J. J., Chu, H. H., Pepper, M., McSorley, S. J., Jameson, S. C., Kedl, R. M. and Jenkins, M. K., Naive CD4(+) T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 2007. 27: 203 - 213.; Obar, J. J., Khanna, K. M. and Lefrancois, L., Endogenous naive CD8+ T cell precursor frequency regulates primary and memory responses to infection. Immunity 2008. 28: 859 - 869.; Macey, M. G., Flow cytometry: Principles and applications. Humana Press, New York, NY, 2007.; Krensky, A. M., The HLA system, antigen processing and presentation. Kidney Int. Suppl. 1997. 58: S2 - 7.; Kern, F., Faulhaber, N., Frommel, C., Khatamzas, E., Prosch, S., Schonemann, C., Kretzschmar, I. et al., Analysis of CD8 T cell reactivity to cytomegalovirus using protein-spanning pools of overlapping pentadecapeptides. Eur. J. Immunol. 2000. 30: 1676 - 1682.; Maecker, H. T., Dunn, H. S., Suni, M. A., Khatamzas, E., Pitcher, C. J., Bunde, T., Persaud, N. et al., Use of overlapping peptide mixtures as antigens for cytokine flow cytometry. J. Immunol. Methods 2001. 255: 27 - 40.; Eberl, G., Renggli, J., Men, Y., Roggero, M. A., Lopez, J. A. and Corradin, G., Extracellular processing and presentation of a 69-mer synthetic polypetide to MHC class I-restricted T cells. Mol. Immunol. 1999. 36: 103 - 112.; Sherman, L. A., Burke, T. A. and Biggs, J. A., Extracellular processing of peptide antigens that bind class I major histocompatibility molecules. J. Exp. Med. 1992. 175: 1221 - 1226.; Alanio, C., Lemaitre, F., Law, H. K., Hasan, M. and Albert, M. L., Enumeration of human antigen-specific naive CD8+ T cells reveals conserved precursor frequencies. Blood 2010. 115: 3718 - 3725.; Campion, S. L., Brodie, T. M., Fischer, W., Korber, B. T., Rossetti, A., Goonetilleke, N., McMichael, A. J. et al., Proteome-wide analysis of HIV-specific naive and memory CD4(+) T cells in unexposed blood donors. J. Exp. Med. 2014. 211: 1273 - 1280.; Geiger, R., Duhen, T., Lanzavecchia, A. and Sallusto, F., Human naive and memory CD4+ T cell repertoires specific for naturally processed antigens analyzed using libraries of amplified T cells. J. Exp. Med. 2009. 206: 1525 - 1534.; Su, L. F., Kidd, B. A., Han, A., Kotzin, J. J. and Davis, M. M., Virus-specific CD4(+) memory-phenotype T cells are abundant in unexposed adults. Immunity 2013. 38: 373 - 383.; Annunziato, F., Romagnani, C. and Romagnani, S., The 3 major types of innate and adaptive cell-mediated effector immunity. J. Allergy Clin. Immunol. 2015. 135: 626 - 635.; Brugnolo, F., Sampognaro, S., Liotta, F., Cosmi, L., Annunziato, F., Manuelli, C., Campi, P. et al., The novel synthetic immune response modifier R-848 (Resiquimod) shifts human allergen-specific CD4+ TH2 lymphocytes into IFN-gamma-producing cells. J. Allergy Clin. Immunol. 2003. 111: 380 - 388.; Annunziato, F., Cosmi, L., Santarlasci, V., Maggi, L., Liotta, F., Mazzinghi, B., Parente, E. et al., Phenotypic and functional features of human Th17 cells. J. Exp. Med. 2007. 204: 1849 - 1861.; Cosmi, L., Maggi, L., Santarlasci, V., Capone, M., Cardilicchia, E., Frosali, F., Querci, V. et al., Identification of a novel subset of human circulating memory CD4(+) T cells that produce both IL-17A and IL-4. J. Allergy Clin. Immunol. 2010. 125 ( 1 ): 222-230.e1-4.; Becattini, S., Latorre, D., Mele, F., Foglierini, M., De Gregorio, C., Cassotta, A., Fernandez, B. et al., T cell immunity. Functional heterogeneity of human memory CD4- T cell clones primed by pathogens or vaccines. Science 2015. 347: 400 - 406.; Mazzoni, A., Maggi, L., Siracusa, F., Ramazzotti, M., Rossi, M. C., Santarlasci, V., Montaini, G. et al., Eomes controls the development of Th17-derived (non-classic) Th1 cells during chronic inflammation. Eur. J. Immunol. 2019. 49: 79 - 95.; Mazzoni, A., Santarlasci, V., Maggi, L., Capone, M., Rossi, M. C., Querci, V., De Palma, R. et al., Demethylation of the RORC2 and IL17A in human CD4+ T lymphocytes defines Th17 origin of nonclassic Th1 cells. J. Immunol. 2015. 194: 3116 - 3126.; Mueller, S. N., Gebhardt, T., Carbone, F. R. and Heath, W. R., Memory T cell subsets, migration patterns, and tissue residence. Annu. Rev. Immunol. 2013. 31: 137 - 161.; Masopust, D. and Schenkel, J. M., The integration of T cell migration, differentiation and function. Nat. Rev. Immunol. 2013. 13: 309 - 320.; Murali-Krishna, K., Altman, J. D., Suresh, M., Sourdive, D. J., Zajac, A. J., Miller, J. D., Slansky, J. et al., Immunity 1998. 8: 177 - 187.; Masopust, D., Vezys, V., Marzo, A. L. and Lefrancois, L., Preferential localization of effector memory cells in nonlymphoid tissue. Science 2001. 291: 2413 - 2417.; Lopez, J. A., Susanto, O., Jenkins, M. R., Lukoyanova, N., Sutton, V. R., Law, R. H., Johnston, A. et al., Blood 2013. 121: 2659 - 2668.; Liu, L., Chahroudi, A., Silvestri, G., Wernett, M. E., Kaiser, W. J., Safrit, J. T., Komoriya, A. et al., Visualization and quantification of T cell-mediated cytotoxicity using cell-permeable fluorogenic caspase substrates. Nat. Med. 2002. 8: 185 - 189.; Bedner, E., Smolewski, P., Amstad, P. and Darzynkiewicz, Z., Exp. Cell Res. 2000. 259: 308 - 313.; Amstad, P. A., Yu, G., Johnson, G. L., Lee, B. W., Dhawan, S. and Phelps, D. J., BioTechniques 2001. 31: 608 - 10, 612, 614, passim; Sheehy, M. E., McDermott, A. B., Furlan, S. N., Klenerman, P. and Nixon, D. F., J. Immunol. Methods 2001. 249: 99 - 110.; Michonneau, D., Sagoo, P., Breart, B., Garcia, Z., Celli, S. and Bousso, P., Immunity 2016. 44: 143 - 154.; Aichele, P., Brduscha-Riem, K., Oehen, S., Odermatt, B., Zinkernagel, R. M., Hengartner, H. and Pircher, H., Immunity 1997. 6: 519 - 529.; Coles, R. M., Mueller, S. N., Heath, W. R., Carbone, F. R. and Brooks, A. G., Progression of armed CTL from draining lymph node to spleen shortly after localized infection with herpes simplex virus 1. J. Immunol. 2002. 168: 834 - 838.; Wabnitz, G. H., Balta, E., Schindler, S., Kirchgessner, H., Jahraus, B., Meuer, S. and Samstag, Y., The pro-oxidative drug WF-10 inhibits serial killing by primary human cytotoxic T-cells. Cell Death Discov. 2016. 2: 16057.; Wabnitz, G. H., Kirchgessner, H. and Samstag, Y. Multiparametric analysis of molecular mechanism involved in the cytotoxicity of human CD8 T-cells. J. Cell. Biochem. 2017. 118: 2528 - 2533.; Mahnke, Y. D., Devevre, E., Baumgaertner, P., Matter, M., Rufer, N., Romero, P. and Speiser, D. E., Human melanoma-specific CD8(+) T-cells from metastases are capable of antigen-specific degranulation and cytolysis directly ex vivo. Oncoimmunology 2012. 1: 467 - 530.; Kurioka, A., Ussher, J. E., Cosgrove, C., Clough, C., Fergusson, J. R., Smith, K., Kang, Y. H. et al., MAIT cells are licensed through granzyme exchange to kill bacterially sensitized targets. Mucosal. Immunol. 2015. 8: 429 - 440.; Wing, K., Onishi, Y., Prieto-Martin, P., Yamaguchi, T., Miyara, M., Fehervari, Z., Nomura, T. et al., CTLA-4 control over Foxp3(+) regulatory T cell function. Science 2008. 322: 271 - 275.; McMurchy, A. N. and Levings, M. K., Suppression assays with human T regulatory cells: a technical guide. Eur. J. Immunol. 2012. 42: 27 - 34.; Cammarata, I., Martire, C., Citro, A., Raimondo, D., Fruci, D., Melaiu, O., D’Oria, V. et al., Counter-regulation of regulatory T cells by autoreactive CD8(+) T cells in rheumatoid arthritis. J. Autoimmun. 2019. 99: 81 - 97.; Walker, L. S., Regulatory T cells overturned: the effectors fight back. Immunology 2009. 126: 466 - 474.; Miyara, M., Yoshioka, Y., Kitoh, A., Shima, T., Wing, K., Niwa, A., Parizot, C. et al., Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 2009. 30: 899 - 911.; Wing, J. B., Kitagawa, Y., Locci, M., Hume, H., Tay, C., Morita, T., Kidani, Y. et al., A distinct subpopulation of CD25(-) T-follicular regulatory cells localizes in the germinal centers. Proc. Natl. Acad. Sci. USA 2017. 114: E6400 - E6409.; Roederer, M., Interpretation of cellular proliferation data: avoid the panglossian. Cytometry A 2011. 79: 95 - 101.; Grossman, W. J., Verbsky, J. W., Barchet, W., Colonna, M., Atkinson, J. P. and Ley, T. J., Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity 2004. 21: 589 - 601.; Koristka, S., Cartellieri, M., Arndt, C., Feldmann, A., Topfer, K., Michalk, I., Temme, A. et al., Cytotoxic response of human regulatory T cells upon T-cell receptor-mediated activation: a matter of purity. Blood Cancer J. 2014. 4: e199.; Pircher, H., Burki, K., Lang, R., Hengartner, H. and Zinkernagel, R. M., Tolerance induction in double specific T-cell receptor transgenic mice varies with antigen. Nature 1989. 342: 559 - 561.; Hogquist, K. A., Jameson, S. C., Heath, W. R., Howard, J. L., Bevan, M. J. and Carbone, F. R., T cell receptor antagonist peptides induce positive selection. Cell 1994. 76: 17 - 27.; Oxenius, A., Bachmann, M. F., Zinkernagel, R. M. and Hengartner, H., Virus-specific MHC-class II-restricted TCR-transgenic mice: effects on humoral and cellular immune responses after viral infection. Eur. J. Immunol. 1998. 28: 390 - 400.; Barnden, M. J., Allison, J., Heath, W. R. and Carbone, F. R., Defective TCR expression in transgenic mice constructed using cDNA-based alpha- and beta-chain genes under the control of heterologous regulatory elements. Immunol. Cell. Biol. 1998. 76: 34 - 40.; Murphy, K. M., Heimberger, A. B. and Loh, D. Y., Induction by antigen of intrathymic apoptosis of CD4+CD8+TCRlo thymocytes in vivo. Science 1990. 250: 1720 - 1723.; Kagi, D., Odermatt, B., Ohashi, P. S., Zinkernagel, R. M. and Hengartner, H., Development of insulitis without diabetes in transgenic mice lacking perforin-dependent cytotoxicity. J. Exp. Med. 1996. 183: 2143 - 2152.; Bettelli, E., Pagany, M., Weiner, H. L., Linington, C., Sobel, R. A. and Kuchroo, V. K., Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice develop spontaneous autoimmune optic neuritis. J. Exp. Med. 2003. 197: 1073 - 1081.; Mason, D. Y., Jones, M. and Goodnow, C. C., Development and follicular localization of tolerant B lymphocytes in lysozyme/anti-lysozyme IgM/IgD transgenic mice. Int. Immunol. 1992. 4: 163 - 175.; Phan, T. G., Amesbury, M., Gardam, S., Crosbie, J., Hasbold, J., Hodgkin, P. D., Basten, A. et al., B cell receptor-independent stimuli trigger immunoglobulin (Ig) class switch recombination and production of IgG autoantibodies by anergic self-reactive B cells. J. Exp. Med. 2003. 197: 845 - 860.; Allen, C. D., Okada, T., Tang, H. L. and Cyster, J. G., Imaging of germinal center selection events during affinity maturation. Science 2007. 315: 528 - 531.; Shih, T. A., Roederer, M. and Nussenzweig, M. C., Role of antigen receptor affinity in T cell-independent antibody responses in vivo. Nat. Immunol. 2002. 3: 399 - 406.; Garside, P., Ingulli, E., Merica, R. R., Johnson, J. G., Noelle, R. J. and Jenkins, M. K., Visualization of specific B and T lymphocyte interactions in the lymph node. Science 1998. 281: 96 - 99.; Litzenburger, T., Fassler, R., Bauer, J., Lassmann, H., Linington, C., Wekerle, H. and Iglesias, A., B lymphocytes producing demyelinating autoantibodies: development and function in gene-targeted transgenic mice. J. Exp. Med. 1998. 188: 169 - 180.; Bettelli, E., Baeten, D., Jager, A., Sobel, R. A. and Kuchroo, V. K., Myelin oligodendrocyte glycoprotein-specific T and B cells cooperate to induce a Devic-like disease in mice. J. Clin. Invest. 2006. 116: 2393 - 2402.; Jenkins, M. K. and Moon, J. J., The role of naive T cell precursor frequency and recruitment in dictating immune response magnitude. J. Immunol. 2012. 188: 4135 - 4140.; Buchholz, V. R., Schumacher, T. N. and Busch, D. H., T cell fate at the single-cell level. Annu. Rev. Immunol. 2016. 34: 65 - 92.; Stemberger, C., Huster, K. M., Koffler, M., Anderl, F., Schiemann, M., Wagner, H. and Busch, D. H., A single naive CD8+ T cell precursor can develop into diverse effector and memory subsets. Immunity 2007. 27: 985 - 997.; Baumjohann, D. and Ansel, K. M., Tracking early T follicular helper cell differentiation in vivo. Methods Mol. Biol. 2015. 1291: 27 - 38.; Paus, D., Phan, T. G., Chan, T. D., Gardam, S., Basten, A. and Brink, R., Antigen recognition strength regulates the choice between extrafollicular plasma cell and germinal center B cell differentiation. J. Exp. Med. 2006. 203: 1081 - 1091.; Boesch, M., Cosma, A. and Sopper, S., Flow cytometry: to dump or not to dump. J. Immunol. 2018. 201: 1813.; Beura, L. K., Hamilton, S. E., Bi, K., Schenkel, J. M., Odumade, O. A., Casey, K. A., Thompson, E. A. et al., Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature 2016. 532: 512 - 516.; Akondy, R. S., Monson, N. D., Miller, J. D., Edupuganti, S., Teuwen, D., Wu, H., Quyyumi, F. et al., The yellow fever virus vaccine induces a broad and polyfunctional human memory CD8+ T cell response. J. Immunol. 2009. 183: 7919 - 7930.; Schulz, A. R., Malzer, J. N., Domingo, C., Jurchott, K., Grutzkau, A., Babel, N., Nienen, M. et al., Low thymic activity and dendritic cell numbers are associated with the immune response to primary viral infection in elderly humans. J. Immunol. 2015. 195: 4699 - 4711.; van Leeuwen, E. M., de Bree, G. J., Remmerswaal, E. B., Yong, S. L., Tesselaar, K., ten Berge, I. J. and van Lier, R. A., IL-7 receptor alpha chain expression distinguishes functional subsets of virus-specific human CD8+ T cells. Blood 2005. 106: 2091 - 2098.; Zhou, L., Chong, M. M. and Littman, D. R., Plasticity of CD4+ T cell lineage differentiation. Immunity 2009. 30: 646 - 655.; Luckheeram, R. V., Zhou, R., Verma, A. D. and Xia, B., CD4(+)T cells: differentiation and functions. Clin. Dev. Immunol. 2012. 2012: 925135.; Zhu, J., Yamane, H. and Paul, W. E., Differentiation of effector CD4 T cell populations (*). Annu. Rev. Immunol. 2010. 28: 445 - 489.; Cua, D. J., Sherlock, J., Chen, Y., Murphy, C. A., Joyce, B., Seymour, B., Lucian, L. et al., Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 2003. 421: 744 - 748.; Murphy, C. A., Langrish, C. L., Chen, Y., Blumenschein, W., McClanahan, T., Kastelein, R. A., Sedgwick, J. D. et al., Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J. Exp. Med. 2003. 198: 1951 - 1957.; Iwakura, Y., Ishigame, H., Saijo, S. and Nakae, S., Functional specialization of interleukin-17 family members. Immunity 2011. 34: 149 - 162.; Cerutti, A., Puga, I. and Cols, M., New helping friends for B cells. Eur. J. Immunol. 2012. 42: 1956 - 1968.; Brown, D. M., Dilzer, A. M., Meents, D. L. and Swain, S. L., CD4 T cell-mediated protection from lethal influenza: perforin and antibody-mediated mechanisms give a one-two punch. J. Immunol. 2006. 177: 2888 - 2898.; Lord, G. M., Rao, R. M., Choe, H., Sullivan, B. M., Lichtman, A. H., Luscinskas, F. W. and Glimcher, L. H., T-bet is required for optimal proinflammatory CD4+ T-cell trafficking. Blood 2005. 106: 3432 - 3439.; Sundrud, M. S., Grill, S. M., Ni, D., Nagata, K., Alkan, S. S., Subramaniam, A. and Unutmaz, D., Genetic reprogramming of primary human T cells reveals functional plasticity in Th cell differentiation. J. Immunol. 2003. 171: 3542 - 3549.; Hirota, K., Yoshitomi, H., Hashimoto, M., Maeda, S., Teradaira, S., Sugimoto, N., Yamaguchi, T. et al., Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model. J. Exp. Med. 2007. 204: 2803 - 2812.; Breitfeld, D., Ohl, L., Kremmer, E., Ellwart, J., Sallusto, F., Lipp, M. and Forster, R., Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med. 2000. 192: 1545 - 1552.; Hsieh, C. S., Macatonia, S. E., Tripp, C. S., Wolf, S. F., O’Garra, A. and Murphy, K. M., Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 1993. 260: 547 - 549.; Lighvani, A. A., Frucht, D. M., Jankovic, D., Yamane, H., Aliberti, J., Hissong, B. D., Nguyen, B. V. et al., T-bet is rapidly induced by interferon-gamma in lymphoid and myeloid cells. Proc. Natl. Acad. Sci. U S A 2001. 98: 15137 - 15142.; Szabo, S. J., Kim, S. T., Costa, G. L., Zhang, X., Fathman, C. G. and Glimcher, L. H., A novel transcription factor, T-bet, directs Th1 lineage commitmen t. Cell 2000. 100: 655 - 669.; Le Gros, G., Ben-Sasson, S. Z., Seder, R., Finkelman, F. D. and Paul, W. E., Generation of interleukin 4 (IL-4)-producing cells in vivo and in vitro: IL-2 and IL-4 are required for in vitro generation of IL-4-producing cells. J. Exp. Med. 1990. 172: 921 - 929.; Swain, S. L., Weinberg, A. D., English, M. and Huston, G., IL-4 directs the development of Th2-like helper effectors. J. Immunol. 1990. 145: 3796 - 3806.; Zheng, W. and Flavell, R. A., The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 1997. 89: 587 - 596.; Ivanov, I. I., McKenzie, B. S., Zhou, L., Tadokoro, C. E., Lepelley, A., Lafaille, J. J., Cua, D. J. et al., The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006. 126: 1121 - 1133.; Baba, N., Rubio, M., Kenins, L., Regairaz, C., Woisetschlager, M., Carballido, J. M. and Sarfati, M., The aryl hydrocarbon receptor (AhR) ligand VAF347 selectively acts on monocytes and naive CD4(+) Th cells to promote the development of IL-22-secreting Th cells. Hum. Immunol. 2012. 73: 795 - 800.; Gerlach, K., Hwang, Y., Nikolaev, A., Atreya, R., Dornhoff, H., Steiner, S., Lehr, H. A. et al., TH9 cells that express the transcription factor PU.1 drive T cell-mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat. Immunol. 2014. 15: 676 - 686.; Chtanova, T., Tangye, S. G., Newton, R., Frank, N., Hodge, M. R., Rolph, M. S. and Mackay, C. R., T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. J. Immunol. 2004. 173: 68 - 78.; Zhu, J., Jankovic, D., Oler, A. J., Wei, G., Sharma, S., Hu, G., Guo, L. et al., The transcription factor T-bet is induced by multiple pathways and prevents an endogenous Th2 cell program during Th1 cell responses. Immunity 2012. 37: 660 - 673.; Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. and Coffman, R. L., Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 1986. 136: 2348 - 2357.; Harrington, L. E., Hatton, R. D., Mangan, P. R., Turner, H., Murphy, T. L., Murphy, K. M. and Weaver, C. T., Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 2005. 6: 1123 - 1132.; Grewal, I. S., Xu, J. and Flavell, R. A., Impairment of antigen-specific T-cell priming in mice lacking CD40 ligand. Nature 1995. 378: 617 - 620.; Liu, F. and Whitton, J. L., Cutting edge: re-evaluating the in vivo cytokine responses of CD8+ T cells during primary and secondary viral infections. J. Immunol. 2005. 5936 - 5940.; Kirchhoff, D., Frentsch, M., Leclerk, P., Bumann, D., Rausch, S., Hartmann, S., Thiel, A. et al., Identification and isolation of murine antigen-reactive T cells according to CD154 expression. Eur J Immunol 2007. 37: 2370 - 2377.; Shore, D. A., Issafras, H., Landais, E., Teyton, L. and Wilson, I. A., The crystal structure of CD8 in complex with YTS156.7.7 Fab and interaction with other CD8 antibodies define the binding mode of CD8 alphabeta to MHC class I. J. Mol. Biol. 2008. 384: 1190 - 1202.; Nikolich-Žugich, J. and Ä iÄ in-Å ain, L., Aging of the Immune System Across Different Species. In N. S. Wolf (Ed.), The comparative biology of aging, Springer Netherlands, Dordrecht, the Netherlands, 2010. pp. 353 - 376.; Joshi, N. S., Cui, W., Chandele, A., Lee, H. K., Urso, D. R., Hagman, J., Gapin, L. et al., Inflammation directs memory precursor and short-lived effector CD8(+) T cell fates via the graded expression of T-bet transcription factor. Immunity 2007. 27: 281 - 295.; Kaech, S. M., Tan, J. T., Wherry, E. J., Konieczny, B. T., Surh, C. D. and Ahmed, R., Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat. Immunol. 2003. 1191 - 1198.; Obar, J. J., Jellison, E. R., Sheridan, B. S., Blair, D. A., Pham, Q. M., Zickovich, J. M. and Lefrancois, L., Pathogen-induced inflammatory environment controls effector and memory CD8+ T cell differentiation. J. Immunol. 2011. 4967 - 4978.; Gerlach, C., Moseman, E. A., Loughhead, S. M., Alvarez, D., Zwijnenburg, A. J., Waanders, L., Garg, R. et al., The chemokine receptor CX3CR1 defines three antigen-experienced CD8 T cell subsets with distinct roles in immune surveillance and homeostasis. Immunity 2016. 45: 1270 - 1284.; Sosinowski, T., White, J. T., Cross, E. W., Haluszczak, C., Marrack, P., Gapin, L. and Kedl, R. M., CD8α+ dendritic cell trans presentation of IL-15 to naive CD8+ T cells produces antigen-inexperienced T cells in the periphery with memory phenotype and function. J. Immunol. 2013. 190: 1936 - 1947.; White, J. T., Cross, E. W. and Kedl, R. M., Antigen-inexperienced memory CD8(+) T cells: where they come from and why we need them. Nat. Rev. Immunol. 2017. 17: 391 - 400.; Chiu, B. C., Martin, B. E., Stolberg, V. R. and Chensue, S. W., Cutting edge: central memory CD8 T cells in aged mice are virtual memory cells. J. Immunol. 2013. 191: 5793 - 5796.; Quinn, K. M., Fox, A., Harland, K. L., Russ, B. E., Li, J., Nguyen, T. H. O., Loh, L. et al., Age-related decline in primary CD8(+) T cell responses is associated with the development of senescence in virtual memory CD8(+) T cells. Cell Rep 2018. 23: 3512 - 3524.; Tsukumo, S.-i., Unno, M., Muto, A., Takeuchi, A., Kometani, K., Kurosaki, T., Igarashi, K. et al., Bach2 maintains T cells in a naive state by suppressing effector memory-related genes. Proc. Natl. Acad. Sci. USA 2013. 10735 - 10740.; Kaech, S. M. and Cui, W., Transcriptional control of effector and memory CD8+ T cell differentiation. Nat. Rev. Immunol. 2012. 12: 749 - 761.; Mackay, L. K., Minnich, M., Kragten, N. A., Liao, Y., Nota, B., Seillet, C., Zaid, A. et al., Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science 2016. 352: 459 - 463.; Mittrucker, H. W., Visekruna, A. and Huber, M., Heterogeneity in the differentiation and function of CD8(+) T cells. Arch. Immunol. Ther. Exp. 2014. 62: 449 - 458.; Frentsch, M., Stark, R., Matzmohr, N., Meier, S., Durlanik, S., Schulz, A. R., Stervbo, U. et al., CD40L expression permits CD8+ T cells to execute immunologic helper functions. Blood 2013. 122: 405 - 412.; van Stipdonk, M. J., Hardenberg, G., Bijker, M. S., Lemmens, E. E., Droin, N. M., Green, D. R. and Schoenberger, S. P., Dynamic programming of CD8+ T lymphocyte responses. Nat. Immunol. 2003. 4: 361 - 365.; Masopust, D., Murali-Krishna, K. and Ahmed, R., Quantitating the magnitude of the lymphocytic choriomeningitis virus-specific CD8 T-cell response: it is even bigger than we thought. J. Virol. 2007. 81: 2002 - 2011.; Mueller, S. N. and Mackay, L. K., Tissue-resident memory T cells: local specialists in immune defence. Nat. Rev. Immunol. 2016. 16: 79 - 89.; Behr, F. M., Chuwonpad, A., Stark, R. and van Gisbergen, K., Armed and ready: transcriptional regulation of tissue-resident memory CD8 T cells. Front. Immunol. 2018. 9: 1770.; Beura, L. K., Fares-Frederickson, N. J., Steinert, E. M., Scott, M. C., Thompson, E. A., Fraser, K. A., Schenkel, J. M. et al., CD4(+) resident memory T cells dominate immunosurveillance and orchestrate local recall responses. J. Exp. Med. 2019.; Autengruber, A., Gereke, M., Hansen, G., Hennig, C. and Bruder, D., Impact of enzymatic tissue disintegration on the level of surface molecule expression and immune cell function. Eur. J. Microbiol. Immunol. 2012. 2: 112 - 120.; Rissiek, B., Haag, F., Boyer, O., Koch-Nolte, F. and Adriouch, S., P2X7 on mouse T cells: one channel, many functions. Front. Immunol. 2015. 6: 204.; Rissiek, B., Lukowiak, M., Raczkowski, F., Magnus, T., Mittrucker, H. W. and Koch-Nolte, F., In vivo blockade of murine ARTC2.2 during cell preparation preserves the vitality and function of liver tissue-resident memory T cells. Front. Immunol. 2018. 9: 1580.; Stark, R., Wesselink, T. H., Behr, F. M., Kragten, N. A. M., Arens, R., Koch-Nolte, F., van Gisbergen, K. and van Lier, R. A. W., T RM maintenance is regulated by tissue damage via P2RX7. Sci. Immunol. 2018. 3: eaau1022.; Steinert, E. M., Schenkel, J. M., Fraser, K. A., Beura, L. K., Manlove, L. S., Igyarto, B. Z., Southern, P. J. et al., Quantifying memory CD8 T cells reveals regionalization of immunosurveillance. Cell 2015. 161: 737 - 749.; Anderson, K. G., Mayer-Barber, K., Sung, H., Beura, L., James, B. R., Taylor, J. J., Qunaj, L. et al., Intravascular staining for discrimination of vascular and tissue leukocytes. Nat. Protoc. 2014. 9: 209 - 222.; Cicin-Sain, L., Brien, J. D., Uhrlaub, J. L., Drabig, A., Marandu, T. F. and Nikolich-Zugich, J., Cytomegalovirus infection impairs immune responses and accentuates T-cell pool changes observed in mice with aging. PLoS Pathog. 2012. 8: e1002849.; Reese, T. A., Bi, K., Kambal, A., Filali-Mouhim, A., Beura, L. K., Burger, M. C., Pulendran, B. et al., Sequential infection with common pathogens promotes human-like immune gene expression and altered vaccine response. Cell Host Microbe 2016. 19: 713 - 719.; Pinchuk, L. M. and Filipov, N. M., Differential effects of age on circulating and splenic leukocyte populations in C57BL/6 and BALB/c male mice. Immun. Ageing: I&A 2008. 5: 1 - 1.; Yuan, R., Meng, Q., Nautiyal, J., Flurkey, K., Tsaih, S. W., Krier, R., Parker, M. G. et al., Genetic coregulation of age of female sexual maturation and lifespan through circulating IGF1 among inbred mouse strains. Proc. Natl. Acad. Sci. USA 2012. 109: 8224 - 8229.; Xu, W. and Larbi, A., Markers of T cell senescence in humans. Int. J. Mol. Sci. 2017. 18: 1742.; Lanna, A., Gomes, D. C., Muller-Durovic, B., McDonnell, T., Escors, D., Gilroy, D. W., Lee, J. H. et al., A sestrin-dependent Erk-Jnk-p38 MAPK activation complex inhibits immunity during aging. Nat. Immunol. 2017. 18: 354 - 363.; White, J. T., Cross, E. W., Burchill, M. A., Danhorn, T., McCarter, M. D., Rosen, H. R., O’Connor, B. et al., Virtual memory T cells develop and mediate bystander protective immunity in an IL-15-dependent manner. Nat. Commun. 2016. 7: 11291.; Marandu, T. F., Oduro, J. D., Borkner, L., Dekhtiarenko, I., Uhrlaub, J. L., Drabig, A., Kroger, A. et al., Immune protection against virus challenge in aging mice is not affected by latent herpesviral infections. J. Virol. 2015. 89: 11715 - 11717.; Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. and Toda, M., Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 1995. 155: 1151 - 1164.; Hori, S., Nomura, T. and Sakaguchi, S., Control of regulatory T cell development by the transcription factor Foxp3. Science 2003. 299: 1057 - 1061.; Fontenot, J. D., Gavin, M. A. and Rudensky, A. Y., Foxp3 programs the development and function of CD4 + CD25 + regulatory T cells. Nat. Immunol. 2003. 4: 330 - 336.; Hill, J. A., Feuerer, M., Tash, K., Haxhinasto, S., Perez, J., Melamed, R., Mathis, D. et al., Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature. Immunity 2007. 27: 786 - 800.; Bennett, C. L., Christie, J., Ramsdell, F., Brunkow, M. E., Ferguson, P. J., Whitesell, L., Kelly, T. E. et al., The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 2001. 27: 20 - 21.; Brunkow, M. E., Jeffery, E. W., Hjerrild, K. A., Paeper, B., Clark, L. B., Yasayko, S. A., Wilkinson, J. E. et al., Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet. 2001. 27: 68 - 73.; Bacchetta, R., Passerini, L., Gambineri, E., Dai, M., Allan, S. E., Perroni, L., Dagna-Bricarelli, F. et al., Defective regulatory and effector T cell functions in patients with FOXP3 mutations. J. Clin. Invest. 2006. 116: 1713 - 1722.; Klein, L., Robey, E. A. and Hsieh, C. S., Central CD4+ T cell tolerance: deletion versus regulatory T cell differentiation. Nat. Rev. Immunol. 2019. 19: 7 - 18.; Tanoue, T., Atarashi, K. and Honda, K., Development and maintenance of intestinal regulatory T cells. Nat. Rev. Immunol. 2016. 16: 295 - 309.; Thornton, A. M., Korty, P. E., Tran, D. Q., Wohlfert, E. A., Murray, P. E., Belkaid, Y. and Shevach, E. M., Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J. Immunol. 2010. 184: 3433 - 3441.; Weiss, J. M., Bilate, A. M., Gobert, M., Ding, Y., Curotto de Lafaille, M. A., Parkhust, C. N., Xiong, H. et al., Neuropilin-1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ Treg cells. J. Exp. Med. 2012. 209: 1723 - 1742.; Sefik, E., Geva-Zatorsky, N., Oh, S., Konnikova, L., Zemmour, D., McGuire, A. M., Burzyn, D. et al., Individual intestinal symbionts induce a distinct population of RORgamma+ regulatory T cells. Science 2015. 349: 993 - 997.; Ohnmacht, C., Park, J. H., Cording, S., Wing, J. B., Atarashi, K., Obata, Y., Gaboriau-Routhiau, V. et al., The microbiota regulates type 2 immunity through RORgammat+ T cells. Science 2015. 349: 989 - 993.; Akimova, T., Beier, U. H., Wang, L., Levine, M. H. and Hancock, W. W., Helios expression is a marker of T cell activation and proliferation. PLoS One 2011. 6: e24226.; Kim, B.-S., Lu, H., Ichiyama, K., Chen, X., Zhang, Y.-B., Mistry, N. A., Tanaka, K. et al., Generation of RORγt+ Antigen-Specific T Regulatory 17 Cells from Foxp3+ Precursors in Autoimmunity. Cell Rep. 2017. 21: 195 - 207.; Freud, A. G. and Caligiuri, M. A., Human natural killer cell development. Immunol. Rev. 2006. 214: 56 - 72.; Yang, J., Zou, M., Pezoldt, J., Zhou, X. and Huehn, J., Thymus-derived Foxp3+ regulatory T cells upregulate RORgammat expression under inflammatory conditions. J. Mol. Med. (Berl) 2018. 96: 1387 - 1394.; Delacher, M., Schreiber, L., Richards, D. M., Farah, C., Feuerer, M. and Huehn, J., Transcriptional Control of Regulatory T cells. Curr. Topics Microbiol. Immunol. 2014. 381: 83 - 124.; Owen, D. L., Mahmud, S. A., Sjaastad, L. E., Williams, J. B., Spanier, J. A., Simeonov, D. R., Ruscher, R. et al., Thymic regulatory T cells arise via two distinct developmental programs. Nat. Immunol. 2019. 20: 195 - 205.; Toker, A., Engelbert, D., Garg, G., Polansky, J. K., Floess, S., Miyao, T., Baron, U. et al., Active demethylation of the Foxp3 locus leads to the generation of stable regulatory T cells within the thymus. J. Immunol. 2013. 190: 3180 - 3188.; Thiault, N., Darrigues, J., Adoue, V., Gros, M., Binet, B., Perals, C., Leobon, B. et al., Peripheral regulatory T lymphocytes recirculating to the thymus suppress the development of their precursors. Nat. Immunol. 2015. 16: 628 - 634.; Cowan, J. E., McCarthy, N. I. and Anderson, G., CCR7 controls thymus recirculation, but not production and emigration, of Foxp3+ T cells. Cell Rep. 2016. 14: 1041 - 1048.; Panduro, M., Benoist, C. and Mathis, D., Tissue Tregs. Annu. Rev. Immunol. 2016. 34: 609 - 633.; Feuerer, M., Herrero, L., Cipolletta, D., Naaz, A., Wong, J., Nayer, A., Lee, J. et al., Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 2009. 15: 930 - 939.; Cipolletta, D., Feuerer, M., Li, A., Kamei, N., Lee, J., Shoelson, S. E., Benoist, C. et al., PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 2012. 486: 549 - 553.; Kolodin, D., van Panhuys, N., Li, C., Magnuson, A. M., Cipolletta, D., Miller, C. M., Wagers, A., Germain, R. N. et al., Antigen- and cytokine-driven accumulation of regulatory T cells in visceral adipose tissue of lean mice. Cell Metab. 2015. 21: 543 - 557.; Burzyn, D., Kuswanto, W., Kolodin, D., Shadrach, J. L., Cerletti, M., Jang, Y., Sefik, E. et al., A special population of regulatory T cells potentiates muscle repair. Cell 2013. 155: 1282 - 1295.; Arpaia, N., Green, J. A., Moltedo, B., Arvey, A., Hemmers, S., Yuan, S., Treuting, P. M. et al., A distinct function of regulatory T cells in tissue protection. Cell 2015. 162: 1078 - 1089.; Dombrowski, Y., O’Hagan, T., Dittmer, M., Penalva, R., Mayoral, S. R., Bankhead, P., Fleville, S. et al., Regulatory T cells promote myelin regeneration in the central nervous system. Nat Neurosci 2017. 20: 674 - 680.; Ali, N., Zirak, B., Rodriguez, R. S., Pauli, M. L., Truong, H. A., Lai, K., Ahn, R. et al., Regulatory T cells in skin facilitate epithelial stem cell differentiation. Cell 2017. 169: 1119 - 1129 e1111.; Delacher, M., Imbusch, C. D., Weichenhan, D., Breiling, A., Hotz-Wagenblatt, A., Trager, U., Hofer, A. C. et al., Genome-wide DNA-methylation landscape defines specialization of regulatory T cells in tissues. Nat. Immunol. 2017.; Delacher, M., Schmidl, C., Herzig, Y., Breloer, M., Hartmann, W., Brunk, F., Kägebein, D. et al., Rbpj expression in regulatory T cells is critical for restraining TH2 responses. Nat. Commun. 2019. 10: 1621.; Carding, S. R. and Egan, P. J., Gammadelta T cells: functional plasticity and heterogeneity. Nat. Rev. Immunol. 2002. 2: 336 - 345.; Bonneville, M., O’Brien, R. L. and Born, W. K., γδ T cell effector functions: a blend of innate programming and acquired plasticity. Nat. Rev. Immunol. 2010. 10: 467 - 478.; Prinz, I., Silva-Santos, B. and Pennington, D. J., Functional development of gammadelta T cells. Eur. J. Immunol. 2013. 43: 1988 - 1994.; Heilig, J. S. and Tonegawa, S., Diversity of murine gamma genes and expression in fetal and adult T lymphocytes. Nature 1986. 322: 836 - 840.; Garman, R. D., Doherty, P. J. and Raulet, D. H., Diversity, rearrangement, and expression of murine T cell gamma genes. Cell 1986. 45: 733 - 742.; Pereira, P., Hermitte, V., Lembezat, M. P., Boucontet, L., Azuara, V. and Grigoriadou, K., Developmentally regulated and lineage-specific rearrangement of T cell receptor Valpha/delta gene segments. Eur. J. Immunol. 2000. 30: 1988 - 1997.; Mallick-Wood, C. A., Lewis, J. M., Richie, L. I., Owen, M. J., Tigelaar, R. E. and Hayday, A. C., Conservation of T cell receptor conformation in epidermal gammadelta cells with disrupted primary Vgamma gene usage. Science 1998. 279: 1729 - 1733.; Roark, C. L., Aydintug, M. K., Lewis, J., Yin, X., Lahn, M., Hahn, Y. S., Born, W. K. et al., Subset-specific, uniform activation among V gamma 6/V delta 1+ gamma delta T cells elicited by inflammation. J. Leukoc. Biol. 2004. 75: 68 - 75.; Goodman, T. and Lefrancois, L., Intraepithelial lymphocytes. Anatomical site, not T cell receptor form, dictates phenotype and function. J. Exp. Med. 1989. 170: 1569 - 1581.; Prinz, I., Sansoni, A., Kissenpfennig, A., Ardouin, L., Malissen, M. and Malissen, B., Visualization of the earliest steps of gammadelta T cell development in the adult thymus. Nat. Immunol. 2006. 7: 995 - 1003.; Koenecke, C., Chennupati, V., Schmitz, S., Malissen, B., Forster, R. and Prinz, I., In vivo application of mAb directed against the gammadelta TCR does not deplete but generates -invisible- gammadelta T cells. Eur. J. Immunol. 2009. 39: 372 - 379.; Sandrock, I., Reinhardt, A., Ravens, S., Binz, C., Wilharm, A., Martins, J., Oberdorfer, L. et al., Genetic models reveal origin, persistence and non-redundant functions of IL-17-producing gammadelta T cells. J. Exp. Med. 2018. 215: 3006 - 3018.; Ribot, J. C., deBarros, A., Pang, D. J., Neves, J. F., Peperzak, V., Roberts, S. J., Girardi, M. et al., CD27 is a thymic determinant of the balance between interferon-gamma- and interleukin 17-producing gammadelta T cell subsets. Nat. Immunol. 2009. 10: 427 - 436.; Haas, J. D., Gonzalez, F. H., Schmitz, S., Chennupati, V., Fohse, L., Kremmer, E., Forster, R. et al., CCR6 and NK1.1 distinguish between IL-17A and IFN-gamma-producing gammadelta effector T cells. Eur. J. Immunol. 2009. 39: 3488 - 3497.; Lombes, A., Durand, A., Charvet, C., Riviere, M., Bonilla, N., Auffray, C., Lucas, B. et al., Adaptive Immune-like gamma/delta T Lymphocytes Share Many Common Features with Their alpha/beta T Cell Counterparts. J. Immunol. 2015. 195: 1449 - 1458.; Itohara, S., Farr, A. G., Lafaille, J. J., Bonneville, M., Takagaki, Y., Haas, W. and Tonegawa, S., Homing of a gamma delta thymocyte subset with homogeneous T-cell receptors to mucosal epithelia. Nature 1990. 343: 754 - 757.; Shibata, K., Yamada, H., Hara, H., Kishihara, K. and Yoshikai, Y., Resident Vdelta1+ gammadelta T cells control early infiltration of neutrophils after Escherichia coli infection via IL-17 production. J. Immunol. 2007. 178: 4466 - 4472.; Papotto, P. H., Reinhardt, A., Prinz, I. and Silva-Santos, B., Innately versatile: gammadelta17 T cells in inflammatory and autoimmune diseases. J. Autoimmun. 2018. 87: 26 - 37.; Ohteki, T. and MacDonald, H. R., Major histocompatibility complex class I related molecules control the development of CD4+8- and CD4-8- subsets of natural killer 1.1+ T cell receptor-alpha/beta+ cells in the liver of mice. J. Exp. Med. 1994. 180: 699 - 704.; Makino, Y., Kanno, R., Ito, T., Higashino, K. and Taniguchi, M., Predominant expression of invariant V alpha 14+ TCR alpha chain in NK1.1+ T cell populations. Int. Immunol. 1995. 7: 1157 - 1161.; Wei, D. G., Curran, S. A., Savage, P. B., Teyton, L. and Bendelac, A., Mechanisms imposing the Vbeta bias of Valpha14 natural killer T cells and consequences for microbial glycolipid recognition. J. Exp. Med. 2006. 203: 1197 - 1207.; Lantz, O. and Bendelac, A., An invariant T cell receptor alpha chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD4-8- T cells in mice and humans. J. Exp. Med. 1994. 180: 1097 - 1106.; Bendelac, A., Lantz, O., Quimby, M. E., Yewdell, J. W., Bennink, J. R. and Brutkiewicz, R. R., CD1 recognition by mouse NK1+ T lymphocytes. Science. 1995. 268: 863 - 865.; Benlagha, K., Weiss, A., Beavis, A., Teyton, L. and Bendelac, A., In vivo identification of glycolipid antigen-specific T cells using fluorescent Cd1d tetramers. J. Exp. Med. 2000. 191: 1895 - 1904.; Matsuda, J. L., Naidenko, O. V., Gapin, L., Nakayama, T., Taniguchi, M., Wang, C. R., Koezuka, Y. et al., Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J. Exp. Med. 2000. 192: 741 - 754.; Moran, A. E., Holzapfel, K. L., Xing, Y., Cunningham, N. R., Maltzman, J. S., Punt, J. and Hogquist, K. A., T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. J. Exp. Med. 2011. 208: 1279 - 1289.; Savage, A. K., Constantinides, M. G., Han, J., Picard, D., Martin, E., Li, B., Lantz, O. et al., The transcription factor PLZF directs the effector program of the NKT cell lineage. Immunity 2008. 29: 391 - 403.; Kovalovsky, D., Uche, O. U., Eladad, S., Hobbs, R. M., Yi, W., Alonzo, E., Chua, K. et al., The BTB-zinc finger transcriptional regulator PLZF controls the development of invariant natural killer T cell effector functions. Nat. Immunol. 2008. 9: 1055 - 1064.; Benlagha, K., Kyin, T., Beavis, A., Teyton, L. and Bendelac, A., A thymic precursor to the NK T cell lineage. Science 2002. 296: 553 - 555.; Benlagha, K., Wei, D. G., Veiga, J., Teyton, L. and Bendelac, A., Characterization of the early stages of thymic NKT cell development. J. Exp. Med. 2005. 202: 485 - 492.; Pellicci, D. G., Hammond, K. J. L., Uldrich, A. P., Baxter, A. G., Smyth, M. J. and Godfrey, D. I., A natural killer T (NKT) cell developmental pathway iInvolving a thymus-dependent NK1.1(-)CD4(+) CD1d-dependent precursor stage. J. Exp. Med. 2002. 195: 835 - 844.; Wang, H. and Hogquist, K. A., CCR7 defines a precursor for murine iNKT cells in thymus and periphery. Elife 2018. 7.; Berzins, S. P., McNab, F. W., Jones, C. M., Smyth, M. J. and Godfrey, D. I., Long-term retention of mature NK1.1+ NKT cells in the thymus. J. Immunol. 2006. 176: 4059 - 4065.; Lee, Y. J., Holzapfel, K. L., Zhu, J., Jameson, S. C. and Hogquist, K. A., Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells. Nat. Immunol. 2013. 14: 1146 - 1154.; Crosby, C. M. and Kronenberg, M., Tissue-specific functions of invariant natural killer T cells. Nat. Rev. Immunol. 2018. 18: 559 - 574.; Salou, M., Legoux, F., Gilet, J., Darbois, A., Du Halgouet, A., Alonso, R., Richer, W. et al., A common transcriptomic program acquired in the thymus defines tissue residency of MAIT and NKT subsets. J. Exp. Med. 2019. 216: 133 - 151.; Brigl, M., Tatituri, R. V. V., Watts, G. F. M., Bhowruth, V., Leadbetter, E. A., Barton, N., Cohen, N. R. et al., Innate and cytokine-driven signals, rather than microbial antigens, dominate in natural killer T cell activation during microbial infection. J. Exp. Med. 2011. 208: 1163 - 1177.; Velazquez, P., Cameron, T. O., Kinjo, Y., Nagarajan, N., Kronenberg, M. and Dustin, M. L., Cutting edge: activation by innate cytokines or microbial antigens can cause arrest of natural killer T cell patrolling of liver sinusoids. J. Immunol. 2008. 180: 2024 - 2028.; Salio, M., Silk, J. D., Jones, E. Y. and Cerundolo, V., Biology of CD1- and MR1-restricted T cells. Annu. Rev. Immunol. 2014. 32: 323 - 366.; Wang, H. and Hogquist, K. A., How lipid-specific T cells become effectors: the differentiation of iNKT subsets. Front. Immunol. 2018. 9: 1450.; Jungblut, M., Oeltze, K., Zehnter, I., Hasselmann, D. and Bosio, A., Standardized preparation of single-cell suspensions from mouse lung tissue using the gentleMACS dissociator. J. Vis. Exp. 2009.; Liu, Y., Goff, R. D., Zhou, D., Mattner, J., Sullivan, B. A., Khurana, A., Cantu, C. et al., A modified alpha-galactosyl ceramide for staining and stimulating natural killer T cells. J. Immunol. Methods 2006. 312: 34 - 39.; Lee, Y. J., Wang, H., Starrett, G. J., Phuong, V., Jameson, S. C. and Hogquist, K. A., Tissue-specific distribution of iNKT cells impacts their cytokine response. Immunity 2015. 43: 566 - 578.; ZiÄ tara, N., Å yszkiewicz, M., Witzlau, K., Naumann, R., Hurwitz, R., Langemeier, J., Bohne, J. et al., Critical role for miR-181a/b-1 in agonist selection of invariant natural killer T cells. Proc. Natl. Acad. Sci. U S A. 2013. 110: 7407 - 7412.; Winter, S. J., Kunze-Schumacher, H., Imelmann, E., Grewers, Z., Osthues, T. and Krueger, A., MicroRNA miR-181a/b-1 controls MAIT cell development. Immunol. Cell. Biol. 2019. 97: 190 - 202.; Treiner, E., Duban, L., Bahram, S., Radosavljevic, M., Wanner, V., Tilloy, F., Affaticati, P. et al., Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 2003. 422: 164 - 169.; Porcelli, S., Yockey, C. E., Brenner, M. B. and Balk, S. P., Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD4-8- alpha/beta T cells demonstrates preferential use of several V beta genes and an invariant TCR alpha chain. J. Exp. Med. 1993. 178: 1 - 16.; Tilloy, F., Treiner, E., Park, S. H., Garcia, C., Lemonnier, F., La Salle, H. de, Bendelac, A., Bonneville, M. et al., An invariant T cell receptor alpha chain defines a novel TAP-independent major histocompatibility complex class Ib-restricted alpha/beta T cell subpopulation in mammals. J. Exp. Med. 1999. 189: 1907 - 1921.; Rahimpour, A., Koay, H. F., Enders, A., Clanchy, R., Eckle, S. B. G., Meehan, B., Chen, Z. et al., Identification of phenotypically and functionally heterogeneous mouse mucosal-associated invariant T cells using MR1 tetramers. J. Exp. Med. 2015. 212: 1095 - 1108.; Reantragoon, R., Corbett, A. J., Sakala, I. G., Gherardin, N. A., Furness, J. B., Chen, Z., Eckle, S. B. G. et al., Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells. J. Exp. Med. 2013. 210: 2305 - 2320.; Koay, H. F., Gherardin, N. A., Enders, A., Loh, L., Mackay, L. K., Almeida, C. F., Russ, B. E. et al., A three-stage intrathymic development pathway for the mucosal-associated invariant T cell lineage. Nat. Immunol. 2016. 17: 1300 - 1311.; Cui, Y., Franciszkiewicz, K., Mburu, Y. K., Mondot, S., Le Bourhis, L., Premel, V., Martin, E. et al., Mucosal-associated invariant T cell-rich congenic mouse strain allows functional evaluation. J. Clin. Invest. 2015. 125: 4171 - 4185.; Salou, M., Franciszkiewicz, K. and Lantz, O., MAIT cells in infectious diseases. Curr. Opin. Immunol. 2017. 48: 7 - 14.; Corbett, A. J., Eckle, S. B., Birkinshaw, R. W., Liu, L., Patel, O., Mahony, J., Chen, Z. et al., T-cell activation by transitory neo-antigens derived from distinct microbial pathways. Nature 2014. 509: 361 - 365.; Olivares-Villagomez, D. and Van Kaer, L., Intestinal Intraepithelial Lymphocytes: Sentinels of the Mucosal Barrier. Trends Immunol. 2018. 39: 264 - 275.; Ma, H., Tao, W. and Zhu, S., T lymphocytes in the intestinal mucosa: defense and tolerance. Cell Mol. Immunol. 2019.; Cheroutre, H., Lambolez, F. and Mucida, D., The light and dark sides of intestinal intraepithelial lymphocytes. Nat. Rev. Immunol. 2011. 11: 445 - 456.; Georgiev, H., Ravens, I., Papadogianni, G., Malissen, B., Forster, R. and Bernhardt, G., Blocking the ART2.2/P2X7-system is essential to avoid a detrimental bias in functional CD4 T cell studies. Eur. J. Immunol. 2018. 48: 1078 - 1081.; Konjar, S., Ferreira, C., Blankenhaus, B. and Veldhoen, M., Intestinal Barrier Interactions with Specialized CD8 T Cells. Front. Immunol. 2017. 8: 1281.; Chennupati, V., Worbs, T., Liu, X., Malinarich, F. H., Schmitz, S., Haas, J. D., Malissen, B. et al., Intra- and intercompartmental movement of gammadelta T cells: intestinal intraepithelial and peripheral gammadelta T cells represent exclusive nonoverlapping populations with distinct migration characteristics. J. Immunol. 2010. 185: 5160 - 5168.; Malinarich, F. H., Grabski, E., Worbs, T., Chennupati, V., Haas, J. D., Schmitz, S., Candia, E. et al., Constant TCR triggering suggests that the TCR expressed on intestinal intraepithelial gammadelta T cells is functional in vivo. Eur. J. Immunol. 2010. 40: 3378 - 3388.; Martina, M. N., Noel, S., Saxena, A., Rabb, H. and Hamad, A. R., Double negative (DN) alphabeta T cells: misperception and overdue recognition. Immunol. Cell Biol. 2015. 93: 305 - 310.; Gerlach, C., van Heijst, J. W., Swart, E., Sie, D., Armstrong, N., Kerkhoven, R. M., Zehn, D. et al., One naive T cell, multiple fates in CD8+ T cell differentiation. J. Exp. Med. 2010. 207: 1235 - 1246.; Appay, V., van Lier, R. A., Sallusto, F. and Roederer, M., Phenotype and function of human T lymphocyte subsets: consensus and issues. Cytometry A 2008. 73: 975 - 983.; Costantini, A., Mancini, S., Giuliodoro, S., Butini, L., Regnery, C. M., Silvestri, G. and Montroni, M., Effects of cryopreservation on lymphocyte immunophenotype and function. J. Immunol. Methods 2003. 278: 145 - 155.; van den Broek, T., Borghans, J. A. M. and van Wijk, F., The full spectrum of human naive T cells. Nat. Rev. Immunol. 2018. 18: 363 - 373.; Sallusto, F., Lenig, D., Mackay, C. R. and Lanzavecchia, A., Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J. Exp. Med. 1998. 187: 875 - 883.; Cosmi, L., Annunziato, F., Galli, M. I. G., Maggi, R. M. E., Nagata, K. and Romagnani, S., CRTH2 is the most reliable marker for the detection of circulating human type 2 Th and type 2 T cytotoxic cells in health and disease. Eur. J. Immunol. 2000. 30: 2972 - 2979.; Mahnke, Y. D., Beddall, M. H. and Roederer, M., OMIP-017: human CD4(+) helper T-cell subsets including follicular helper cells. Cytometry A 2013. 83: 439 - 440.; Ouyang, W., Ranganath, S. H., Weindel, K., Bhattacharya, D., Murphy, T. L., Sha, W. C. and Murphy, K. M., Inhibition of Th1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity 1998. 9: 745 - 755.; Kanhere, A., Hertweck, A., Bhatia, U., Gokmen, M. R., Perucha, E., Jackson, I., Lord, G. M. et al., T-bet and GATA3 orchestrate Th1 and Th2 differentiation through lineage-specific targeting of distal regulatory elements. Nat. Commun. 2012. 3: 1268.; Staudt, V., Bothur, E., Klein, M., Lingnau, K., Reuter, S., Grebe, N., Gerlitzki, B. et al., Interferon-regulatory factor 4 is essential for the developmental program of T helper 9 cells. Immunity 2010. 33: 192 - 202.; Maggi, L., Santarlasci, V., Capone, M., Peired, A., Frosali, F., Crome, S. Q., Querci, V. et al., CD161 is a marker of all human IL-17-producing T-cell subsets and is induced by RORC. Eur. J. Immunol. 2010. 40: 2174 - 2181.; Zielinski, C. E., Mele, F., Aschenbrenner, D., Jarrossay, D., Ronchi, F., Gattorno, M., Monticelli, S. et al., Pathogen-induced human TH17 cells produce IFN-gamma or IL-10 and are regulated by IL-1beta. Nature 2012. 484: 514 - 518.; Cosmi, L., Maggi, L., Santarlasci, V., Liotta, F. and Annunziato, F., T helper cells plasticity in inflammation. Cytometry A 2014. 85: 36 - 42.; Acosta-Rodriguez, E. V., Rivino, L., Geginat, J., Jarrossay, D., Gattorno, M., Lanzavecchia, A., Sallusto, F. et al., Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat. Immunol. 2007. 8: 639 - 646.; Gagliani, N., Amezcua Vesely, M. C., Iseppon, A., Brockmann, L., Xu, H., Palm, N. W., de Zoete, M. R., Licona-Limon, P. et al., Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature 2015. 523: 221 - 225.; Jankovic, D., Kugler, D. G. and Sher, A., IL-10 production by CD4+ effector T cells: a mechanism for self-regulation. Mucosal Immunol. 2010. 3: 239 - 246.; Zhang, P., Lee, J. S., Gartlan, K. H., Schuster, I. S., Comerford, I., Varelias, A., Ullah, M. A. et al., Eomesodermin promotes the development of type 1 regulatory T (TR1) cells. Sci. Immunol. 2017. 2: eaah7152.; Gruarin, P., Maglie, S., De Simone, M., Haringer, B., Vasco, C., Ranzani, V., Bosotti, R., Noddings, J. S. et al., Eomesodermin controls a unique differentiation program in human IL-10 and IFN-gamma coproducing regulatory T cells. Eur. J. Immunol. 2019. 49: 96 - 111.; Basu, R., O’Quinn, D. B., Silberger, D. J., Schoeb, T. R., Fouser, L., Ouyang, W., Hatton, R. D. et al., Th22 cells are an important source of IL-22 for host protection against enteropathogenic bacteria. Immunity 2012. 37: 1061 - 1075.; Duhen, T., Geiger, R., Jarrossay, D., Lanzavecchia, A. and Sallusto, F., Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat. Immunol. 2009. 10: 857 - 863.; Morita, R., Schmitt, N., Bentebibel, S. E., Ranganathan, R., Bourdery, L., Zurawski, G., Foucat, E. et al., Human blood CXCR5(+)CD4(+) T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity 2011. 34: 108 - 121.; Glatman Zaretsky, A., Taylor, J. J., King, I. L., Marshall, F. A., Mohrs, M. and Pearce, E. J., T follicular helper cells differentiate from Th2 cells in response to helminth antigens. J. Exp. Med. 2009. 206: 991 - 999.; Oja, A. E., Vieira Braga, F. A., Remmerswaal, E. B., Kragten, N. A., Hertoghs, K. M., Zuo, J., Moss, P. A., van Lier, R. A., van Gisbergen, K. P. et al., The transcription factor Hobit identifies human cytotoxic CD4(+) T cells. Front. Immunol. 2017. 8: 325.; Hamann, D., Baars, P. A., Rep, M. H., Hooibrink, B., Kerkhof-Garde, S. R., Klein, M. R. and van Lier, R. A., Phenotypic and functional separation of memory and effector human CD8+ T cells. J. Exp. Med. 1997. 186: 1407 - 1418.; Appay, V., Dunbar, P. R., Callan, M., Klenerman, P., Gillespie, G. M., Papagno, L., Ogg, G. S. et al., Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat. Med. 2002. 8: 379 - 385.; Sallusto, F., Lenig, D., Forster, R., Lipp, M. and Lanzavecchia, A., Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999. 401: 708 - 712.; van Aalderen, M. C., Remmerswaal, E. B., Verstegen, N. J., Hombrink, P., ten Brinke, A., Pircher, H., Kootstra, N. A., ten Berge, I. J. et al., Infection history determines the differentiation state of human CD8+ T cells. J. Virol. 2015. 89: 5110 - 5123.; van Leeuwen, E. M., Remmerswaal, E. B., Vossen, M. T., Rowshani, A. T., Wertheim-van Dillen, P. M., van Lier, R. A. and ten Berge, I. J., Emergence of a CD4+CD28- granzyme B+, cytomegalovirus-specific T cell subset after recovery of primary cytomegalovirus infection. J. Immunol. 2004. 173: 1834 - 1841.; Huster, K. M., Busch, V., Schiemann, M., Linkemann, K., Kerksiek, K. M., Wagner, H. and Busch, D. H., Selective expression of IL-7 receptor on memory T cells identifies early CD40L-dependent generation of distinct CD8+ memory T cell subsets. Proc. Natl. Acad. Sci. U. S. A. 2004. 101: 5610 - 5615.; Hand, T. W., Morre, M. and Kaech, S. M., Expression of IL-7 receptor alpha is necessary but not sufficient for the formation of memory CD8 T cells during viral infection. Proc. Natl. Acad. Sci. USA 2007. 104: 11730 - 11735.; Shay, T., Jojic, V., Zuk, O., Rothamel, K., Puyraimond-Zemmour, D., Feng, T., Wakamatsu, E. et al., Conservation and divergence in the transcriptional programs of the human and mouse immune systems. Proc. Natl. Acad. Sci. USA 2013. 110: 2946 - 2951.; Remmerswaal, E. B. M., Hombrink, P., Nota, B., Pircher, H., Ten Berge, I. J. M., van Lier, R. A. W. and van Aalderen, M. C., Expression of IL-7Ralpha and KLRG1 defines functionally distinct CD8(+) T-cell populations in humans. Eur. J. Immunol. 2019. 49: 694 - 708.; Intlekofer, A. M., Takemoto, N., Wherry, E. J., Longworth, S. A., Northrup, J. T., Palanivel, V. R., Mullen, A. C. et al., Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat. Immunol. 2005. 6: 1236 - 1244.; Kragten, N. A. M., Behr, F. M., Vieira Braga, F. A., Remmerswaal, E. B. M., Wesselink, T. H., Oja, A. E., Hombrink, P. et al., Blimp-1 induces and Hobit maintains the cytotoxic mediator granzyme B in CD8 T cells. Eur. J. Immunol. 2018. 48: 1644 - 1662.; Vieira Braga, F. A., Hertoghs, K. M., Kragten, N. A., Doody, G. M., Barnes, N. A., Remmerswaal, E. B., Hsiao, C. C. et al., Blimp-1 homolog Hobit identifies effector-type lymphocytes in humans. Eur. J. Immunol. 2015. 45: 2945 - 2958.; Kim, H. J., Barnitz, R. A., Kreslavsky, T., Brown, F. D., Moffett, H., Lemieux, M. E., Kaygusuz, Y. et al., Stable inhibitory activity of regulatory T cells requires the transcription factor Helios. Science 2015. 350: 334 - 339.; Sathaliyawala, T., Kubota, M., Yudanin, N., Turner, D., Camp, P., Thome, J. J., Bickham, K. L. et al., Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity 2013. 38: 187 - 197.; Thome, J. J. C., Yudanin, N., Ohmura, Y., Kubota, M., Grinshpun, B., Sathaliyawala, T., Kato, T. et al., Spatial map of human t cell compartmentalization and maintenance over decades of life. Cell 2014. 159: 814 - 828.; Okhrimenko, A., Grün, J. R., Westendorf, K., Fang, Z., Reinke, S., von Roth, P., Wassilew, G. et al., Human memory T cells from the bone marrow are resting and maintain long-lasting systemic memory. 2014. 111: 9229 - 9234.; Watanabe, R., Gehad, A., Yang, C., Scott, L. L., Teague, J. E., Schlapbach, C., Elco, C. P. et al., Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells. Sci. Transl. Med. 2015. 7: 279ra39.; Hombrink, P., Helbig, C., Backer, R. A., Piet, B., Oja, A. E., Stark, R., Brasser, G., Jongejan, A., Jonkers, R. E., Nota, B., Basak, O., Clevers, H. C., Moerland, P. D., Amsen, D., van Lier, R. A. Programs for the persistence, vigilance and control of human CD8+ lung-resident memory T cells. Nat. Immunol. 2016. 17: 1467 - 1478.; Kumar, B. V., Ma, W., Miron, M., Granot, T., Guyer, R. S., Carpenter, D. J., Senda, T. et al., Human tissue-resident memory T cells are defined by core transcriptional and functional signatures in lymphoid and mucosal sites. Cell Rep. 2017. 20: 2921 - 2934.; Oja, A. E., Piet, B., Helbig, C., Stark, R., van der Zwan, D., Blaauwgeers, H., Remmerswaal, E. B. M. et al., Trigger-happy resident memory CD4+ T cells inhabit the human lungs. Mucosal Immunol. 2018. 11: 654 - 667.; Smolders, J., Heutinck, K. M., Fransen, N. L., Remmerswaal, E. B. M., Hombrink, P., Ten Berge, I. J. M., van Lier, R. A. W. et al., Tissue-resident memory T cells populate the human brain. Nat. Commun. 2018. 9: 4593.; Pascutti, M. F., Geerman, S., Collins, N., Brasser, G., Nota, B., Stark, R., Behr, F. et al., Peripheral and systemic antigens elicit an expandable pool of resident memory CD8 + T cells in the bone marrow. Eur. J. Immunol. 2019. 49: 853 - 872.; Snyder, M. E., Finlayson, M. O., Connors, T. J., Dogra, P., Senda, T., Bush, E., Carpenter, D. et al., Generation and persistence of human tissue-resident memory T cells in lung transplantation. Sci. Immunol. 2019. 4: eaav5581.; Skon, C. N., Lee, J. Y., Anderson, K. G., Masopust, D., Hogquist, K. A. and Jameson, S. C., Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells. Nat. Immunol. 2013. 14: 1285 - 1293.; Steinert, E. M. et al., Quantifying memory CD8 T cells reveals regionalization of immunosurveillance. Cell 2015. 161: 737 - 749.; Kumar, B. V., Connors, T. J. and Farber, D. L., Human T Cell Development, Localization, and Function throughout Life. Immunity 2018. 48: 202 - 213.; Cepek, K. L. et al., Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the alpha E beta 7 integrin. Nature 1994. 372: 190 - 193.; Cheuk, S., Schlums, H., Bryceson, Y. T., Eidsmo, L. and Tjernlund, A., CD49a Expression Defines Tissue-Resident CD8 + T Cells Poised for Cytotoxic Function in Human Skin. Immunity 2017. 1 - 14. https://doi.org/10.1016/j.immuni.2017.01.009Test; Webb, J. R., Milne, K., Watson, P., DeLeeuw, R. J. and Nelson, B. H., Tumor-infiltrating lymphocytes expressing the tissue resident memory marker cd103 are associated with increased survival in high-grade serous ovarian cancer. Clin. Cancer Res. 2014. 20: 434 - 444.; Djenidi, F., Adam, J., Goubar, A., Durgeau, A., Meurice, G., de Montpréville, V., Validire, P. et al., CD8 + CD103 + Tumor-Infiltrating Lymphocytes Are Tumor-Specific Tissue-Resident Memory T Cells and a Prognostic Factor for Survival in Lung Cancer Patients. J. Immunol. 2015. 194: 3475 - 3486.; Koh, J., Kim, S., Kim, M. Y., Go, H., Jeon, Y. K. and Chung, D. H., Prognostic implications of intratumoral CD103+ tumor-infiltrating lymphocytes in pulmonary squamous cell carcinoma. Oncotarget 2017. 8: 13762 - 13769.; Ganesan, A.-P., Clarke, J., Wood, O., Garrido-Martin, E. M., Chee, S. J., Mellows, T., Samaniego-Castruita, D., Singh, D. et al., Tissue-resident memory features are linked to the magnitude of cytotoxic T cell responses in human lung cancer. Nat. Immunol. 2017. 18: 940 - 950.; Oja, A. E., Piet, B., van der Zwan, D., Blaauwgeers, H., Mensink, M., de Kivit, S., Borst, J. et al., Functional heterogeneity of CD4+ tumor-infiltrating lymphocytes with a resident memory phenotype in NSCLC. Front. Immunol. 2018. 9: 2654.; Gu-Trantien, C. et al., CXCL13-producing T FH cells link immune suppression and adaptive memory in human breast cancer. JCI Insight 2017. 2: 1 - 17.; Thommen, D. D., Koelzer, V. H., Herzig, P., Roller, A., Trefny, M., Dimeloe, S., Kiialainen, A. et al., A transcriptionally and functionally distinct PD-1 + CD8 + T cell pool with predictive potential in non-small cell lung cancer treated with PD-1 blockade. Nat. Med. 2018. 24.; Simoni, Y. et al., Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 2018. 557: 575 - 579.; Holt, P. G., Robinson, B. W., Reid, M., Kees, U. R., Warton, A., Dawson, V. H., Rose, A., Schon-Hegrad, M. et al., Extraction of immune and inflammatory cells from human lung parenchyma: evaluation of an enzymatic digestion procedure. Clin. Exp. Immunol. 1986. 66: 188 - 200.; Piet, B., de Bree, G. J., Smids-Dierdorp, B. S., van der Loos, C. M., Remmerswaal, E. B., von der Thüsen, J. H., van Haarst, J. M. et al., CD8+ T cells with an intraepithelial phenotype upregulate cytotoxic function upon influenza infection in human lung. J. Clin. Invest. 2011. 121: 2254 - 2263.; Clark, R. A., Chong, B., Mirchandani, N., Brinster, N. K., Yamanaka, K., Dowgiert, R. K. and Kupper, T. S., The Vast Majority of CLA + T Cells Are Resident in Normal Skin. J. Immunol. 2006. 176: 4431 - 4439.; Bektas, A., Schurman, S. H., Sen, R. and Ferrucci, L., Human T cell immunosenescence and inflammation in aging. J. Leukoc. Biol. 2017. 102: 977 - 988.; Costantini, E., D’Angelo, C. and Reale, M., The role of immunosenescence in neurodegenerative diseases. Mediators Inflamm. 2018. 2018: 6039171.; Miyamoto, K., Miyake, S. and Yamamura, T., A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 2001. 413: 531 - 534.; Franceschi, C., Capri, M., Monti, D., Giunta, S., Olivieri, F., Sevini, F., Panourgia, M. P. et al., Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech. Ageing Dev. 2007. 128: 92 - 105.; Derhovanessian, E., Maier, A. B., Hahnel, K., Zelba, H., de Craen, A. J., Roelofs, H., Slagboom, E. P. et al., Lower proportion of naive peripheral CD8+ T cells and an unopposed pro-inflammatory response to human Cytomegalovirus proteins in vitro are associated with longer survival in very elderly people. Age (Dordr) 2013. 35: 1387 - 1399.; Naylor, K., Li, G., Vallejo, A. N., Lee, W. W., Koetz, K., Bryl, E., Witkowski, J. et al., The influence of age on T cell generation and TCR diversity. J. Immunol. 2005. 174: 7446 - 7452.; Olsson, J., Wikby, A., Johansson, B., Lofgren, S., Nilsson, B. O. and Ferguson, F. G., Age-related change in peripheral blood T-lymphocyte subpopulations and cytomegalovirus infection in the very old: the Swedish longitudinal OCTO immune study. Mech. Ageing Dev. 2000. 121: 187 - 201.; Rubino, G., Bulati, M., Aiello, A., Aprile, S., Gambino, C. M., Gervasi, F., Caruso, C. et al., Sicilian centenarian offspring are more resistant to immune ageing. Aging Clin. Exp. Res. 2019. 31: 125 - 133.; Sanderson, S. L. and Simon, A. K., In aged primary T cells, mitochondrial stress contributes to telomere attrition measured by a novel imaging flow cytometry assay. Aging Cell 2017. 16: 1234 - 1243.; Arnold, C. R., Pritz, T., Brunner, S., Knabb, C., Salvenmoser, W., Holzwarth, B., Thedieck, K. et al., T cell receptor-mediated activation is a potent inducer of macroautophagy in human CD8(+)CD28(+) T cells but not in CD8(+)CD28(-) T cells. Exp. Gerontol. 2014. 54: 75 - 83.; Pellicano, M., Buffa, S., Goldeck, D., Bulati, M., Martorana, A., Caruso, C., Colonna-Romano, G. et al., Evidence for less marked potential signs of T-cell immunosenescence in centenarian offspring than in the general age-matched population. J. Gerontol. A Biol. Sci. Med. Sci. 2014. 69: 495 - 504.; Derhovanessian, E., Maier, A. B., Beck, R., Jahn, G., Hahnel, K., Slagboom, P. E., de Craen, A. J. et al., Hallmark features of immunosenescence are absent in familial longevity. J. Immunol. 2010. 185: 4618 - 4624.; Raz, Y., Guerrero-Ros, I., Maier, A., Slagboom, P. E., Atzmon, G., Barzilai, N. and Macian, F., Activation-induced autophagy is preserved in CD4+ T-cells in familial longevity. J. Gerontol. A Biol. Sci. Med. Sci. 2017. 72: 1201 - 1206.; Duggal, N. A., Pollock, R. D., Lazarus, N. R., Harridge, S. and Lord, J. M., Major features of immunesenescence, including reduced thymic output, are ameliorated by high levels of physical activity in adulthood. Aging Cell 2018. 17.; Senda, T., Dogra, P., Granot, T., Furuhashi, K., Snyder, M. E., Carpenter, D. J., Szabo, P. A. et al., Microanatomical dissection of human intestinal T-cell immunity reveals site-specific changes in gut-associated lymphoid tissues over life. Mucosal Immunol. 2019. 12 ( 2 ): 378 - 389.; Thome, J. J., Bickham, K. L., Ohmura, Y., Kubota, M., Matsuoka, N., Gordon, C., Granot, T. et al., Early-life compartmentalization of human T cell differentiation and regulatory function in mucosal and lymphoid tissues. Nat. Med. 2016. 22 ( 1 ): 72 - 77.; Seddiki, N., Santner-Nanan, B., Martinson, J., Zaunders, J., Sasson, S., Landay, A., Solomon, M. et al., Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J. Exp. Med. 2006. 203 ( 7 ): 1693 - 1700.; Kverneland, A. H., Streitz, M., Geissler, E., Hutchinson, J., Vogt, K., Boes, D., Niemann, N. et al., Age and gender leucocytes variances and references values generated using the standardized ONE-Study protocol. Cytometry A 2016. 89 ( 6 ): 543 - 564.; Abbas, A. K., Benoist, C., Bluestone, J. A., Campbell, D. J., Ghosh, S., Hori, S., Jiang, S. et al., Regulatory T cells: recommendations to simplify the nomenclature. Nat. Immunol. 2013. 14 ( 4 ): 307 - 308.; Himmel, M. E., MacDonald, K. G., Garcia, R. V., Steiner, T. S. and Levings, M. K., Helios+ and Helios- cells coexist within the natural FOXP3+ T regulatory cell subset in humans. J. Immunol. 2013. 190 ( 5 ): 2001 - 2008.; Bin Dhuban, K., d’Hennezel, E., Nashi, E., Bar-Or, A., Rieder, S., Shevach, E. M., Nagata, S. et al., Coexpression of TIGIT and FCRL3 identifies Helios+ human memory regulatory T cells. J. Immunol. 2015. 194 ( 8 ): 3687 - 3696.; Milpied, P., Renand, A., Bruneau, J., Mendes-da-Cruz, D. A., Jacquelin, S., Asnafi, V., Rubio, M. T. et al., Neuropilin-1 is not a marker of human Foxp3+ Treg. Eur. J. Immunol. 2009. 39 ( 6 ): 1466 - 1471.; Duhen, T., Duhen, R., Lanzavecchia, A., Sallusto, F. and Campbell, D. J., Functionally distinct subsets of human FOXP3+ Treg cells that phenotypically mirror effector Th cells. Blood 2012. 119 ( 19 ): 4430 - 4440.; MacDonald, K. G., Dawson, N. A., Huang, Q., Dunne, J. V., Levings, M. K. and Broady, R., Regulatory T cells produce profibrotic cytokines in the skin of patients with systemic sclerosis. J. Allergy Clin. Immunol. 2015. 135 ( 4 ): e946 - e949.; Pesenacker, A. M., Bending, D., Ursu, S., Wu, Q., Nistala, K. and Wedderburn, L. R., CD161 defines the subset of FoxP3+ T cells capable of producing proinflammatory cytokines. Blood 2013. 121 ( 14 ): 2647 - 2658.; Ferreira, R. C., Rainbow, D. B., Rubio Garcia, A., Pekalski, M. L., Porter, L., Oliveira, J. J., Waldron-Lynch, F. et al., Human IL-6R(hi)TIGIT(-) CD4(+)CD127(low)CD25(+) T cells display potent in vitro suppressive capacity and a distinct Th17 profile. Clin. Immunol. 2017. 179: 25 - 39.; Hoeppli, R. E., MacDonald, K. N., Leclair, P., Fung, V. C. W., Mojibian, M., Gillies, J., Rahavi, S. M. R. et al., Tailoring the homing capacity of human Tregs for directed migration to sites of Th1-inflammation or intestinal regions. Am. J. Transplant 2019. 19: 62 - 76.; Allan, S. E., Crome, S. Q., Crellin, N. K., Passerini, L., Steiner, T. S., Bacchetta, R., Roncarolo, M. G. et al., Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int. Immunol. 2007. 19 ( 4 ): 345 - 354.; Pesenacker, A. M., Wang, A. Y., Singh, A., Gillies, J., Kim, Y., Piccirillo, C. A., Nguyen, D. et al., A regulatory T-cell gene signature is a specific and sensitive biomarker to identify children with new-onset type 1 diabetes. Diabetes 2016. 65 ( 4 ): 1031 - 1039.; Spreafico, R., Rossetti, M., van den Broek, T., Jansen, N. J., Zhang, H., Moshref, M., Prakken, B., van Loosdregt, J., van Wijk, F. and Albani, S., A sensitive protocol for FOXP3 epigenetic analysis in scarce human samples. Eur. J. Immunol. 2014. 44 ( 10 ): 3141 - 3143.; Rainbow, D. B., Yang, X., Burren, O., Pekalski, M. L., Smyth, D. J., Klarqvist, M. D., Penkett, C. J. et al., Epigenetic analysis of regulatory T cells using multiplex bisulfite sequencing. Eur. J. Immunol. 2015. 45 ( 11 ): 3200 - 3203.; Liu, W., Putnam, A. L., Xu-Yu, Z., Szot, G. L., Lee, M. R., Zhu, S., Gottlieb, P. A. et al., CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J. Exp. Med. 2006. 203 ( 7 ): 1701 - 1711.; Wang, J., Ioan-Facsinay, A., van der Voort, E. I., Huizinga, T. W. and Toes, R. E., Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur. J. Immunol. 2007. 37 ( 1 ): 129 - 138.; Wu, D., Han, J. M., Yu, X., Lam, A. J., Hoeppli, R. E., Pesenacker, A. M., Huang, Q. et al., Characterization of regulatory T cells in obese omental adipose tissue in humans. Eur. J. Immunol. 2019. 49 ( 2 ): 336 - 347.; Dijke, I. E., Hoeppli, R. E., Ellis, T., Pearcey, J., Huang, Q., McMurchy, A. N., Boer, K. et al., Discarded human thymus is a novel source of stable and long-lived therapeutic regulatory T cells. Am. J. Transplant 2016. 16 ( 1 ): 58 - 71.; Mason, G. M., Lowe, K., Melchiotti, R., Ellis, R., de Rinaldis, E., Peakman, M., Heck, S., Lombardi, G. et al., Phenotypic complexity of the human regulatory T cell compartment revealed by mass cytometry. J. Immunol. 2015. 195 ( 5 ): 2030 - 2037.; Dawson, N. A. J., Lam, A. J., Cook, L., Hoeppli, R. E., Broady, R., Pesenacker, A. M. and Levings, M. K., An optimized method to measure human FOXP3(+) regulatory T cells from multiple tissue types using mass cytometry. Eur. J. Immunol. 2018. 48 ( 8 ): 1415 - 1419.; Chen, X. and Oppenheim, J. J., Resolving the identity myth: key markers of functional CD4+FoxP3+ regulatory T cells. Int. Immunopharmacol. 2011. 11 ( 10 ): 1489 - 1496.; Ward-Hartstonge, K. A. and Kemp, R. A., Regulatory T-cell heterogeneity and the cancer immune response. Clin. Transl. Immunol. 2017. 6 ( 9 ): e154.; Groux, H., O’Garra, A., Bigler, M., Rouleau, M., Antonenko, S., de Vries, J. E. and Roncarolo, M. G., A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 1997. 389 ( 6652 ): 737 - 742.; Jeurink, P. V., Vissers, Y. M., Rappard, B. and Savelkoul, H. F., T cell responses in fresh and cryopreserved peripheral blood mononuclear cells: kinetics of cell viability, cellular subsets, proliferation, and cytokine production. Cryobiology 2008. 57 ( 2 ): 91 - 103.; White, A. M. and Wraith, D. C., Tr1-like T cells-an enigmatic regulatory T cell lineage. Front. Immunol. 2016. 7: 355.; Tran, D. Q., Andersson, J., Wang, R., Ramsey, H., Unutmaz, D. and Shevach, E. M., GARP (LRRC32) is essential for the surface expression of latent TGF-beta on platelets and activated FOXP3+ regulatory T cells. Proc. Natl. Acad. Sci. USA 2009. 106 ( 32 ): 13445 - 13450.; Wang, R., Kozhaya, L., Mercer, F., Khaitan, A., Fujii, H. and Unutmaz, D., Expression of GARP selectively identifies activated human FOXP3+ regulatory T cells. Proc. Natl. Acad. Sci. USA 2009. 106 ( 32 ): 13439 - 13444.; Camisaschi, C., Casati, C., Rini, F., Perego, M., De Filippo, A., Triebel, F., Parmiani, G. et al., LAG-3 expression defines a subset of CD4(+)CD25(high)Foxp3(+) regulatory T cells that are expanded at tumor sites. J. Immunol. 2010. 184 ( 11 ): 6545 - 6551.; Gagliani, N., Magnani, C. F., Huber, S., Gianolini, M. E., Pala, M., Licona-Limon, P., Guo, B. et al., Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells. Nat. Med. 2013. 19 ( 6 ): 739 - 746.; Raimondi, G., Shufesky, W. J., Tokita, D., Morelli, A. E. and Thomson, A. W., Regulated compartmentalization of programmed cell death-1 discriminates CD4 + CD25 + resting regulatory T cells from activated T cells. J. Immunol. 2006. 176 ( 5 ): 2808 - 2816.; Dilosa, R., Maeda, K., Masuda, A., Szakal, A. and Tew, J., Germinal center B cells and antibody production in the bone marrow. J. Immunol. 1991. 146: 4071 - 4077.; Lam, A., MacDonald, J. K. N., Pesenacker, A. M., Juvet, S. C., Morishita, K. A., Bressler, B., iGenoMed, C. et al., Innate control of tissue-reparative human regulatory T cells. J. Immunol. 2019. 202: 2195-2209.; Borsellino, G., Kleinewietfeld, M., Di Mitri, D., Sternjak, A., Diamantini, A., Giometto, R., Hopner, S. et al., Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 2007. 110 ( 4 ): 1225 - 1232.; Deaglio, S., Dwyer, K. M., Gao, W., Friedman, D., Usheva, A., Erat, A., Chen, J. F. et al., Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 2007. 204 ( 6 ): 1257 - 1265.; Rissiek, A., Baumann, I., Cuapio, A., Mautner, A., Kolster, M., Arck, P. C., Dodge-Khatami, A. et al., The expression of CD39 on regulatory T cells is genetically driven and further upregulated at sites of inflammation. J. Autoimmun. 2015. 58: 12 - 20.; Baecher-Allan, C., Wolf, E. and Hafler, D. A., MHC class II expression identifies functionally distinct human regulatory T cells. J. Immunol. 2006. 176 ( 8 ): 4622 - 4631.; Linsley, P. S., Brady, W., Urnes, M., Grosmaire, L. S., Damle, N. K. and Ledbetter, J. A., CTLA-4 is a second receptor for the B cell activation antigen B7. J. Exp. Med. 1991. 174 ( 3 ): 561 - 569.; Qureshi, O. S., Zheng, Y., Nakamura, K., Attridge, K., Manzotti, C., Schmidt, E. M., Baker, J. et al., Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 2011. 332 ( 6029 ): 600 - 603.; Norton, S. E., Ward-Hartstonge, K. A., McCall, J. L., Leman, J. K. H., Taylor, E. S., Munro, F., Black, M. A. et al., High-dimensional mass cytometric analysis reveals an increase in effector regulatory T cells as a distinguishing feature of colorectal tumors. J. Immunol. 2019. 202: 1871 - 1884.; Kleinewietfeld, M., Starke, M., Di Mitri, D., Borsellino, G., Battistini, L., Rotzschke, O. and Falk, K., CD49d provides access to -untouched" human Foxp3+ Treg free of contaminating effector cells. Blood 2009. 113 ( 4 ): 827 - 836.; Santegoets, S. J., Dijkgraaf, E. M., Battaglia, A., Beckhove, P., Britten, C. M., Gallimore, A., Godkin, A. et al., Monitoring regulatory T cells in clinical samples: consensus on an essential marker set and gating strategy for regulatory T cell analysis by flow cytometry. Cancer Immunol. Immunother. 2015. 64 ( 10 ): 1271 - 1286.; Dwyer, K. M., Hanidziar, D., Putheti, P., Hill, P. A., Pommey, S., McRae, J. L., Winterhalter, A. et al., Expression of CD39 by human peripheral blood CD4+ CD25+ T cells denotes a regulatory memory phenotype. Am. J. Transplant 2010. 10 ( 11 ): 2410 - 2420.; Schuler, P. J., Schilling, B., Harasymczuk, M., Hoffmann, T. K., Johnson, J., Lang, S. and Whiteside, T. L., Phenotypic and functional characteristics of CD4+ CD39+ FOXP3+ and CD4+ CD39+ FOXP3neg T-cell subsets in cancer patients. Eur. J. Immunol. 2012. 42 ( 7 ): 1876 - 1885.; Iellem, A., Colantonio, L. and D’Ambrosio, D., Skin-versus gut-skewed homing receptor expression and intrinsic CCR4 expression on human peripheral blood CD4+CD25+ suppressor T cells. Eur. J. Immunol. 2003. 33 ( 6 ): 1488 - 1496.; Battaglia, A., Buzzonetti, A., Monego, G., Peri, L., Ferrandina, G., Fanfani, F., Scambia, G. et al., Neuropilin-1 expression identifies a subset of regulatory T cells in human lymph nodes that is modulated by preoperative chemoradiation therapy in cervical cancer. Immunology 2008. 123 ( 1 ): 129 - 138.; Griseri, T., Asquith, M., Thompson, C. and Powrie, F., OX40 is required for regulatory T cell-mediated control of colitis. J. Exp. Med. 2010. 207 ( 4 ): 699 - 709.; Seddiki, N., Cook, L., Hsu, D. C., Phetsouphanh, C., Brown, K., Xu, Y., Kerr, S. J. et al., Human antigen-specific CD4(+) CD25(+) CD134(+) CD39(+) T cells are enriched for regulatory T cells and comprise a substantial proportion of recall responses. Eur. J. Immunol. 2014. 44 ( 6 ): 1644 - 1661.; Ivison, S., Malek, M., Garcia, R. V., Broady, R., Halpin, A., Richaud, M., Brant, R. F. et al., A standardized immune phenotyping and automated data analysis platform for multicenter biomarker studies. JCI Insight 2018. 3 ( 23 ).; Fox, B. C., Bignone, P. A., Brown, P. J. and Banham, A. H., Defense of the clone: antibody 259D effectively labels human FOXP3 in a variety of applications. Blood 2008. 111 ( 7 ): 3897 - 3899.; Pillai, V. and Karandikar, N. J., Attack on the clones? Human FOXP3 detection by PCH101, 236A/E7, 206D, and 259D reveals 259D as the outlier with lower sensitivity. Blood 2008. 111 ( 1 ): 463 - 464; author reply 464-466.; Law, J. P., Hirschkorn, D. F., Owen, R. E., Biswas, H. H., Norris, P. J. and Lanteri, M. C., The importance of Foxp3 antibody and fixation/permeabilization buffer combinations in identifying CD4+CD25+Foxp3+ regulatory T cells. Cytometry A 2009. 75 ( 12 ): 1040 - 1050.; Kaur, G., Goodall, J. C., Jarvis, L. B. and Hill Gaston, J. S., Characterisation of Foxp3 splice variants in human CD4+ and CD8+ T cells-identification of Foxp3Delta7 in human regulatory T cells. Mol. Immunol. 2010. 48 ( 1-3 ): 321 - 332.; Mahnke, Y. D., Beddall, M. H. and Roederer, M., OMIP-015: human regulatory and activated T-cells without intracellular staining. Cytometry A 2013. 83 ( 2 ): 179 - 181.; Terstappen, L. W., Meiners, H. and Loken, M. R., A rapid sample preparation technique for flow cytometric analysis of immunofluorescence allowing absolute enumeration of cell subpopulations. J. Immunol. Methods 1989. 123 ( 1 ): 103 - 112.; Bonecchi, R., Bianchi, G., Bordignon, P. P., D’Ambrosio, D., Lang, R., Borsatti, A., Sozzani, S. et al., Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J. Exp. Med. 1998. 187 ( 1 ): 129 - 134.; Gosselin, A., Monteiro, P., Chomont, N., Diaz-Griffero, F., Said, E. A., Fonseca, S., Wacleche, V. et al., Peripheral blood CCR4+CCR6+ and CXCR3+CCR6+CD4+ T cells are highly permissive to HIV-1 infection. J. Immunol. 2010. 184 ( 3 ): 1604 - 1616.; Halim, L., Romano, M., McGregor, R., Correa, I., Pavlidis, P., Grageda, N., Hoong, S. J. et al., An atlas of human regulatory T helper-like cells reveals features of Th2-like Tregs that support a tumorigenic environment. Cell Rep. 2017. 20 ( 3 ): 757 - 770.; Bowcutt, R., Malter, L. B., Chen, L. A., Wolff, M. J., Robertson, I., Rifkin, D. B., Poles, M. et al., Isolation and cytokine analysis of lamina propria lymphocytes from mucosal biopsies of the human colon. J. Immunol. Methods 2015. 421: 27 - 35.; Zheng, J., Liu, Y., Lau, Y. L. and Tu, W., γδ-T cells: An unpolished sword in human anti-infection immunity. Cell. Mol. Immunol. 2013. 10: 50 - 57.; Silva-Santos, B., Serre, K. and Norell, H., γδ T cells in cancer. Nat. Rev. Immunol. 2015. 15: 23 - 38.; Tanaka, Y., Sano, S., Nieves, E., De Libero, G., Rosa, D., Modlin, R. L., Brenner, M. B. et al., Nonpeptide ligands for γδ T cells. Proc. Natl. Acad. Sci. USA 1994. 91: 8175 - 8179.; Godfrey, D. I., Uldrich, A. P., McCluskey, J., Rossjohn, J. and Moody, D. B., The burgeoning family of unconventional T cells. Nat. Immunol. 2015. 16: 1114 - 1123.; Halary, F., Pitard, V., Dlubek, D., Krzysiek, R., de la Salle, H., Merville, P., Dromer, C. et al., Shared reactivity of Vδ2neg γδ T cells against cytomegalovirus-infected cells and tumor intestinal epithelial cells. J. Exp. Med. 2005. 201: 1567 - 1578.; Morita, C. T., Chenggang, J., Sarikonda, G. and Wong, H., Nonpeptide antigens, presentation mechanisms, and immunological memory of human Vγ2Vδ2 T cells: discriminating friend from foe through the recognition of prenyl pyrophosphate antigens. Immunol. Rev. 2007. 215: 59 - 76.; Davey, M. S., Willcox, C. R., Hunter, S., Kasatskaya, S. A., Remmerswaal, E. B. M., Salim, M., Mohammed, F. et al., The human Vδ2+ T-cell compartment comprises distinct innate-like Vγ9+ and adaptive Vγ9- subsets. Nat. Commun. 2018. 9: 1 - 14.; Riganti, C., Massaia, M., Davey, M. S. and Eberl, M., Human gammadelta T-cell responses in infection and immunotherapy: common mechanisms, common mediators? Eur. J. Immunol. 2012. 42: 1668 - 1676.; Chien, Y. H., Meyer, C. and Bonneville, M., γδ T cells: first line of defense and beyond. Annu. Rev. Immunol. 2014. 32: 121 - 155.; Davodeau, F., Peyrat, M. A., Hallet, M. M., Houde, I., And, H. V. and Bonneville, M., Peripheral selection of antigen receptor junctional features in a major human γδ subset. Eur. J. Immunol. 1993. 23: 804 - 808.; Parker, C. M., Groh, V., Band, H., Porcelli, S. A., Morita, C., Fabbi, M., Glass, D. et al., Evidence for extrathymic changes in the T cell receptor gamma/delta repertoire. J. Exp. Med. 1990. 171: 1597 - 1612.; Dimova, T., Brouwer, M., Gosselin, F., Tassignon, J., Leo, O., Donner, C., Marchant, A. et al., Effector Vγ9Vδ2 T cells dominate the human fetal γδ T-cell repertoire. Proc. Natl. Acad. Sci. USA 2015. 112: E556 - E565.; Willcox, C. R., Davey, M. S. and Willcox, B. E., Development and selection of the human Vγ9Vδ2 + T-cell repertoire. Front. Immunol. 2018. 9: 1501.; Hunter, S., Willcox, C. R., Davey, M. S., Kasatskaya, Sofya, A., Jeffery, H. C., Chudakov, D. M. et al., Human liver infiltrating γδ T cells are composed of clonally expanded circulating and tissue-resident populations. J. Hepatol. 2018. 69: 654 - 665.; Davey, M. S., Willcox, C. R., Baker, A. T., Hunter, S. and Willcox, B. E., Recasting human Vδ1 lymphocytes in an adaptive role. Trends Immunol. 2018. 39: 446 - 459.; Davey, M. S., Willcox, C. R., Joyce, S. P., Ladell, K., Kasatskaya, S. A., McLaren, J. E., Hunter, S. et al., Clonal selection in the human Vδ1 T cell repertoire indicates γδ TCR-dependent adaptive immune surveillance. Nat. Commun. 2017. 8: 1 - 15.; Ravens, S., Schultze-Florey, C., Raha, S., Sandrock, I., Drenker, M., Oberdörfer, L., Reinhardt, A. et al., Human γδ T cells are quickly reconstituted after stem-cell transplantation and show adaptive clonal expansion in response to viral infection. Nat. Immunol. 2017. 18: 393 - 401.; Correia, D., Fogli, M., Hudspeth, K., Gomes da Silva, M., Mavilio, D. and Silva-Santos, B., Differentiation of human peripheral blood Vδ1+ T cell expressing the natural cytotoxicity receptor NKp30 for recognition of lymphoid leukemia cells. Blood 2011. 118: 992 - 1001.; Meyer-Hermann, M., Deutsch, A. and Or-Guil, M., Recycling probability and dynamical properties of germinal center reactions. J. Theor. Biol. 2001. 210: 265 - 285.; Bouet-Toussaint, F., Cabillic, F., Toutirais, O., Le Gallo, M., Thomas de la Pintiere, C., Genetet, N., Meunier, B. et al., Vγ9Vδ2 T cell-mediated recognition of human solid tumors. Potential for immunotherapy of hepatocellular and colorectal carcinomas. Cancer Immunol. Immunother. 2008. 57: 531 - 539.; Mattarollo, S. R., Kenna, T., Nieda, M. and Nicol, A. J., Chemotherapy and zoledronate sensitize solid tumour cells to Vγ9Vδ2 T cell cytotoxicity. Cancer Immunol. Immunother. 2007. 56: 1285 - 1297.; Almeida, A. R. M., Correia, D. V., Fernandes-Platzgummer, A., da Silva, C. L., Gomes da Silva, M., Anjos, D. R. and Silva-Santos, B., Delta one T cells for immunotherapy of chronic lymphocytic leukemia: clinical-grade expansion/differentiation and preclinical proof-of-concept. Clin. Cancer Res. 2016. 22: 5795 - 5804.; Ryan, P. L., Sumaria, N., Holland, C. J., Bradford, C. M., Izotova, N., Grandjean, C. L., Jawad, A. S. et al., Heterogeneous yet stable Vδ2(+) T-cell profiles define distinct cytotoxic effector potentials in healthy human individuals. Proc. Natl. Acad. Sci. USA 2016. 113: 14378 - 14383.; Kinjo, Y. and Ueno, K., iNKT cells in microbial immunity: recognition of microbial glycolipids. Microbiol. Immunol. 2011. 55: 472 - 482.; Shissler, S. C., Bollino, D. R., Tiper, I. V., Bates, J. P., Derakhshandeh, R. and Webb, T. J., Immunotherapeutic strategies targeting natural killer T cell responses in cancer. Immunogenetics 2016. 68: 623 - 638.; Godfrey, D. I., Le Nours, J., Andrews, D. M., Uldrich, A. P. and Rossjohn, J., Unconventional T cell targets for cancer immunotherapy. Immunity 2018. 48: 453 - 473.; Pellicci, D. G. and Uldrich, A. P., Unappreciated diversity within the pool of CD1d-restricted T cells. Semin. Cell. Dev. Biol. 2018. 84: 42 - 47.; Godfrey, D. I., MacDonald, H. R., Kronenberg, M., Smyth, M. J. and Van Kaer, L., NKT cells: what’s in a name? Nat. Rev. Immunol. 2004. 4: 231 - 237.; Thierry, A., Robin, A., Giraud, S., Minouflet, S., Barra, A., Bridoux, F., Hauet, T. et al., Identification of invariant natural killer T cells in porcine peripheral blood. Vet. Immunol. Immunopathol. 2012. 149: 272 - 279.; Monzon-Casanova, E., Paletta, D., Starick, L., Muller, I., Sant’Angelo, D. B., Pyz, E. and Herrmann, T., Direct identification of rat iNKT cells reveals remarkable similarities to human iNKT cells and a profound deficiency in LEW rats. Eur. J. Immunol. 2013. 43: 404 - 415.; Gansuvd, B., Hubbard, W. J., Hutchings, A., Thomas, F. T., Goodwin, J., Wilson, S. B., Exley, M. A. et al., Phenotypic and functional characterization of long-term cultured rhesus macaque spleen-derived NKT cells. J. Immunol. 2003. 171: 2904 - 2911.; Yasuda, N., Masuda, K., Tsukui, T., Teng, A. and Ishii, Y., Identification of canine natural CD3-positive T cells expressing an invariant T-cell receptor alpha chain. Vet. Immunol. Immunopathol. 2009. 132: 224 - 231.; Kawano, T., Cui, J., Koezuka, Y., Toura, I., Kaneko, Y., Motoki, K., Ueno, H. et al., CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science 1997. 278: 1626 - 1629.; Lopez-Sagaseta, J., Kung, J. E., Savage, P. B., Gumperz, J. and Adams, E. J., The molecular basis for recognition of CD1d/alpha-galactosylceramide by a human non-Valpha24 T cell receptor. PLoS Biol. 2012. 10: e1001412.; Gadola, S. D., Dulphy, N., Salio, M. and Cerundolo, V., Valpha24-JalphaQ-independent, CD1d-restricted recognition of alpha-galactosylceramide by human CD4(+) and CD8alphabeta(+) T lymphocytes. J. Immunol. 2002. 168: 5514 - 5520.; Le Nours, J., Praveena, T., Pellicci, D. G., Gherardin, N. A., Ross, F. J., Lim, R. T., Besra, G. S., Keshipeddy, S. et al., Atypical natural killer T-cell receptor recognition of CD1d-lipid antigens. Nat. Commun. 2016. 7: 10570.; Gadola, S. D., Koch, M., Marles-Wright, J., Lissin, N. M., Shepherd, D., Matulis, G., Harlos, K. et al., Structure and binding kinetics of three different human CD1d-alpha-galactosylceramide-specific T cell receptors. J. Exp. Med. 2006. 203: 699 - 710.; Brigl, M., van den Elzen, P., Chen, X., Meyers, J. H., Wu, D., Wong, C. H., Reddington, F. et al., Conserved and heterogeneous lipid antigen specificities of CD1d-restricted NKT cell receptors. J. Immunol. 2006. 176: 3625 - 3634.; Uldrich, A. P., Le Nours, J., Pellicci, D. G., Gherardin, N. A., McPherson, K. G., Lim, R. T., Patel, O., Beddoe, T. et al., CD1d-lipid antigen recognition by the gammadelta TCR. Nat. Immunol. 2013. 14: 1137 - 1145.; Kobayashi, E., Motoki, K., Uchida, T., Fukushima, H. and Koezuka, Y., KRN7000, a novel immunomodulator, and its antitumor activities. Oncol. Res. 1995. 7: 529 - 534.; Morita, M., Motoki, K., Akimoto, K., Natori, T., Sakai, T., Sawa, E., Yamaji, K. et al., Structure-activity relationship of alpha-galactosylceramides against B16-bearing mice. J. Med. Chem. 1995. 38: 2176 - 2187.; Nair, S. and Dhodapkar, M. V., Natural killer T cells in cancer immunotherapy. Front. Immunol. 2017. 8: 1178.; Rossjohn, J., Pellicci, D. G., Patel, O., Gapin, L. and Godfrey, D. I., Recognition of CD1d-restricted antigens by natural killer T cells. Nat. Rev. Immunol. 2012. 12: 845 - 857.; Yu, K. O., Im, J. S., Molano, A., Dutronc, Y., Illarionov, P. A., Forestier, C., Fujiwara, N. et al., Modulation of CD1d-restricted NKT cell responses by using N-acyl variants of alpha-galactosylceramides. Proc. Natl. Acad. Sci. USA 2005. 102: 3383 - 3388.; Schmieg, J., Yang, G., Franck, R. W. and Tsuji, M., Superior protection against malaria and melanoma metastases by a C-glycoside analogue of the natural killer T cell ligand alpha-Galactosylceramide. J. Exp. Med. 2003. 198: 1631 - 1641.; Wun, K. S., Cameron, G., Patel, O., Pang, S. S., Pellicci, D. G., Sullivan, L. C., Keshipeddy, S. et al., A molecular basis for the exquisite CD1d-restricted antigen specificity and functional responses of natural killer T cells. Immunity 2011. 34: 327 - 339.; Wun, K. S., Ross, F., Patel, O., Besra, G. S., Porcelli, S. A., Richardson, S. K., Keshipeddy, S. et al., Human and mouse type I natural killer T cell antigen receptors exhibit different fine specificities for CD1d-antigen complex. J. Biol. Chem. 2012. 287: 39139 - 39148.; Freigang, S., Landais, E., Zadorozhny, V., Kain, L., Yoshida, K., Liu, Y., Deng, S. et al., Scavenger receptors target glycolipids for natural killer T cell activation. J. Clin. Invest. 2012. 122: 3943 - 3954.; http://tetramer.yerkes.emory.edu/reagents/cd1Test; Gumperz, J. E., Miyake, S., Yamamura, T. and Brenner, M. B., Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J. Exp. Med. 2002. 195: 625 - 636.; Sidobre, S. and Kronenberg, M., CD1 tetramers: a powerful tool for the analysis of glycolipid-reactive T cells. J. Immunol. Methods 2002. 268: 107 - 121.; Boyson, J. E., Rybalov, B., Koopman, L. A., Exley, M., Balk, S. P., Racke, F. K., Schatz, F. et al., CD1d and invariant NKT cells at the human maternal-fetal interface. Proc. Natl. Acad. Sci. USA 2002. 99: 13741 - 13746.; Thomas, S. Y., Hou, R., Boyson, J. E., Means, T. K., Hess, C., Olson, D. P., Strominger, J. L. et al., CD1d-restricted NKT cells express a chemokine receptor profile indicative of Th1-type inflammatory homing cells. J. Immunol. 2003. 171: 2571 - 2580.; Aricescu, A. R., Lu, W. and Jones, E. Y., A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallogr. D Biol. Crystallogr. 2006. 62: 1243 - 1250.; Ng, S. S., Souza-Fonseca-Guimaraes, F., Rivera, F. L., Amante, F. H., Kumar, R., Gao, Y., Sheel, M. et al., Rapid loss of group 1 innate lymphoid cells during blood stage Plasmodium infection. Clin. Transl. Immunol. 2018. 7: e1003.; http://www.enzolifesciences.com/BML-SL232/krn7000Test/; https://avantilipids.com/product/867000Test; Boyum, A., Separation of leukocytes from blood and bone marrow. Introduction. Scand. J. Clin. Lab. Invest. Suppl. 1968. 97: 7.; Lee, P. T., Benlagha, K., Teyton, L. and Bendelac, A., Distinct functional lineages of human V(alpha)24 natural killer T cells. J. Exp. Med. 2002. 195: 637 - 641.; Montoya, C. J., Pollard, D., Martinson, J., Kumari, K., Wasserfall, C., Mulder, C. B., Rugeles, M. T. et al., Characterization of human invariant natural killer T subsets in health and disease using a novel invariant natural killer T cell-clonotypic monoclonal antibody, 6B11. Immunology 2007. 122: 1 - 14.; Cameron, G., Pellicci, D. G., Uldrich, A. P., Besra, G. S., Illarionov, P., Williams, S. J., La Gruta, N. L. et al., Antigen Specificity of Type I NKT Cells Is Governed by TCR beta-Chain Diversity. J Immunol 2015. 195: 4604 - 4614.; https://www.miltenyibiotec.com/AU-en/products/macs-cell-separation/cell-separation-reagents/microbeads-and-isolation-kits/any-cell-type/anti-pe-microbeads.htmlTest; Rossjohn, J., Gras, S., Miles, J. J., Turner, S. J., Godfrey, D. I. and McCluskey, J., T cell antigen receptor recognition of antigen-presenting molecules. Annu. Rev. Immunol. 2015. 33: 169 - 200.; Kjer-Nielsen, L., Patel, O., Corbett, A. J., Le Nours, J., Meehan, B., Liu, L., Bhati, M., Chen, Z. et al., MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 2012. 491: 717 - 723.; Kjer-Nielsen, L., Corbett, A. J., Chen, Z., Liu, L., Mak, J. Y., Godfrey, D. I., Rossjohn, J. et al., An overview on the identification of MAIT cell antigens. Immunol. Cell. Biol. 2018. 96: 573 - 587.; Koay, H. F., Godfrey, D. I. and Pellicci, D. G., Development of mucosal-associated invariant T cells. Immunol. Cell. Biol. 2018.; Gherardin, N. A., Souter, M. N., Koay, H. F., Mangas, K. M., Seemann, T., Stinear, T. P., Eckle, S. B. et al., Human blood MAIT cell subsets defined using MR1 tetramers. Immunol. Cell. Biol. 2018. 96: 507 - 525.; Le Bourhis, L., Martin, E., Peguillet, I., Guihot, A., Froux, N., Core, M., Levy, E., Dusseaux, M. et al., Antimicrobial activity of mucosal-associated invariant T cells. Nat. Immunol. 2010. 11: 701 - 708.; Tang, X. Z., Jo, J., Tan, A. T., Sandalova, E., Chia, A., Tan, K. C., Lee, K. H. et al., IL-7 licenses activation of human liver intrasinusoidal mucosal-associated invariant T cells. J. Immunol. 2013. 190: 3142 - 3152.; Dusseaux, M., Martin, E., Serriari, N., Peguillet, I., Premel, V., Louis, D., Milder, M. et al., Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood 2011. 117: 1250 - 1259.; Walker, L. J., Kang, Y. H., Smith, M. O., Tharmalingham, H., Ramamurthy, N., Fleming, V. M., Sahgal, N. et al., Human MAIT and CD8alphaalpha cells develop from a pool of type-17 precommitted CD8+ T cells. Blood 2012. 119: 422 - 433.; Le Bourhis, L., Dusseaux, M., Bohineust, A., Bessoles, S., Martin, E., Premel, V., Core, M., Sleurs, D. et al., MAIT cells detect and efficiently lyse bacterially-infected epithelial cells. PLoS Pathog. 2013. 9: e1003681.; Meermeier, E. W., Harriff, M. J., Karamooz, E. and Lewinsohn, D. M., MAIT cells and microbial immunity. Immunol. Cell. Biol. 2018.; Wang, H., D’Souza, C., Lim, X. Y., Kostenko, L., Pediongco, T. J., Eckle, S. B. G., Meehan, B. S. et al., MAIT cells protect against pulmonary Legionella longbeachae infection. Nat. Commun. 2018. 9: 3350.; D’Souza, C., Chen, Z. and Corbett, A. J., Revealing the protective and pathogenic potential of MAIT cells. Mol. Immunol. 2018. 103: 46 - 54.; Ussher, J. E., Bilton, M., Attwod, E., Shadwell, J., Richardson, R., de Lara, C., Mettke, E., Kurioka, A. et al., CD161++ CD8+ T cells, including the MAIT cell subset, are specifically activated by IL-12+IL-18 in a TCR-independent manner. Eur. J. Immunol. 2014. 44: 195 - 203.; Ussher, J. E., Willberg, C. B. and Klenerman, P., MAIT cells and viruses. Immunol. Cell. Biol. 2018. 96: 630 - 641.; van Wilgenburg, B., Scherwitzl, I., Hutchinson, E. C., Leng, T., Kurioka, A., Kulicke, C., de Lara, C., Cole, S., Vasanawathana, S. et al., MAIT cells are activated during human viral infections. Nat. Commun. 2016. 7: 11653.; Loh, L., Wang, Z., Sant, S., Koutsakos, M., Jegaskanda, S., Corbett, A. J., Liu, L. et al., Human mucosal-associated invariant T cells contribute to antiviral influenza immunity via IL-18-dependent activation. Proc. Natl. Acad. Sci. USA 2016. 113: 10133 - 10138.; Rouxel, O. and Lehuen, A., Mucosal-associated invariant T cells in autoimmune and immune-mediated diseases. Immunol. Cell. Biol. 2018. 96: 618 - 629.; Gibbs, A., Leeansyah, E., Introini, A., Paquin-Proulx, D., Hasselrot, K., Andersson, E., Broliden, K. et al., MAIT cells reside in the female genital mucosa and are biased towards IL-17 and IL-22 production in response to bacterial stimulation. Mucosal Immunol. 2017. 10: 35 - 45.; Dias, J., Boulouis, C., Gorin, J. B., van den Biggelaar, R., Lal, K. G., Gibbs, A., Loh, L. et al., The CD4(-)CD8(-) MAIT cell subpopulation is a functionally distinct subset developmentally related to the main CD8(+) MAIT cell pool. Proc. Natl. Acad. Sci. USA 2018. 115: E11513 - E11522.; Brozova, J., Karlova, I. and Novak, J., Analysis of the phenotype and function of the subpopulations of mucosal-associated invariant T cells. Scand. J. Immunol. 2016. 84: 245 - 251.; Davanian, H., Gaiser, R. A., Silfverberg, M., Hugerth, L. W., Sobkowiak, M. J., Lu, L., Healy, K. et al., Mucosal-associated invariant T cells and oral microbiome in persistent apical periodontitis. Int. J. Oral. Sci. 2019. 11: 16.; Mori, L., Lepore, M. and De Libero, G., The immunology of CD1- and MR1-restricted T cells. Annu. Rev. Immunol. 2016. 34: 479 - 510.; Gherardin, N. A., McCluskey, J., Rossjohn, J. and Godfrey, D. I., The diverse family of MR1-restricted T cells. J. Immunol. 2018. 201: 2862 - 2871.; Martin, E., Treiner, E., Duban, L., Guerri, L., Laude, H., Toly, C., Premel, V. et al., Stepwise development of MAIT cells in mouse and human. PLoS Biol. 2009. 7: e54.; Sharma, P. K., Wong, E. B., Napier, R. J., Bishai, W. R., Ndung’u, T., Kasprowicz, V. O., Lewinsohn, D. A. et al., High expression of CD26 accurately identifies human bacteria-reactive MR1-restricted MAIT cells. Immunology 2015. 145: 443 - 453.; Gold, M. C., Eid, T., Smyk-Pearson, S., Eberling, Y., Swarbrick, G. M., Langley, S. M., Streeter, P. R. et al., Human thymic MR1-restricted MAIT cells are innate pathogen-reactive effectors that adapt following thymic egress. Mucosal Immunol. 2013. 6: 35 - 44.; Leeansyah, E., Ganesh, A., Quigley, M. F., Sonnerborg, A., Andersson, J., Hunt, P. W., Somsouk, M. et al., Activation, exhaustion, and persistent decline of the antimicrobial MR1-restricted MAIT-cell population in chronic HIV-1 infection. Blood 2013. 121: 1124 - 1135.; Koppejan, H., Jansen, D., Hameetman, M., Thomas, R., Toes, R. E. M. and van Gaalen, F. A., Altered composition and phenotype of mucosal-associated invariant T cells in early untreated rheumatoid arthritis. Arthritis Res. Ther. 2019. 21: 3.; Eckle, S. B., Birkinshaw, R. W., Kostenko, L., Corbett, A. J., McWilliam, H. E., Reantragoon, R., Chen, Z. et al., A molecular basis underpinning the T cell receptor heterogeneity of mucosal-associated invariant T cells. J. Exp. Med. 2014. 211: 1585 - 1600.; Kurioka, A., Jahun, A. S., Hannaway, R. F., Walker, L. J., Fergusson, J. R., Sverremark-Ekstrom, E., Corbett, A. J. et al., Shared and distinct phenotypes and functions of human CD161++ Valpha7.2+ T cell subsets. Front. Immunol. 2017. 8: 1031.; Ben Youssef, G., Tourret, M., Salou, M., Ghazarian, L., Houdouin, V., Mondot, S., Mburu, Y. et al., Ontogeny of human mucosal-associated invariant T cells and related T cell subsets. J. Exp. Med. 2018. 215: 459 - 479.; Koay, H. F., Gherardin, N. A., Xu, C., Seneviratna, R., Zhao, Z., Chen, Z., Fairlie, D. P. et al., Diverse MR1-restricted T cells in mice and humans. Nat. Commun. 2019. 10: 2243.; NTCF, NIH Tetramer Core Facility: Human MR1 Tetramer Staining 2016. https://tetramer.yerkes.emory.edu/sites/default/files/shared/human_mr1_tetramer_staining.pdfTest; NTCF, NIH Tetramer Core Facility: Tetramer Preparation - Addition of streptavidin, emory.edu 2010. https://tetramer.yerkes.emory.edu/support/protocols#10Test; Gherardin, N. A., Keller, A. N., Woolley, R. E., Le Nours, J., Ritchie, D. S., Neeson, P. J., Birkinshaw, R. W. et al., Diversity of T cells restricted by the MHC class I-related molecule MR1 facilitates differential antigen recognition. Immunity 2016. 44: 32 - 45.; Dias, J., Leeansyah, E. and Sandberg, J. K., Multiple layers of heterogeneity and subset diversity in human MAIT cell responses to distinct microorganisms and to innate cytokines. Proc. Natl. Acad. Sci. USA 2017. 114: E5434 - E5443.; Lissina, A., Ladell, K., Skowera, A., Clement, M., Edwards, E., Seggewiss, R., van den Berg, H. A., Gostick, E. et al., Protein kinase inhibitors substantially improve the physical detection of T-cells with peptide-MHC tetramers. J. Immunol. Methods 2009. 340: 11 - 24.; Wood, G. S. and Warnke, R., Suppression of endogenous avidin-binding activity in tissues and its relevance to biotin-avidin detection systems. J. Histochem. Cytochem. 1981. 29: 1196 - 1204.; Harriff, M. J., McMurtrey, C., Froyd, C. A., Jin, H., Cansler, M., Null, M., Worley, A. et al., MR1 displays the microbial metabolome driving selective MR1-restricted T cell receptor usage. Sci. Immunol. 2018. 3.; Lepore, M., Kalinichenko, A., Calogero, S., Kumar, P., Paleja, B., Schmaler, M., Narang, V. et al., Functionally diverse human T cells recognize non-microbial antigens presented by MR1. Elife 2017. 6.; Tung, J. W., Mrazek, M. D., Yang, Y., Herzenberg, L. A. and Herzenberg, L. A., Phenotypically distinct B cell development pathways map to the three B cell lineages in the mouse. Proc. Natl. Acad. Sci. USA 2006. 103: 6293 - 6298.; Manz, R. A., Hauser, A. E., Hiepe, F. and Radbruch, A., Maintenance of serum antibody levels. Annu. Rev. Immunol. 2005. 23: 367 - 386.; Wen, L., Brill-Dashoff, J., Shinton, S. A., Asano, M., Hardy, R. R. and Hayakawa, K., Evidence of marginal-zone B cell-positive selection in spleen. Immunity 2005. 23: 297 - 308.; Fillatreau, S. and Manz, R. A., Tolls for B cells. Eur. J. Immunol. 2006. 36: 798 - 801.; Tornberg, U. C. and Holmberg, D., B-1a, B-1b and B-2 B cells display unique VHDJH repertoires formed at different stages of ontogeny and under different selection pressures. EMBO J. 1995. 14: 1680 - 1689.; Ochsenbein, A. F., Fehr, T., Lutz, C., Suter, M., Brombacher, F., Hengartner, H. and Zinkernagel, R. M., Control of early viral and bacterial distribution and disease by natural antibodies. Science 1999. 286: 2156 - 2159.; Stall, A. M., Adams, S., Herzenberg, L. A. and Kantor, A. B., Characteristics and development of the murine B-1b (Ly-1 B sister) cell population. Ann. N. Y. Acad. Sci. 1992. 651: 33 - 43.; Kristiansen, T. A., Jaensson Gyllenbäck, E., Zriwil, A., Björklund, T., Daniel, J. A., Sitnicka, E., Soneji, S. et al., Cellular barcoding links B-1a B cell potential to a fetal hematopoietic stem cell state at the single-cell level. Immunity 2016. 45: 346 - 357.; Pedersen, G. K., Li, X., Khoenkhoen, S., à dori, M., Beutler, B. and Karlsson Hedestam, G. B., B-1a cell development in splenectomized neonatal mice. Front. Immunol. 2018. 9: 1738.; Melchers, F., ten Boekel, E., Seidl, T., Kong, X. C., Yamagami, T., Onishi, K., Shimizu, T. et al., Repertoire selection by pre-B-cell receptors and B-cell receptors, and genetic control of B-cell development from immature to mature B cells. Immunol. Rev. 2000. 175: 33 - 46.; Montecino-Rodriguez, E., Leathers, H. and Dorshkind, K., Identification of a B-1 B cell-specified progenitor. Nat. Immunol. 2006. 7: 293 - 301.; Rajewsky, K., Early and late B-cell development in the mouse. Curr. Opin. Immunol. 1992. 4: 171 - 176.; ten Boekel, E., Melchers, F. and Rolink, A., The status of Ig loci rearrangements in single cells from different stages of B cell development. Int. Immunol. 1995. 7: 1013 - 1019.; Grawunder, U., Leu, T. M., Schatz, D. G., Werner, A., Rolink, A. G., Melchers, F. and Winkler, T. H., Down-regulation of RAG1 and RAG2 gene expression in preB cells after functional immunoglobulin heavy chain rearrangement. Immunity 1995. 3: 601 - 608.; Rolink, A. and Melchers, F., Molecular and cellular origins of B lymphocyte diversity. Cell 1991. 66: 1081 - 1094.; Lu, L., Smithson, G., Kincade, P. W. and Osmond, D. G., Two models of murine B lymphopoiesis: a correlation. Eur. J. Immunol. 1998. 28: 1755 - 1761.; Hardy, R. R., Carmack, C. E., Shinton, S. A., Kemp, J. D. and Hayakawa, K., Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow. J. Exp. Med. 1991. 173: 1213 - 1225.; Melchers, F., Rolink, A., Grawunder, U., Winkler, T. H., Karasuyama, H., Ghia, P. and Andersson, J., Positive and negative selection events during B lymphopoiesis. Curr. Opin. Immunol. 1995. 7: 214 - 227.; Ghia, P., ten Boekel, E., Sanz, E., de la Hera, A., Rolink, A. and Melchers, F., Ordering of human bone marrow B lymphocyte precursors by single-cell polymerase chain reaction analyses of the rearrangement status of the immunoglobulin H and L chain gene loci. J. Exp. Med. 1996. 184: 2217 - 2229.; Allman, D., Lindsley, R. C., DeMuth, W., Rudd, K., Shinton, S. A. and Hardy, R. R., Resolution of three nonproliferative immature splenic B cell subsets reveals multiple selection points during peripheral B cell maturation. J. Immunol. 2001. 167: 6834 - 6840.; Hao, Z. and Rajewsky, K., Homeostasis of peripheral B cells in the absence of B cell influx from the bone marrow. J. Exp. Med. 2001. 194: 1151 - 1164.; Wells, S. M., Kantor, A. B. and Stall, A. M., CD43 (S7) expression identifies peripheral B cell subsets. J. Immunol. 1994. 153: 5503 - 5515.; Hart, G., Flaishon, L., Becker-Herman, S. and Shachar, I., Ly49D receptor expressed on immature B cells regulates their IFN-gamma secretion, actin polymerization, and homing. J. Immunol. 2003. 171: 4630 - 4638.; Kozmik, Z., Wang, S., Dörfler, P., Adams, B. and Busslinger, M., The promoter of the CD19 gene is a target for the B-cell-specific transcription factor BSAP. Mol. Cell. Biol. 1992. 12: 2662 - 2672.; Li, Y. S., Wasserman, R., Hayakawa, K. and Hardy, R. R., Identification of the earliest B lineage stage in mouse bone marrow. Immunity 1996. 5: 527 - 535.; Koni, P. A., Joshi, S. K., Temann, U.-A., Olson, D., Burkly, L. and Flavell, R. A., Conditional Vascular Cell Adhesion Molecule 1 Deletion in Mice: Impaired Lymphocyte Migration to Bone Marrow. J. Exp. Med. 2001. 193: 741 - 754.; Kikuchi, K., Lai, A. Y., Hsu, C.-L. and Kondo, M., IL-7 receptor signaling is necessary for stage transition in adult B cell development through up-regulation of EBF. J. Exp. Med. 2005. 201: 1197 - 1203.; Rolink, A., ten Boekel, E., Melchers, F., Fearon, D. T., Krop, I. and Andersson, J., A subpopulation of B220+ cells in murine bone marrow does not express CD19 and contains natural killer cell progenitors. J. Exp. Med. 1996. 183: 187 - 194.; Osmond, D. G., Rolink, A. and Melchers, F., Murine B lymphopoiesis: towards a unified model. Immunol. Today 1998. 19: 65 - 68.; Melchers, F., Haasner, D., Grawunder, U., Kalberer, C., Karasuyama, H., Winkler, T. and Rolink, A. G., Roles of IgH and L chains and of surrogate H and L chains in the development of cells of the B lymphocyte lineage. Annu. Rev. Immunol. 1994. 12: 209 - 225.; Rolink, A., Streb, M., Nishikawa, S. and Melchers, F., The c-kit-encoded tyrosine kinase regulates the proliferation of early pre-B cells. Eur. J. Immunol. 1991. 21: 2609 - 2612.; Tonegawa, S., Somatic generation of antibody diversity. Nature 1983. 302: 575 - 581.; ten Boekel, E., Melchers, F. and Rolink, A. G., Precursor B cells showing H chain allelic inclusion display allelic exclusion at the level of pre-B cell receptor surface expression. Immunity 1998. 8: 199 - 207.; Rumfelt, L. L., Zhou, Y., Rowley, B. M., Shinton, S. A. and Hardy, R. R., Lineage specification and plasticity in CD19- early B cell precursors. J. Exp. Med. 2006. 203: 675 - 687.; Osmond, D. G., B cell development in the bone marrow. Semin. Immunol. 1990. 2: 173 - 180.; Cancro, M. P., Peripheral B-cell maturation: the intersection of selection and homeostasis. Immunol. Rev. 2004. 197: 89 - 101.; Oliver, A. M., Martin, F., Gartland, G. L., Carter, R. H. and Kearney, J. F., Marginal zone B cells exhibit unique activation, proliferative and immunoglobulin secretory responses. Eur. J. Immunol. 1997. 27: 2366 - 2374.; Krzyzak, L., Seitz, C., Urbat, A., Hutzler, S., Ostalecki, C., Gläsner, J., Hiergeist, A. et al., CD83 modulates B cell activation and germinal center responses. J. Immunol. 2016. 196: 3581 - 3594.; Dogan, I., Bertocci, B., Vilmont, V., Delbos, F., Mégret, J., Storck, S., Reynaud, C.-A. et al., Multiple layers of B cell memory with different effector functions. Nat. Immunol. 2009. 10: 1292 - 1299.; Bell, J. and Gray, D., Antigen-capturing cells can masquerade as memory B cells. J. Exp. Med. 2003. 197: 1233 - 1244.; Schittek, B. and Rajewsky, K., Maintenance of B-cell memory by long-lived cells generated from proliferating precursors. Nature 1990. 346: 749 - 751.; Anderson, S. M., Tomayko, M. M., Ahuja, A., Haberman, A. M. and Shlomchik, M. J., New markers for murine memory B cells that define mutated and unmutated subsets. J. Exp. Med. 2007. 204: 2103 - 2114.; Labarga, A., Beloqui, I. and Martin, A. G., Information Management. Methods Mol. Biol. 2017. 1590: 29 - 39.; Good-Jacobson, K. L., Song, E., Anderson, S., Sharpe, A. H. and Shlomchik, M. J., CD80 expression on B cells regulates murine T follicular helper development, germinal center B cell survival, and plasma cell generation. J. Immunol. 2012. 188: 4217 - 4225.; Zuccarino-Catania, G. V., Sadanand, S., Weisel, F. J., Tomayko, M. M., Meng, H., Kleinstein, S. H., Good-Jacobson, K. L. et al., CD80 and PD-L2 define functionally distinct memory B cell subsets that are independent of antibody isotype. Nat. Immunol. 2014. 15: 631 - 637.; Tomayko, M. M., Steinel, N. C., Anderson, S. M. and Shlomchik, M. J., Cutting edge: Hierarchy of maturity of murine memory B cell subsets. J. Immunol. 2010. 185: 7146 - 7150.; Weisel, F. J., Zuccarino-Catania, G. V., Chikina, M. and Shlomchik, M. J., A temporal switch in the germinal center determines differential output of memory B and plasma cells. Immunity 2016. 44: 116 - 130.; Weisel, F. and Shlomchik, M., Memory B cells of mice and humans. Annu. Rev. Immunol. 2017. 35: 255 - 284.; Loder, F., Mutschler, B., Ray, R. J., Paige, C. J., Sideras, P., Torres, R., Lamers, M. C. et al., B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals. J. Exp. Med. 1999. 190: 75 - 89.; Carsetti, R., Köhler, G. and Lamers, M. C., Transitional B cells are the target of negative selection in the B cell compartment. J. Exp. Med. 1995. 181: 2129 - 2140.; Baumgarth, N., The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat. Rev. Immunol. 2011. 11: 34 - 46.; Haas, K. M., Poe, J. C., Steeber, D. A. and Tedder, T. F., B-1a and B-1b cells exhibit distinct developmental requirements and have unique functional roles in innate and adaptive immunity to S. pneumoniae. Immunity 2005. 23: 7 - 18.; Hardy, R. R., Hayakawa, K., Parks, D. R., Herzenberg, L. A. and Herzenberg, L. A., Murine B cell differentiation lineages. J. Exp. Med. 1984. 159: 1169 - 1188.; Pedersen, G. K., à dori, M., Khoenkhoen, S., Dosenovic, P., Beutler, B. and Karlsson Hedestam, G. B., B-1a transitional cells are phenotypically distinct and are lacking in mice deficient in IκBNS. Proc. Natl. Acad. Sci. USA 2014. 111: E4119 - 4126.; Herzenberg, L. A., Stall, A. M., Braun, J., Weaver, D., Baltimore, D., Herzenberg, L. A. and Grosschedl, R., Depletion of the predominant B-cell population in immunoglobulin mu heavy-chain transgenic mice. Nature 1987. 329: 71 - 73.; Shinall, S. M., Gonzalez-Fernandez, M., Noelle, R. J. and Waldschmidt, T. J., Identification of murine germinal center B cell subsets defined by the expression of surface isotypes and differentiation antigens. J. Immunol. 2000. 164: 5729 - 5738.; Naito, Y., Takematsu, H., Koyama, S., Miyake, S., Yamamoto, H., Fujinawa, R., Sugai, M. et al., Germinal center marker GL7 probes activation-dependent repression of N-glycolylneuraminic acid, a sialic acid species involved in the negative modulation of B-cell activation. Mol. Cell. Biol. 2007. 27: 3008 - 3022.; Grötsch, B., Brachs, S., Lang, C., Luther, J., Derer, A., Schlötzer-Schrehardt, U., Bozec, A. et al., The AP-1 transcription factor Fra1 inhibits follicular B cell differentiation into plasma cells. J. Exp. Med. 2014. 211: 2199 - 2212.; Arnold, L. W., Pennell, C. A., McCray, S. K. and Clarke, S. H., Development of B-1 cells: segregation of phosphatidyl choline-specific B cells to the B-1 population occurs after immunoglobulin gene expression. J. Exp. Med. 1994. 179: 1585 - 1595.; Rauch, P. J., Chudnovskiy, A., Robbins, C. S., Weber, G. F., Etzrodt, M., Hilgendorf, I., Tiglao, E. et al., Innate response activator B cells protect against microbial sepsis. Science 2012. 335: 597 - 601.; Bouaziz, J.-D., Yanaba, K. and Tedder, T. F., Regulatory B cells as inhibitors of immune responses and inflammation. Immunol. Rev. 2008. 224: 201 - 214.; Shen, P. and Fillatreau, S., Antibody-independent functions of B cells: a focus on cytokines. Nat. Rev. Immunol. 2015. 15: 441 - 451.; Bermejo, D. A., Jackson, S. W., Gorosito-Serran, M., Acosta-Rodriguez, E. V., Amezcua-Vesely, M. C., Sather, B. D., Singh, A. K. et al., Trypanosoma cruzi trans-sialidase initiates a program independent of the transcription factors RORγt and Ahr that leads to IL-17 production by activated B cells. Nat. Immunol. 2013. 14: 514 - 522.; Shen, P., Roch, T., Lampropoulou, V., O’Connor, R. A., Stervbo, U., Hilgenberg, E., Ries, S. et al., IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nature 2014. 507: 366 - 370.; Fillatreau, S., Pathogenic functions of B cells in autoimmune diseases: IFN-γ production joins the criminal gang. Eur. J. Immunol. 2015. 45: 966 - 970.; Mizoguchi, A. and Bhan, A. K., A case for regulatory B cells. J. Immunol. 2006. 176: 705 - 710.; Rosser, E. C. and Mauri, C., Regulatory B cells: origin, phenotype, and function. Immunity 2015. 42: 607 - 612.; Oprea, M. and Perelson, A., Somatic mutation leads to efficient affinity maturation when centrocytes recycle back to centroblasts. J. Immunol. 1997. 158: 5155 - 5162.; Maseda, D., Smith, S. H., DiLillo, D. J., Bryant, J. M., Candando, K. M., Weaver, C. T. and Tedder, T. F., Regulatory B10 cells differentiate into antibody-secreting cells after transient IL-10 production in vivo. J. Immunol. 2012. 188: 1036 - 1048.; Kulkarni, U., Karsten, C. M., Kohler, T., Hammerschmidt, S., Bommert, K., Tiburzy, B., Meng, L. et al., IL-10 mediates plasmacytosis-associated immunodeficiency by inhibiting complement-mediated neutrophil migration. J. Allergy Clin. Immunol. 2016. 137: 1487 - 1497.e6.; Matsumoto, M., Baba, A., Yokota, T., Nishikawa, H., Ohkawa, Y., Kayama, H., Kallies, A. et al., Interleukin-10-producing plasmablasts exert regulatory function in autoimmune inflammation. Immunity 2014. 41: 1040 - 1051.; Blanc, P., Moro-Sibilot, L., Barthly, L., Jagot, F., This, S., de Bernard, S., Buffat, L. et al., Mature IgM-expressing plasma cells sense antigen and develop competence for cytokine production upon antigenic challenge. Nat. Commun. 2016. 7: 13600.; Lino, A. C., Dang, V. D., Lampropoulou, V., Welle, A., Joedicke, J., Pohar, J., Simon, Q. et al., LAG-3 inhibitory receptor expression identifies immunosuppressive natural regulatory plasma cells. Immunity 2018. 49: 120 - 133.e129.; Evans, J. G., Chavez-Rueda, K. A., Eddaoudi, A., Meyer-Bahlburg, A., Rawlings, D. J., Ehrenstein, M. R. and Mauri, C., Novel suppressive function of transitional 2 B cells in experimental arthritis. J. Immunol. 2007. 178: 7868 - 7878.; Blair, P. A., Chavez-Rueda, K. A., Evans, J. G., Shlomchik, M. J., Eddaoudi, A., Isenberg, D. A., Ehrenstein, M. R. et al., Selective targeting of B cells with agonistic anti-CD40 is an efficacious strategy for the generation of induced regulatory T2-like B cells and for the suppression of lupus in MRL/lpr mice. J. Immunol. 2009. 182: 3492 - 3502.; Miles, K., Heaney, J., Sibinska, Z., Salter, D., Savill, J., Gray, D. and Gray, M., A tolerogenic role for Toll-like receptor 9 is revealed by B-cell interaction with DNA complexes expressed on apoptotic cells. Proc. Natl. Acad. Sci. USA 2012. 109: 887 - 892.; Bankoti, R., Gupta, K., Levchenko, A. and Stäger, S., Marginal zone B cells regulate antigen-specific T cell responses during infection. J. Immunol. 2012. 188: 3961 - 3971.; Tedder, T. F., B10 cells: a functionally defined regulatory B cell subset. J. Immunol. 2015. 194: 1395 - 1401.; Ding, Q., Yeung, M., Camirand, G., Zeng, Q., Akiba, H., Yagita, H., Chalasani, G. et al., Regulatory B cells are identified by expression of TIM-1 and can be induced through TIM-1 ligation to promote tolerance in mice. J. Clin. Invest. 2011. 121: 3645 - 3656.; Xiao, S., Brooks, C. R., Sobel, R. A. and Kuchroo, V. K., Tim-1 is essential for induction and maintenance of IL-10 in regulatory B cells and their regulation of tissue inflammation. J. Immunol. 2015. 194: 1602 - 1608.; Fillatreau, S., Natural regulatory plasma cells. Curr. Opin. Immunol. 2018. 55: 62 - 66.; Mills, D. M. and Cambier, J. C., B lymphocyte activation during cognate interactions with CD4+ T lymphocytes: molecular dynamics and immunologic consequences. Semin. Immunol. 2003. 15: 325 - 329.; Okada, T., Miller, M., Parker, I., Krummel, M. F., Neighbors, M., Hartley, S. B., O’Garra, A. et al., Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells. PLoS Biol. 2005. 3: e150.; MacLennan, I., Germinal centers. Annu. Rev. Immunol. 1994. 12: 117 - 139.; Victora, G. D. and Nussenzweig, M. C., Germinal centers. Annu. Rev. Immunol. 2012. 30: 429 - 457.; Nieuwenhuis, P. and Opstelten, D., Functional anatomy of germinal centers. Am. J. Anat. 1984. 170: 421 - 435.; Wagner, S. and Neuberger, Somatic hypermutation of immunoglobulin genes. Annu. Rev. Immunol. 1996. 14: 441 - 457.; Li, Z., Woo, C. J., Iglesias-Ussel, M. D., Ronai, D. and Scharff, M. D., The generation of antibody diversity through somatic hypermutation and class switch recombination. Genes Dev. 2004. 18: 1 - 11.; Wu, J., Qin, D., Burton, G., Szakal, A. and Tew, J., Follicular dendritic cell-derived antigen and accessory activity in initiation of memory IgG responses in vitro. J. Immunol. 1996. 157: 3404 - 3411.; Yeh, C.-H. H., Nojima, T., Kuraoka, M. and Kelsoe, G., Germinal center entry not selection of B cells is controlled by peptide-MHCII complex density. Nat. Commun. 2018. 9: 928.; Klaus, G., Humphrey, J., Kunkl, A. and Dongworth, D., The follicular dendritic cell: its role in antigen presentation in the generation of immunological memory. Immunol. Rev. 1980. 53: 3 - 28.; Coico, R., Bhogal, B. and Thorbecke, G., Relationship of germinal centers in lymphoid tissue to immunologic memory. VI. Transfer of B cell memory with lymph node cells fractionated according to their receptors for peanut agglutinin. J. Immunol. 1983. 131: 2254 - 2257.; Benner, R., Hijmans, W. and Haaijman, J., The bone marrow: the major source of serum immunoglobulins, but still a neglected site of antibody formation. Clin. Exp. Immunol. 1981. 46: 1 - 8.; Oliver, A., Martin, F. and Kearney, J., Mouse CD38 is down-regulated on germinal center B cells and mature plasma cells. J. Immunol. 1997. 158: 1108 - 1115.; Laszlo, G., Hathcock, K., Dickler, H. and Hodes, R., Characterization of a novel cell-surface molecule expressed on subpopulations of activated T and B cells. J. Immunol. 1993. 150: 5252 - 5262.; Reichert, R., Gallatin, W., Weissman, I. and Butcher, E., Germinal center B cells lack homing receptors necessary for normal lymphocyte recirculation. J Exp. Med. 1983. 157: 813 - 827.; Butcher, E. et al., Surface phenotype of Peyer’s patch germinal center cells: implications for the role of germinal centers in B cell differentiation. J. Immunol. 1982. 129: 2698 - 2707.; Davies, A., Forrester, J., Rose, M., Birbeck and Wallis, V., Peanut lectin binding properties of germinal centers of mouse lymphoid tissue. Nature 1980. 284: 364.; Kraal, G., Weissman, I. and Butcher, E., Germinal centre B cells: antigen specificity and changes in heavy chain class expression. Nature 1982. 298: 377 - 379.; Smith, K., Nossal, G. and Tarlinton, D., FAS is highly expressed in the germinal center but is not required for regulation of the B-cell response to antigen. Proc. Natl. Acad. Sci. USA 1995. 92: 11628 - 11632.; Bourgois, A., Kitajima, K., Hunter, I. and Askonas, Surface immunoglobulins of lipopolysaccharide-stimulated spleen cells. The behavior of IgM, IgD and IgG. Eur. J. Immunol. 1977. 7: 151 - 153.; Monroe, J., Havran, W. and Cambier, J., B lymphocyte activation: entry into cell cycle is accompanied by decreased expression of IgD but not IgM. Eur. J. Immunol. 1983. 13: 208 - 213.; Hathcock, K. et al., Identification of an alternative CTLA-4 ligand costimulatory for T cell activation. Science 1993. 262: 905 - 907.; Freeman, G., Borriello, F., Hodes, R. J., Reiser, H., Hathcock, K. S., Laszlo, G., McKnight, A. J. et al., Uncovering of functional alternative CTLA-4 counter-receptor in B7-deficient mice. Science (New York, N.Y.) 1993. 262: 907 - 909.; Freeman, G., Borriello, F., Hodes, R. J., Reiser, H., Gribben, J. G., Ng, J. W., Kim, J. et al., Murine B7-2, an alternative CTLA4 counter-receptor that costimulates T cell proliferation and interleukin 2 production. J. Exp. Med. 1993. 178: 2185 - 2192.; Allen, C. D., Ansel, K. M., Low, C., Lesley, R., Tamamura, H., Fujii, N. and Cyster, J. G., Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nat. Immunol. 2004. 5: 943 - 952.; Victora, G. D., Schwickert, T. A., Fooksman, D. R., Kamphorst, A. O., Meyer-Hermann, M., Dustin, M. L., Nussenzweig, M. C. et al., Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 2010. 143: 592 - 605.; Anderson, K. C., Bates, M. P., Slaughenhoupt, B. L., Pinkus, G. S., Schlossman, S. F. and Nadler, L. M., Expression of human B cell-associated antigens on leukemias and lymphomas: a model of human B cell differentiation. Blood 1984. 63: 1424 - 1433.; Stashenko, P., Nadler, L. M., Hardy, R. and Schlossman, S. F., Characterization of a human B lymphocyte-specific antigen. J. Immunol. 1980. 125: 1678 - 1685.; LeBien, T. W. and Tedder, T. F., B lymphocytes: how they develop and function. Blood 2008. 112: 1570 - 1580.; Sims, G. P., Ettinger, R., Shirota, Y., Yarboro, C. H., Illei, G. G. and Lipsky, P. E., Identification and characterization of circulating human transitional B cells. Blood 2005. 105: 4390 - 4398.; Klein, U., Rajewsky, K. and Kuppers, R., Human immunoglobulin (Ig)M+IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J. Exp. Med. 1998. 188: 1679 - 1689.; Kuppers, R., Klein, U., Hansmann, M. L. and Rajewsky, K., Cellular origin of human B-cell lymphomas. N. Engl. J. Med. 1999. 341: 1520 - 1529.; Agematsu, K., Hokibara, S., Nagumo, H. and Komiyama, A., CD27: a memory B-cell marker. Immunol. Today 2000. 21: 204 - 206.; Agematsu, K., Nagumo, H., Yang, F. C., Nakazawa, T., Fukushima, K., Ito, S., Sugita, K. et al., B cell subpopulations separated by CD27 and crucial collaboration of CD27+ B cells and helper T cells in immunoglobulin production. Eur. J. Immunol. 1997. 27: 2073 - 2079.; Odendahl, M., Jacobi, A., Hansen, A., Feist, E., Hiepe, F., Burmester, G. R., Lipsky, P. E. et al., Disturbed peripheral B lymphocyte homeostasis in systemic lupus erythematosus. J. Immunol. 2000. 165: 5970 - 5979.; Mei, H. E., Wirries, I., Frolich, D., Brisslert, M., Giesecke, C., Grun, J. R. et al., A unique population of IgG-expressing plasma cells lacking CD19 is enriched in human bone marrow. Blood 2015. 125: 1739 - 1748.; Pascual, V., Liu, Y. J., Magalski, A., de Bouteiller, O., Banchereau, J. and Capra, J. D., Analysis of somatic mutation in five B cell subsets of human tonsil. J. Exp. Med. 1994. 180: 329 - 339.; Hardy, R. R., Kincade, P. W. and Dorshkind, K., The protean nature of cells in the B lymphocyte lineage. Immunity 2007. 26: 703 - 714.; Kikutani, H., Suemura, M., Owaki, H., Nakamura, H., Sato, R., Yamasaki, K., Barsumian, E. L. et al., Fc epsilon receptor, a specific differentiation marker transiently expressed on mature B cells before isotype switching. J. Exp. Med. 1986. 164: 1455 - 1469.; Clark, E. A. and Lane, P. J., Regulation of human B-cell activation and adhesion. Annu. Rev. Immunol. 1991. 9: 97 - 127.; Wu, Y. C., Kipling, D. and Dunn-Walters, D. K., The relationship between CD27 negative and positive B cell populations in human peripheral blood. Front. Immunol. 2011. 2: 81.; Wei, C., Anolik, J., Cappione, A., Zheng, B., Pugh-Bernard, A., Brooks, J., Lee, E. H. et al., A new population of cells lacking expression of CD27 represents a notable component of the B cell memory compartment in systemic lupus erythematosus. J. Immunol. 2007. 178: 6624 - 6633.; Jacobi, A. M., Reiter, K., Mackay, M., Aranow, C., Hiepe, F., Radbruch, A., Hansen, A. et al., Activated memory B cell subsets correlate with disease activity in systemic lupus erythematosus: delineation by expression of CD27, IgD, and CD95. Arthritis Rheum. 2008. 58: 1762 - 1773.; Wehr, C., Eibel, H., Masilamani, M., Illges, H., Schlesier, M., Peter, H. H. and Warnatz, K., A new CD21low B cell population in the peripheral blood of patients with SLE. Clin. Immunol. 2004. 113: 161 - 171.; Tedder, T. F., Zhou, L. J. and Engel, P., The CD19/CD21 signal transduction complex of B lymphocytes. Immunol. Today 1994. 15: 437 - 442.; Jacobi, A. M. and Dorner, T., B-cell-directed therapy in patients with connective tissue diseases. Dtsch. Med. Wochenschr. 2012. 137: 1755 - 1757.; Polikowsky, H. G., Wogsland, C. E., Diggins, K. E., Huse, K. and Irish, J. M., Cutting edge: redox signaling hypersensitivity distinguishes human germinal center B Cells. J. Immunol. 2015. 195: 1364 - 1367.; Carrion, C., Guerin, E., Gachard, N., le Guyader, A., Giraut, S. and Feuillard, J., Adult bone marrow three-dimensional phenotypic landscape of B-cell differentiation. Cytometry B Clin. Cytom. 2019. 96: 30 - 38.; Bernasconi, N. L., Traggiai, E. and Lanzavecchia, A., Maintenance of serological memory by polyclonal activation of human memory B cells. Science 2002. 298: 2199 - 2202.; Giesecke, C., Meyer, T., Durek, P., Maul, J., Preiss, J., Jacobs, J. F. M. et al., simultaneous presence of non- and highly mutated keyhole limpet hemocyanin (KLH)-specific plasmablasts early after primary KLH immunization suggests cross-reactive memory B cell activation. J. Immunol. 2018. 200 ( 12 ): 3981 - 3992.; Liao, H. Y., Tao, L., Zhao, J., Qin, J., Zeng, G. C., Cai, S. W. et al., Clostridium butyricum in combination with specific immunotherapy converts antigen-specific B cells to regulatory B cells in asthmatic patients. Sci. Rep. 2016. 6: 20481.; Ellebedy, A. H., Jackson, K. J., Kissick, H. T., Nakaya, H. I., Davis, C. W., Roskin, K. M. et al., Defining antigen-specific plasmablast and memory B cell subsets in human blood after viral infection or vaccination. Nat. Immunol. 2016. 17 ( 10 ): 1226 - 1234.; Kerkman, P. F., Fabre, E., van der Voort, E. I., Zaldumbide, A., Rombouts, Y., Rispens, T. et al., Identification and characterisation of citrullinated antigen-specific B cells in peripheral blood of patients with rheumatoid arthritis. Ann. Rheum. Dis. 2016. 75: 1170 - 1176.; Murugan, R., Buchauer, L., Triller, G., Kreschel, C., Costa, G., Pidelaserra Marti, G. et al., Clonal selection drives protective memory B cell responses in controlled human malaria infection. Sci. Immunol. 2018. 3 ( 20 ): eaap8029.; Germar, K., Fehres, C. M., Scherer, H. U., van Uden, N., Pollastro, S., Yeremenko, N. et al., Generation and characterization of anti-citrullinated protein antibody-producing B-cell clones from rheumatoid arthritis patients. Arthritis Rheumatol. 2019. 71: 340 - 350.; Kwakkenbos, M. J., Diehl, S. A., Yasuda, E., Bakker, A. Q., van Geelen, C. M., Lukens, M. V. et al., Generation of stable monoclonal antibody-producing B cell receptor-positive human memory B cells by genetic programming. Nat. Med. 2010. 16 ( 1 ): 123 - 128.; Giesecke, C., Frolich, D., Reiter, K., Mei, H. E., Wirries, I., Kuhly, R. et al., Tissue distribution and dependence of responsiveness of human antigen-specific memory B cells. J. Immunol. 2014. 192 ( 7 ): 3091 - 3100.; Kerkman, P. F., Kempers, A. C., van der Voort, E. I., van Oosterhout, M., Huizinga, T. W., Toes, R. E. et al., Synovial fluid mononuclear cells provide an environment for long-term survival of antibody-secreting cells and promote the spontaneous production of anti-citrullinated protein antibodies. Ann. Rheum. Dis. 2016. 75 ( 12 ): 2201 - 2207.; Kerkman, P. F., Rombouts, Y., van der Voort, E. I., Trouw, L. A., Huizinga, T. W., Toes, R. E. et al., Circulating plasmablasts/plasmacells as a source of anticitrullinated protein antibodies in patients with rheumatoid arthritis. Ann. Rheum. Dis. 2013. 72 ( 7 ): 1259 - 1263.; Hansen, A., Reiter, K., Dorner, T. and Pruss, A., Cryopreserved human B cells as an alternative source for single cell mRNA analysis. Cell Tissue Bank 2005. 6 ( 4 ): 299 - 308.; Townsend, S. E., Goodnow, C. C. and Cornall, R. J., Single epitope multiple staining to detect ultralow frequency B cells. J. Immunol. Methods 2001. 249 ( 1-2 ): 137 - 146.; Brooks, J. F., Liu, X., Davies, J. M., Wells, J. W. and Steptoe, R. J., Tetramer-based identification of naive antigen-specific B cells within a polyclonal repertoire. Eur. J. Immunol. 2018. 48 ( 7 ): 1251 - 1254.; Cornec, D., Berti, A., Hummel, A., Peikert, T., Pers, J. O. and Specks, U., Identification and phenotyping of circulating autoreactive proteinase 3-specific B cells in patients with PR3-ANCA associated vasculitis and healthy controls. J. Autoimmun. 2017. 84: 122 - 131.; Frolich, D., Giesecke, C., Mei, H. E., Reiter, K., Daridon, C., Lipsky, P. E. and Dorner, T., Secondary immunization generates clonally related antigen-specific plasma cells and memory B cells. J. Immunol. 2010. 185: 3103 - 3110.; Lighaam, L. C., Vermeulen, E., Bleker, T., Meijlink, K. J., Aalberse, R. C., Barnes, E. et al., Phenotypic differences between IgG4+ and IgG1+ B cells point to distinct regulation of the IgG4 response. J. Allergy Clin. Immunol. 2014. 133 ( 1 ): 267 - 270 e1-6.; Koning, M. T., Kielbasa, S. M., Boersma, V., Buermans, H. P. J., van der Zeeuw, S. A. J., van Bergen, C. A. M. et al., ARTISAN PCR: rapid identification of full-length immunoglobulin rearrangements without primer binding bias. Br. J. Haematol. 2017. 178 ( 6 ): 983 - 986.; Gatto, M., Wiedemann, A., Nomovi, N., Reiter, K., Schrezenmeier, E., Rose, T. et al., Circulating Pentraxin3-Specific B Cells Are Decreased in Lupus Nephritis. Front. Immunol. 2019. 10: 29.; Odendahl, M., Mei, H., Hoyer, B. F., Jacobi, A. M., Hansen, A., Muehlinghaus, G., Berek, C. et al., Generation of migratory antigen-specific plasma blasts and mobilization of resident plasma cells in a secondary immune response. Blood 2005. 105: 1614 - 1621.; Mei, H. E., Hahne, S., Redlin, A., Hoyer, B. F., Wu, K., Baganz, L. et al., Plasmablasts With a Mucosal Phenotype Contribute to Plasmacytosis in Systemic Lupus Erythematosus. Arthritis Rheumatol. 2017. 69: 2018 - 2028.; Willemze, A., Trouw, L. A., Toes, R. E. and Huizinga, T. W., The influence of ACPA status and characteristics on the course of RA. Nat. Rev. Rheumatol. 2012. 8 ( 3 ): 144 - 152.; Katz, S. I., Parker, D. and Turk, J. L., B-cell suppression of delayed hypersensitivity reactions. Nature 1974. 251: 550 - 551.; Neta, R. and Salvin, S. B., Specific suppression of delayed hypersensitivity: the possible presence of a suppressor B cell in the regulation of delayed hypersensitivity. J. Immunol. 1974. 113: 1716 - 1725.; Wolf, S. D., Dittel, B. N., Hardardottir, F. and Janeway, C. A., Jr., Experimental autoimmune encephalomyelitis induction in genetically B cell-deficient mice. J. Exp. Med. 1996. 184: 2271 - 2278.; Mizoguchi, A., Mizoguchi, E., Takedatsu, H., Blumberg, R. S. and Bhan, A. K., Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity 2002. 16: 219 - 230.; Fillatreau, S., Sweenie, C. H., McGeachy, M. J., Gray, D. and Anderton, S. M., B cells regulate autoimmunity by provision of IL-10. Nat. Immunol. 2002. 3: 944 - 950.; van de Veen, W., Stanic, B., Wirz, O. F., Jansen, K., Globinska, A. and Akdis, M., Role of regulatory B cells in immune tolerance to allergens and beyond. J. Allergy Clin. Immunol. 2016. 138: 654 - 665.; Wirz, O. F., Globinska, A., Ochsner, U., van de Veen, W., Eller, E., Christiansen, E. S., Halken, S. et al., Comparison of regulatory B cells in asthma and allergic rhinitis. Allergy 2019. 74: 815 - 818.; van de Veen, W., Stanic, B., Yaman, G., Wawrzyniak, M., Sollner, S., Akdis, D. G., Ruckert, B. et al., IgG4 production is confined to human IL-10-producing regulatory B cells that suppress antigen-specific immune responses. J. Allergy Clin. Immunol. 2013. 131: 1204 - 1212.; Kaminski, D. A., Wei, C., Qian, Y., Rosenberg, A. F. and Sanz, I., Advances in human B cell phenotypic profiling. Front. Immunol. 2012. 3: 302.; Carter, N. A., Rosser, E. C. and Mauri, C., Interleukin-10 produced by B cells is crucial for the suppression of Th17/Th1 responses, induction of T regulatory type 1 cells and reduction of collagen-induced arthritis. Arthritis Res. Ther. 2012. 14: R32.; Parekh, V. V., Prasad, D. V., Banerjee, P. P., Joshi, B. N., Kumar, A. and Mishra, G. C., B cells activated by lipopolysaccharide, but not by anti-Ig and anti-CD40 antibody, induce anergy in CD8+ T cells: role of TGF-beta 1. J. Immunol. 2003. 170: 5897 - 5911.; Tian, J., Zekzer, D., Hanssen, L., Lu, Y., Olcott, A. and Kaufman, D. L., Lipopolysaccharide-activated B cells down-regulate Th1 immunity and prevent autoimmune diabetes in nonobese diabetic mice. J. Immunol. 2001. 167: 1081 - 1089.; Carter, N. A., Vasconcellos, R., Rosser, E. C., Tulone, C., Munoz-Suano, A., Kamanaka, M., Ehrenstein, M. R. et al., Mice lacking endogenous IL-10-producing regulatory B cells develop exacerbated disease and present with an increased frequency of Th1/Th17 but a decrease in regulatory T cells. J. Immunol. 2011. 186: 5569 - 5579.; Schioppa, T., Moore, R., Thompson, R. G., Rosser, E. C., Kulbe, H., Nedospasov, S., Mauri, C. et al., B regulatory cells and the tumor-promoting actions of TNF-alpha during squamous carcinogenesis. Proc. Natl. Acad. Sci. USA 2011. 108: 10662 - 10667.; Gray, M., Miles, K., Salter, D., Gray, D. and Savill, J., Apoptotic cells protect mice from autoimmune inflammation by the induction of regulatory B cells. Proc. Natl. Acad. Sci. USA 2007. 104: 14080 - 14085.; Bankoti, R., Gupta, K., Levchenko, A. and Stager, S., Marginal zone B cells regulate antigen-specific T cell responses during infection. J. Immunol. 2012. 188: 3961 - 3971.; Matsushita, T., Horikawa, M., Iwata, Y. and Tedder, T. F., Regulatory B cells (B10 cells) and regulatory T cells have independent roles in controlling experimental autoimmune encephalomyelitis initiation and late-phase immunopathogenesis. J. Immunol. 2010. 185: 2240 - 2252.; Kalampokis, I., Yoshizaki, A. and Tedder, T. F., IL-10-producing regulatory B cells (B10 cells) in autoimmune disease. Arthritis Res. Ther. 2013. 15 ( Suppl 1 ): S1.; Watanabe, R., Ishiura, N., Nakashima, H., Kuwano, Y., Okochi, H., Tamaki, K., Sato, S. et al., Regulatory B cells (B10 cells) have a suppressive role in murine lupus: CD19 and B10 cell deficiency exacerbates systemic autoimmunity. J. Immunol. 2010. 184: 4801 - 4809.; Sheng, J. R., Quan, S. and Soliven, B., CD1d(hi)CD5+ B cells expanded by GM-CSF in vivo suppress experimental autoimmune myasthenia gravis. J. Immunol. 2014. 193: 2669 - 2677.; Yang, M., Deng, J., Liu, Y., Ko, K. H., Wang, X., Jiao, Z., Wang, S. et al., IL-10-producing regulatory B10 cells ameliorate collagen-induced arthritis via suppressing Th17 cell generation. Am. J. Pathol. 2012. 180: 2375 - 2385.; Yanaba, K., Yoshizaki, A., Asano, Y., Kadono, T., Tedder, T. F. and Sato, S., IL-10-producing regulatory B10 cells inhibit intestinal injury in a mouse model. Am. J. Pathol. 2011. 178: 735 - 743.; Khan, A. R., Amu, S., Saunders, S. P., Hams, E., Blackshields, G., Leonard, M. O., Weaver, C. T. et al., Ligation of TLR7 on CD19(+) CD1d(hi) B cells suppresses allergic lung inflammation via regulatory T cells. Eur. J. Immunol. 2015. 45: 1842 - 1854.; Amu, S., Saunders, S. P., Kronenberg, M., Mangan, N. E., Atzberger, A. and Fallon, P. G., Regulatory B cells prevent and reverse allergic airway inflammation via FoxP3-positive T regulatory cells in a murine model. J. Allergy Clin. Immunol. 2010. 125: 1114 - 1124.e1118.; Yanaba, K., Bouaziz, J. D., Haas, K. M., Poe, J. C., Fujimoto, M. and Tedder, T. F., A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity 2008. 28: 639 - 650.; Xiao, S., Brooks, C. R., Zhu, C., Wu, C., Sweere, J. M., Petecka, S., Yeste, A. et al., Defect in regulatory B-cell function and development of systemic autoimmunity in T-cell Ig mucin 1 (Tim-1) mucin domain-mutant mice. Proc. Natl. Acad. Sci. USA 2012. 109: 12105 - 12110.; Neves, P., Lampropoulou, V., Calderon-Gomez, E., Roch, T., Stervbo, U., Shen, P., Kuhl, A. A. et al., Signaling via the MyD88 adaptor protein in B cells suppresses protective immunity during Salmonella typhimurium infection. Immunity 2010. 33: 777 - 790.; Dass, S., Vital, E. M. and Emery, P., Development of psoriasis after B cell depletion with rituximab. Arthritis Rheum. 2007. 56: 2715 - 2718.; Goetz, M., Atreya, R., Ghalibafian, M., Galle, P. R. and Neurath, M. F., Exacerbation of ulcerative colitis after rituximab salvage therapy. Inflamm. Bowel Dis. 2007. 13: 1365 - 1368.; Blair, P. A., Norena, L. Y., Flores-Borja, F., Rawlings, D. J., Isenberg, D. A., Ehrenstein, M. R. and Mauri, C., CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic Lupus Erythematosus patients. Immunity 2010. 32: 129 - 140.; Das, A., Ellis, G., Pallant, C., Lopes, A. R., Khanna, P., Peppa, D., Chen, A. et al., IL-10-producing regulatory B cells in the pathogenesis of chronic hepatitis B virus infection. J. Immunol. 2012. 189: 3925 - 3935.; Flores-Borja, F., Bosma, A., Ng, D., Reddy, V., Ehrenstein, M. R., Isenberg, D. A. and Mauri, C., CD19+CD24hiCD38hi B cells maintain regulatory T cells while limiting TH1 and TH17 differentiation. Sci. Transl. Med. 2013. 5: 173ra123.; Iwata, Y., Matsushita, T., Horikawa, M., Dilillo, D. J., Yanaba, K., Venturi, G. M., Szabolcs, P. M. et al., Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood 2011. 117: 530 - 541.; Machado-Santos, J., Saji, E., Troscher, A. R., Paunovic, M., Liblau, R., Gabriely, G., Bien, C. G. et al., The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8+ T lymphocytes and B cells. Brain 2018. 141: 2066 - 2082.; Horikawa, M., Weimer, E. T., DiLillo, D. J., Venturi, G. M., Spolski, R., Leonard, W. J., Heise, M. T. et al., Regulatory B cell (B10 Cell) expansion during Listeria infection governs innate and cellular immune responses in mice. J Immunol 2013. 190: 1158 - 1168.; Menon, M., Blair, P. A., Isenberg, D. A. and Mauri, C., A regulatory feedback between plasmacytoid dendritic cells and regulatory B cells is aberrant in systemic lupus erythematosus. Immunity 2016. 44: 683 - 697.; Ramirez, J., Lukin, K. and Hagman, J., From hematopoietic progenitors to B cells: mechanisms of lineage restriction and commitment. Curr. Opin. Immunol. 2010. 22: 177 - 184.; Xu, Z., Zan, H., Pone, E. J., Mai, T. and Casali, P., Immunoglobulin class-switch DNA recombination: induction, targeting and beyond. Nat. Rev. Immunol. 2012. 12: 517 - 531.; King, C., Tangye, S. G. and Mackay, C. R., T follicular helper (TFH) cells in normal and dysregulated immune responses. Annu. Rev. Immunol. 2008. 26: 741 - 766.; Papavasiliou, F. N. and Schatz, D. G., Somatic hypermutation of immunoglobulin genes: merging mechanisms for genetic diversity. Cell 2002. 109 Suppl: S35 - 4.; Radbruch, A., Muehlinghaus, G., Luger, E. O., Inamine, A., Smith, K. G., Dorner, T. and Hiepe, F., Competence and competition: the challenge of becoming a long-lived plasma cell. Nat. Rev. Immunol. 2006. 6: 741 - 750.; Honjo, T., Immunoglobulin genes. Annu. Rev. Immunol. 1983. 1: 499 - 528.; Schatz, D. G. and Ji, Y., Recombination centres and the orchestration of V(D)J recombination. Nat. Rev. Immunol. 2011. 11: 251 - 263.; Shan, M., Carrillo, J., Yeste, A., Gutzeit, C., Segura-Garzon, D., Walland, A. C., Pybus, M. et al., Secreted IgD amplifies humoral T helper 2 cell responses by binding basophils via galectin-9 and CD44. Immunity 2018. 49: 709 - 724 e708.; Boonpiyathad, T., Meyer, N., Moniuszko, M., Sokolowska, M., Eljaszewicz, A., Wirz, O. F., Tomasiak-Lozowska, M. M. et al., High-dose bee venom exposure induces similar tolerogenic B-cell responses in allergic patients and healthy beekeepers. Allergy 2017. 72: 407 - 415.; Kallies, A., Hasbold, J., Tarlinton, D. M., Dietrich, W., Corcoran, L. M., Hodgkin, P. D. and Nutt, S. L., Plasma cell ontogeny defined by quantitative changes in blimp-1 expression. J. Exp. Med. 2004. 200: 967 - 977.; Nutt, S. L., Hodgkin, P. D., Tarlinton, D. M. and Corcoran, L. M., The generation of antibody-secreting plasma cells. Nat. Rev. Immunol. 2015. 15: 160 - 171.; Bankoti, R., Ogawa, C., Nguyen, T., Emadi, L., Couse, M., Salehi, S., Fan, X. et al., Differential regulation of Effector and Regulatory T cell function by Blimp1. Sci. Rep. 2017. 7: 12078.; Fukushima, P. I., Nguyen, P. K. T., O’Grady, P. and Stetler-Stevenson, M., Flow cytometric analysis of kappa and lambda light chain expression in evaluation of specimens for B-cell neoplasia. Cytometry 1996. 26: 243 - 252.; Pelz, A., Schaffert, H., Diallo, R., Hiepe, F., Meisel, A. and Kohler, S., S1P receptor antagonists fingolimod and siponimod do not improve the outcome of experimental autoimmune myasthenia gravis mice after disease onset. Eur. J. Immunol. 2018. 48: 498 - 508.; Chu, V. T., Fröhlich, A., Steinhauser, G., Scheel, T., Roch, T., Fillatreau, S., Lee, J. J. et al., Eosinophils are required for the maintenance of plasma cells in the bone marrow. Nat. Immunol. 2011. 12: 151 - 159.; Wilmore, J. R., Jones, D. D. and Allman, D., Protocol for improved resolution of plasma cell subpopulations by flow cytometry. Eur. J. Immunol. 2017. 47: 1386 - 1388.; Cantor, J., Browne, C. D., Ruppert, R., Féral, C. C., Fässler, R., Rickert, R. C. and Ginsberg, M. H., CD98hc facilitates B cell proliferation and adaptive humoral immunity. Nat. Immunol. 2009. 10: 412 - 419.; Wrammert, J., Källberg, E., Agace, W. W. and Leanderson, T., Ly6C expression differentiates plasma cells from other B cell subsets in mice. Eur. J. Immunol. 2002. 32: 97 - 103.; Smith, K. G. C., Hewitson, T. D., Nossal, G. J. V. and Tarlinton, D. M., The phenotype and fate of the antibody-forming cells of the splenic foci. Eur. J. Immunol. 1996. 26: 444 - 448.; Manz, R. A., Thiel, A. and Radbruch, A., Lifetime of plasma cells in the bone marrow. Nature 1997. 388: 133 - 134.; Zehentmeier, S., Roth, K., Cseresnyes, Z., Sercan, à ., Horn, K., Niesner, R. A., Chang, H.-D. et al., Static and dynamic components synergize to form a stable survival niche for bone marrow plasma cells: cellular immune response. Eur. J. Immunol. 2014. 44: 2306 - 2317.; Sanderson, R. D., Lalor, P. and Bernfield, M., B lymphocytes express and lose syndecan at specific stages of differentiation. Cell Regul. 1989. 1: 27 - 35.; Arumugakani, G., Stephenson, S. J., Newton, D. J., Rawstron, A., Emery, P., Doody, G. M., McGonagle, D. et al., Early emergence of CD19-negative human antibody-secreting cells at the plasmablast to plasma cell transition. J. Immunol. 2017. 198: 4618 - 4628.; Racine, R., Chatterjee, M. and Winslow, G. M., CD11c expression identifies a population of extrafollicular antigen-specific splenic plasmablasts responsible for CD4 T-independent antibody responses during intracellular bacterial infection. J. Immunol. 2008. 181: 1375 - 1385.; Van Camp, B., Durie, B. G., Spier, C., De Waele, M., Van Riet, I., Vela, E., Frutiger, Y. et al., Plasma cells in multiple myeloma express a natural killer cell-associated antigen: CD56 (NKH-1; Leu-19). Blood 1990. 76: 377 - 382.; Hoffmann, F. S., Kuhn, P.-H., Laurent, S. A., Hauck, S. M., Berer, K., Wendlinger, S. A., Krumbholz, M. et al., The immunoregulator soluble TACI is released by ADAM10 and reflects B cell activation in autoimmunity. J. Immunol. 2015. 194: 542 - 552.; Pinto, D., Montani, E., Bolli, M., Garavaglia, G., Sallusto, F., Lanzavecchia, A. and Jarrossay, D., A functional BCR in human IgA and IgM plasma cells. Blood 2013. 121: 4110 - 4114.; Yoshida, T., Mei, H., Dörner, T., Hiepe, F., Radbruch, A., Fillatreau, S. and Hoyer, B. F., Memory B and memory plasma cells. Immunol. Rev. 2010. 237: 117 - 139.; Slifka, M. K., Antia, R., Whitmire, J. K. and Ahmed, R., Humoral immunity due to long-lived plasma cells. Immunity 1998. 8: 363 - 372.; Jacobi, A. M., Mei, H., Hoyer, B. F., Mumtaz, I. M., Thiele, K., Radbruch, A., Burmester, G. R. et al., HLA-DRhigh/CD27high plasmablasts indicate active disease in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 2010. 69: 305 - 308.; Hoyer, B. F., Mumtaz, I. M., Loddenkemper, K., Bruns, A., Sengler, C., Hermann, K. G., Maza, S. et al., Takayasu arteritis is characterised by disturbances of B cell homeostasis and responds to B cell depletion therapy with rituximab. Ann. Rheum. Dis. 2012. 71: 75 - 79.; Sarkander, J., Hojyo, S. and Tokoyoda, K., Vaccination to gain humoral immune memory. Clin. Transl. Immunol. 2016. 5: e120.; Wrammert, J., Onlamoon, N., Akondy, R. S., Perng, G. C., Polsrila, K., Chandele, A., Kwissa, M. et al., Rapid and massive virus-specific plasmablast responses during acute dengue virus infection in humans. J. Virol. 2012. 86: 2911 - 2918.; Mei, H. E., Frolich, D., Giesecke, C., Loddenkemper, C., Reiter, K., Schmidt, S., Feist, E. et al., Steady-state generation of mucosal IgA+ plasmablasts is not abrogated by B-cell depletion therapy with rituximab. Blood 2010. 116: 5181 - 5190.; Huggins, J., Pellegrin, T., Felgar, R. E., Wei, C., Brown, M., Zheng, B., Milner, E. C. et al., CpG DNA activation and plasma-cell differentiation of CD27- naive human B cells. Blood 2007. 109: 1611 - 1619.; Cocco, M., Stephenson, S., Care, M. A., Newton, D., Barnes, N. A., Davison, A., Rawstron, A. et al., In vitro generation of long-lived human plasma cells. J. Immunol. 2012. 189: 5773 - 5785.; Mei, H. E., Yoshida, T., Sime, W., Hiepe, F., Thiele, K., Manz, R. A., Radbruch, A. et al., Blood-borne human plasma cells in steady state are derived from mucosal immune responses. Blood 2009. 113: 2461 - 2469.; Kantele, A., Hakkinen, M., Moldoveanu, Z., Lu, A., Savilahti, E., Alvarez, R. D., Michalek, S. et al., Differences in immune responses induced by oral and rectal immunizations with Salmonella typhi Ty21a: evidence for compartmentalization within the common mucosal immune system in humans. Infect. Immun. 1998. 66: 5630 - 5635.; Medina, F., Segundo, C., Campos-Caro, A., Gonzalez-Garcia, I. and Brieva, J. A., The heterogeneity shown by human plasma cells from tonsil, blood, and bone marrow reveals graded stages of increasing maturity, but local profiles of adhesion molecule expression. Blood 2002. 99: 2154 - 2161.; Caraux, A., Klein, B., Paiva, B., Bret, C., Schmitz, A., Fuhler, G. M., Bos, N. A. et al., Circulating human B and plasma cells. Age-associated changes in counts and detailed characterization of circulating normal CD138 - and CD138 + plasma cells. Haematologica 2010. 95: 1016 - 1020.; Arce, S., Luger, E., Muehlinghaus, G., Cassese, G., Hauser, A., Horst, A., Lehnert, K. et al., CD38 low IgG-secreting cells are precursors of various CD38 high-expressing plasma cell populations. J. Leukoc. Biol. 2004. 75: 1022 - 1028.; Jourdan, M., Caraux, A., Caron, G., Robert, N., Fiol, G., Reme, T., Bollore, K. et al., Characterization of a transitional preplasmablast population in the process of human B cell to plasma cell differentiation. J. Immunol. 2011. 187: 3931 - 3941.; Mei, H. E., Schmidt, S. and Dorner, T., Rationale of anti-CD19 immunotherapy: an option to target autoreactive plasma cells in autoimmunity. Arthritis Res. Ther. 2012. 14 Suppl 5: S1.; Lokhorst, H. M., Plesner, T., Laubach, J. P., Nahi, H., Gimsing, P., Hansson, M., Minnema, M. C. et al., Targeting CD38 with daratumumab monotherapy in multiple myeloma. N Engl J Med 2015. 373: 1207 - 1219.; Halliley, J. L., Tipton, C. M., Liesveld, J., Rosenberg, A. F., Darce, J., Gregoretti, I. V., Popova, L. et al., Long-lived plasma cells are contained within the CD19(-)CD38(hi)CD138(+) subset in human bone marrow. Immunity 2015. 43: 132 - 145.; Landsverk, O. J., Snir, O., Casado, R. B., Richter, L., Mold, J. E., Reu, P., Horneland, R. et al., Antibody-secreting plasma cells persist for decades in human intestine. J. Exp. Med. 2017. 214: 309 - 317.; Hacbarth, E. and Kajdacsy-Balla, A., Low density neutrophils in patients with systemic lupus erythematosus, rheumatoid arthritis, and acute rheumatic fever. Arthritis Rheum. 1986. 29: 1334 - 1342.; Sato, S., Fujimoto, M., Hasegawa, M. and Takehara, K., Altered blood B lymphocyte homeostasis in systemic sclerosis: expanded naive B cells and diminished but activated memory B cells. Arthritis Rheum. 2004. 50: 1918 - 1927.; Carrell, J. and Groves, C. J., OMIP-043: Identification of human antibody secreting cell subsets. Cytometry A 2018. 93: 190 - 193.; Mesin, L., Di Niro, R., Thompson, K. M., Lundin, K. E. and Sollid, L. M., Long-lived plasma cells from human small intestine biopsies secrete immunoglobulins for many weeks in vitro. J. Immunol. 2011. 187: 2867 - 2874.; Laurent, S. A., Hoffmann, F. S., Kuhn, P.-H., Cheng, Q., Chu, Y., Schmidt-Supprian, M., Hauck, S. M. et al., γ-Secretase directly sheds the survival receptor BCMA from plasma cells. Nat. Commun. 2015. 6: 7333.; Kunkel, E. J. and Butcher, E. C., Plasma-cell homing. Nat. Rev. Immunol. 2003. 3: 822 - 829.; Delogu, A., Schebesta, A., Sun, Q., Aschenbrenner, K., Perlot, T. and Busslinger, M., Gene repression by Pax5 in B cells is essential for blood cell homeostasis and is reversed in plasma cells. Immunity 2006. 24: 269 - 281.; Medina, F., Segundo, C., Jimenez-Gomez, G., Gonzalez-Garcia, I., Campos-Caro, A. and Brieva, J. A., Higher maturity and connective tissue association distinguish resident from recently generated human tonsil plasma cells. J. Leukoc. Biol. 2007. 82: 1430 - 1436.; Frigyesi, I., Adolfsson, J., Ali, M., Christophersen, M. K., Johnsson, E., Turesson, I., Gullberg, U. et al., Robust isolation of malignant plasma cells in multiple myeloma. Blood 2014. 123: 1336 - 1340.; Spits, H., Artis, D., Colonna, M., Diefenbach, A., Di Santo, J. P., Eberl, G., Koyasu, S. et al., Innate lymphoid cells-a proposal for uniform nomenclature. Nat. Rev. Immunol. 2013. 13: 145 - 149.; Vivier, E., Artis, D., Colonna, M., Diefenbach, A., Di Santo, J. P., Eberl, G., Koyasu, S. et al., Innate lymphoid cells: 10 years on. Cell 2018. 174: 1054 - 1066.; Biron, C. A., Nguyen, K. B., Pien, G. C., Cousens, L. P. and Salazar-Mather, T. P., Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu. Rev. Immunol. 1999. 17: 189 - 220.; Daussy, C., Faure, F., Mayol, K., Viel, S., Gasteiger, G., Charrier, E., Bienvenu, J. et al., T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow. J. Exp. Med. 2014. 211: 563 - 577.; Klose, C. S., Flach, M., Mohle, L., Rogell, L., Hoyler, T., Ebert, K., Fabiunke, C. et al., Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 2014. 157: 340 - 356.; Sojka, D. K., Plougastel-Douglas, B., Yang, L., Pak-Wittel, M. A., Artyomov, M. N., Ivanova, Y., Zhong, C. et al., Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells. Elife 2014. 3: e01659.; Walker, J. A. and McKenzie, A. N., Development and function of group 2 innate lymphoid cells. Curr. Opin. Immunol. 2013. 25: 148 - 155.; Montaldo, E., Juelke, K. and Romagnani, C., Group 3 innate lymphoid cells (ILC3s): origin, differentiation, and plasticity in humans and mice. Eur. J. Immunol. 2015. 45: 2171 - 2182.; Spits, H. and Cupedo, T., Innate lymphoid cells: emerging insights in development, lineage relationships, and function. Annu. Rev. Immunol. 2012. 30: 647 - 675.; Paclik, D., Stehle, C., Lahmann, A., Hutloff, A. and Romagnani, C., ICOS regulates the pool of group 2 innate lymphoid cells under homeostatic and inflammatory conditions in mice. Eur. J. Immunol. 2015. 45: 2766 - 2772.; Ryon, J. J., Isolation of mononuclear cells from tonsillar tissue. Curr. Protoc. Immunol. 2001. Chapter 7: Unit 7 8.; Gasteiger, G., Fan, X., Dikiy, S., Lee, S. Y. and Rudensky, A. Y., Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs. Science 2015. 350: 981 - 985.; Hoyler, T., Klose, C. S., Souabni, A., Turqueti-Neves, A., Pfeifer, D., Rawlins, E. L., Voehringer, D. et al., The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity 2012. 37: 634 - 648.; Fuchs, A., Vermi, W., Lee, J. S., Lonardi, S., Gilfillan, S., Newberry, R. D., Cella, M. et al., Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-gamma-producing cells. Immunity 2013. 38: 769 - 781.; Robinette, M. L., Fuchs, A., Cortez, V. S., Lee, J. S., Wang, Y., Durum, S. K., Gilfillan, S. et al., Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets. Nat. Immunol. 2015. 16: 306 - 317.; Serafini, N., Klein Wolterink, R. G., Satoh-Takayama, N., Xu, W., Vosshenrich, C. A., Hendriks, R. W. and Di Santo, J. P., Gata3 drives development of RORgammat+ group 3 innate lymphoid cells. J. Exp. Med. 2014. 211: 199 - 208.; Moro, K., Yamada, T., Tanabe, M., Takeuchi, T., Ikawa, T., Kawamoto, H., Furusawa, J. et al., Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature 2010. 463: 540 - 544.; Neill, D. R., Wong, S. H., Bellosi, A., Flynn, R. J., Daly, M., Langford, T. K., Bucks, C. et al., Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 2010. 464: 1367 - 1370.; Sawa, S., Cherrier, M., Lochner, M., Satoh-Takayama, N., Fehling, H. J., Langa, F. et al., Lineage relationship analysis of RORgammat+ innate lymphoid cells. Science 2010. 330: 665 - 669.; Rankin, L. C., Groom, J. R., Chopin, M., Herold, M. J., Walker, J. A., Mielke, L. A. et al., The transcription factor T-bet is essential for the development of NKp46+ innate lymphocytes via the Notch pathway. Nat. Immunol. 2013. 14: 389 - 395.; Klose, C. S., Kiss, E. A., Schwierzeck, V., Ebert, K., Hoyler, T., d’Hargues, Y., Goppert, N. et al., A T-bet gradient controls the fate and function of CCR6-RORgammat+ innate lymphoid cells. Nature 2013. 494: 261 - 265.; Vonarbourg, C., Mortha, A., Bui, V. L., Hernandez, P. P., Kiss, E. A., Hoyler, T., Flach, M. et al., Regulated expression of nuclear receptor RORgammat confers distinct functional fates to NK cell receptor-expressing RORgammat(+) innate lymphocytes. Immunity 2010. 33: 736 - 751.; Cella, M., Fuchs, A., Vermi, W., Facchetti, F., Otero, K., Lennerz, J. K. M., Doherty, J. M. et al., A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 2009. 457: 722 - 725.; Mjosberg, J. M., Trifari, S., Crellin, N. K., Peters, C. P., van Drunen, C. M., Piet, B., Fokkens, W. J. et al., Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat. Immunol. 2011. 12: 1055 - 1062.; Bernink, J. H., Peters, C. P., Munneke, M., te Velde, A. A., Meijer, S. L., Weijer, K., Hreggvidsdottir, H. S. et al., Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat. Immunol. 2013. 14: 221 - 229.; Hazenberg, M. D. and Spits, H., Human innate lymphoid cells. Blood 2014. 124: 700 - 709.; Cupedo, T., Crellin, N. K., Papazian, N., Rombouts, E. J., Weijer, K., Grogan, J. L., Fibbe, W. E. et al., Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells. Nat. Immunol. 2009. 10: 66 - 74.; Marquardt, N., Beziat, V., Nystrom, S., Hengst, J., Ivarsson, M. A., Kekalainen, E., Johansson, H. et al., Cutting edge: identification and characterization of human intrahepatic CD49a+ NK cells. J. Immunol. 2015. 194: 2467 - 2471.; Vacca, P., Montaldo, E., Croxatto, D., Loiacono, F., Canegallo, F., Venturini, P. L., Moretta, L. et al., Identification of diverse innate lymphoid cells in human decidua. Mucosal Immunol. 2015. 8: 254 - 264.; Montaldo, E., Vacca, P., Chiossone, L., Croxatto, D., Loiacono, F., Martini, S., Ferrero, S. et al., Unique eomes(+) NK cell subsets are present in uterus and decidua during early pregnancy. Front. Immunol. 2015. 6: 646.; Teunissen, M. B., Munneke, J. M., Bernink, J. H., Spuls, P. I., Res, P. C., Te Velde, A., Cheuk, S. et al., Composition of innate lymphoid cell subsets in the human skin: enrichment of NCR(+) ILC3 in lesional skin and blood of psoriasis patients. J. Invest. Dermatol. 2014. 134: 2351 - 2360.; Lim, A. I., Li, Y., Lopez-Lastra, S., Stadhouders, R., Paul, F., Casrouge, A., Serafini, N. et al., Systemic human ILC precursors provide a substrate for tissue ILC differentiation. Cell 2017. 168: 1086 - 1100 e1010.; Wojno, E. D., Monticelli, L. A., Tran, S. V., Alenghat, T., Osborne, L. C., Thome, J. J., Willis, C. et al., The prostaglandin D(2) receptor CRTH2 regulates accumulation of group 2 innate lymphoid cells in the inflamed lung. Mucosal Immunol. 2015. 8: 1313 - 1323.; Kim, S., Iizuka, K., Kang, H. S., Dokun, A., French, A. R., Greco, S. and Yokoyama, W. M., In vivo developmental stages in murine natural killer cell maturation. Nat. Immunol. 2002. 3: 523 - 528.; Hayakawa, Y. and Smyth, M. J., CD27 dissects mature NK cells into two subsets with distinct responsiveness and migratory capacity. J. Immunol. 2006. 176: 1517 - 1524.; Chiossone, L., Chaix, J., Fuseri, N., Roth, C., Vivier, E. and Walzer, T., Maturation of mouse NK cells is a 4-stage developmental program. Blood 2009. 113: 5488 - 5496.; Bjorkstrom, N. K., Riese, P., Heuts, F., Andersson, S., Fauriat, C., Ivarsson, M. A., Bjorklund, A. T. et al., Expression patterns of NKG2A, KIR, and CD57 define a process of CD56dim NK-cell differentiation uncoupled from NK-cell education. Blood 2010. 116: 3853 - 3864.; Lopez-Verges, S., Milush, J. M., Pandey, S., York, V. A., Arakawa-Hoyt, J., Pircher, H., Norris, P. J. et al., CD57 defines a functionally distinct population of mature NK cells in the human CD56dimCD16+ NK-cell subset. Blood 2010. 116: 3865 - 3874.; Juelke, K., Killig, M., Luetke-Eversloh, M., Parente, E., Gruen, J., Morandi, B., Ferlazzo, G. et al., CD62L expression identifies a unique subset of polyfunctional CD56dim NK cells. Blood 2010. 116: 1299 - 1307.; Sanos, S. L., Bui, V. L., Mortha, A., Oberle, K., Heners, C., Johner, C. and Diefenbach, A., ROR gamma t and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46(+) cells. Nat. Immunol. 2009. 10: 83 - 91.; Satoh-Takayama, N., Vosshenrich, C. A. J., Lesjean-Pottier, S., Sawa, S., Lochner, M., Rattis, F., Mention, J. J. et al., Microbial flora drives interleukin 22 production in intestinal NKp46(+) cells that provide innate mucosal immune defense. Immunity 2008. 29: 958 - 970.; Luci, C., Reynders, A., Ivanov, I. I., Cognet, C., Chiche, L., Chasson, L., Hardwigsen, J. et al., Influence of the transcription factor ROR gamma t on the development of NKp46(+) cell populations in gut and skin. Nat. Immunol. 2009. 10: 75 - 82.; Fort, M. M., Cheung, J., Yen, D., Li, J., Zurawski, S. M., Lo, S., Menon, S. et al., IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 2001. 15: 985 - 995.; Price, A. E., Liang, H. E., Sullivan, B. M., Reinhardt, R. L., Eisley, C. J., Erle, D. J. and Locksley, R. M., Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc. Natl. Acad. Sci. USA 2010. 107: 11489 - 11494.; Walzer, T., Blery, M., Chaix, J., Fuseri, N., Chasson, L., Robbins, S. H., Jaeger, S. et al., Identification, activation, and selective in vivo ablation of mouse NK cells via NKp46. Proc. Natl. Acad. Sci. USA 2007. 104: 3384 - 3389.; Carlyle, J. R., Mesci, A., Ljutic, B., Belanger, S., Tai, L. H., Rousselle, E., Troke, A. D. et al., Molecular and genetic basis for strain-dependent NK1.1 alloreactivity of mouse NK cells. J. Immunol. 2006. 176: 7511 - 7524.; Del Zotto, G., Marcenaro, E., Vacca, P., Sivori, S., Pende, D., Della Chiesa, M., Moretta, F. et al., Markers and function of human NK cells in normal and pathological conditions. Cytom. B Clin. Cytom. 2017. 92: 100 - 114.; Crinier, A., Milpied, P., Escaliere, B., Piperoglou, C., Galluso, J., Balsamo, A., Spinelli, L. et al., High-dimensional single-cell analysis identifies organ-specific signatures and conserved nk cell subsets in humans and mice. Immunity 2018. 49: 971 - 986 e975.; Weizman, O. E., Adams, N. M., Schuster, I. S., Krishna, C., Pritykin, Y., Lau, C., Degli-Esposti, M. A. et al., ILC1 confer early host protection at initial sites of viral infection. Cell 2017. 171: 795 - 808 e712.; Huntington, N. D., Tabarias, H., Fairfax, K., Brady, J., Hayakawa, Y., Degli-Esposti, M. A., Smyth, M. J. et al., NK cell maturation and peripheral homeostasis is associated with KLRG1 up-regulation. J. Immunol. 2007. 178: 4764 - 4770.; Sciume, G., Hirahara, K., Takahashi, H., Laurence, A., Villarino, A. V., Singleton, K. L., Spencer, S. P. et al., Distinct requirements for T-bet in gut innate lymphoid cells. J. Exp. Med. 2012. 209: 2331 - 2338.; Quatrini, L., Wieduwild, E., Escaliere, B., Filtjens, J., Chasson, L., Laprie, C., Vivier, E. et al., Endogenous glucocorticoids control host resistance to viral infection through the tissue-specific regulation of PD-1 expression on NK cells. Nat. Immunol. 2018. 19: 954 - 962.; Herberman, R. B., Nunn, M. E., Holden, H. T. and Lavrin, D. H., Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int. J. Cancer 1975. 16: 230 - 239.; Herberman, R. B., Nunn, M. E. and Lavrin, D. H., Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. Distribution of reactivity and specificity. Int. J. Cancer 1975. 16: 216 - 229.; Ljunggren, H. G. and Karre, K., In search of the -missing self-: MHC molecules and NK cell recognition. Immunol. Today 1990. 11: 237 - 244.; Moretta, A., Bottino, C., Mingari, M. C., Biassoni, R. and Moretta, L., What is a natural killer cell? Nat. Immunol. 2002. 3: 6 - 8.; Vivier, E., Tomasello, E., Baratin, M., Walzer, T. and Ugolini, S., Functions of natural killer cells. Nat. Immunol. 2008. 9: 503 - 510.; Lopez-Botet, M., Perez-Villar, J. J., Carretero, M., Rodriguez, A., Melero, I., Bellon, T., Llano, M. et al., Structure and function of the CD94 C-type lectin receptor complex involved in recognition of HLA class I molecules. Immunol. Rev. 1997. 155: 165 - 174.; Braud, V. M., Allan, D. S., O’Callaghan, C. A., Soderstrom, K., D’Andrea, A., Ogg, G. S., Lazetic, S. et al., HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 1998. 391: 795 - 799.; Moretta, A., Bottino, C., Vitale, M., Pende, D., Biassoni, R., Mingari, M. C. and Moretta, L., Receptors for HLA class-I molecules in human natural killer cells. Annu. Rev. Immunol. 1996. 14: 619 - 648.; Parham, P., MHC class I molecules and KIRs in human history, health and survival. Nat. Rev. Immunol. 2005. 5: 201 - 214.; Moretta, A., Bottino, C., Vitale, M., Pende, D., Cantoni, C., Mingari, M. C., Biassoni, R. et al., Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu. Rev. Immunol. 2001. 19: 197 - 223.; Vivier, E., Raulet, D. H., Moretta, A., Caligiuri, M. A., Zitvogel, L., Lanier, L. L., Yokoyama, W. M. et al., Innate or adaptive immunity? The example of natural killer cells. Science 2011. 331: 44 - 49.; Raulet, D. H., Roles of the NKG2D immunoreceptor and its ligands. Nat. Rev. Immunol. 2003. 3: 781 - 790.; Moretta, A., Sivori, S., Vitale, M., Pende, D., Morelli, L., Augugliaro, R., Bottino, C. et al., Existence of both inhibitory (p58) and activatory (p50) receptors for HLA-C molecules in human natural killer cells. J. Exp. Med. 1995. 182: 875 - 884.; Wagtmann, N., Biassoni, R., Cantoni, C., Verdiani, S., Malnati, M. S., Vitale, M., Bottino, C. et al., Molecular clones of the p58 NK cell receptor reveal immunoglobulin-related molecules with diversity in both the extra- and intracellular domains. Immunity 1995. 2: 439 - 449.; Sivori, S., Cantoni, C., Parolini, S., Marcenaro, E., Conte, R., Moretta, L. and Moretta, A., IL-21 induces both rapid maturation of human CD34+ cell precursors towards NK cells and acquisition of surface killer Ig-like receptors. Eur. J. Immunol. 2003. 33: 3439 - 3447.; Hu, P. F., Hultin, L. E., Hultin, P., Hausner, M. A., Hirji, K., Jewett, A., Bonavida, B. et al., Natural killer cell immunodeficiency in HIV disease is manifest by profoundly decreased numbers of CD16+CD56+ cells and expansion of a population of CD16dimCD56- cells with low lytic activity. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 1995. 10: 331 - 340.; Mavilio, D., Lombardo, G., Benjamin, J., Kim, D., Follman, D., Marcenaro, E., O’Shea, M. A. et al., Characterization of CD56-/CD16+ natural killer (NK) cells: a highly dysfunctional NK subset expanded in HIV-infected viremic individuals. Proc. Natl. Acad. Sci. U. S. A. 2005. 102: 2886 - 2891.; Della Chiesa, M., Falco, M., Podesta, M., Locatelli, F., Moretta, L., Frassoni, F. and Moretta, A., Phenotypic and functional heterogeneity of human NK cells developing after umbilical cord blood transplantation: a role for human cytomegalovirus ? Blood 2012. 119: 399 - 410.; Pesce, S., Greppi, M., Tabellini, G., Rampinelli, F., Parolini, S., Olive, D., Moretta, L. et al., Identification of a subset of human natural killer cells expressing high levels of programmed death 1: a phenotypic and functional characterization. J. Allergy Clin. Immunol. 2017. 139: 335 - 346 e333.; Caligiuri, M. A., Zmuidzinas, A., Manley, T. J., Levine, H., Smith, K. A. and Ritz, J., Functional consequences of interleukin 2 receptor expression on resting human lymphocytes. Identification of a novel natural killer cell subset with high affinity receptors. J. Exp. Med. 1990. 171: 1509 - 1526.; Carson, W. E., Fehniger, T. A. and Caligiuri, M. A., CD56bright natural killer cell subsets: characterization of distinct functional responses to interleukin-2 and the c-kit ligand. Eur. J. Immunol. 1997. 27: 354 - 360.; Frey, M., Packianathan, N. B., Fehniger, T. A., Ross, M. E., Wang, W. C., Stewart, C. C., Caligiuri, M. A. et al., Differential expression and function of L-selectin on CD56bright and CD56dim natural killer cell subsets. J. Immunol. 1998. 161: 400 - 408.; Campbell, J. J., Qin, S., Unutmaz, D., Soler, D., Murphy, K. E., Hodge, M. R., Wu, L. et al., Unique subpopulations of CD56+ NK and NK-T peripheral blood lymphocytes identified by chemokine receptor expression repertoire. J. Immunol. 2001. 166: 6477 - 6482.; Robertson, M. J., Role of chemokines in the biology of natural killer cells. J. Leukoc. Biol. 2002. 71: 173 - 183.; Lima, M., Leander, M., Santos, M., Santos, A. H., Lau, C., Queiros, M. L., Goncalves, M. et al., Chemokine receptor expression on normal blood CD56(+) NK-cells elucidates cell partners that comigrate during the innate and adaptive immune responses and identifies a transitional NK-cell population. J. Immunol. Res. 2015. 2015: 839684.; De Maria, A., Bozzano, F., Cantoni, C. and Moretta, L., Revisiting human natural killer cell subset function revealed cytolytic CD56(dim)CD16+ NK cells as rapid producers of abundant IFN-gamma on activation. Proc. Natl. Acad. Sci. USA 2011. 108: 728 - 732.; Fauriat, C., Long, E. O., Ljunggren, H. G. and Bryceson, Y. T., Regulation of human NK-cell cytokine and chemokine production by target cell recognition. Blood 2010. 115: 2167 - 2176.; Guma, M., Angulo, A., Vilches, C., Gomez-Lozano, N., Malats, N. and Lopez-Botet, M., Imprint of human cytomegalovirus infection on the NK cell receptor repertoire. Blood 2004. 104: 3664 - 3671.; Malmberg, K. J., Beziat, V. and Ljunggren, H. G., Spotlight on NKG2C and the human NK-cell response to CMV infection. Eur. J. Immunol. 2012. 42: 3141 - 3145.; Muccio, L., Bertaina, A., Falco, M., Pende, D., Meazza, R., Lopez-Botet, M., Moretta, L. et al., Analysis of memory-like natural killer cells in human cytomegalovirus-infected children undergoing alphabeta+T and B cell-depleted hematopoietic stem cell transplantation for hematological malignancies. Haematologica 2016. 101: 371 - 381.; Sivori, S., Falco, M., Marcenaro, E., Parolini, S., Biassoni, R., Bottino, C., Moretta, L. et al., Early expression of triggering receptors and regulatory role of 2B4 in human natural killer cell precursors undergoing in vitro differentiation. Proc. Natl. Acad. Sci. USA 2002. 99: 4526 - 4531.; Vacca, P., Pietra, G., Falco, M., Romeo, E., Bottino, C., Bellora, F., Prefumo, F. et al., Analysis of natural killer cells isolated from human decidua: Evidence that 2B4 (CD244) functions as an inhibitory receptor and blocks NK-cell function. Blood 2006. 108: 4078 - 4085.; Vacca, P., Vitale, C., Montaldo, E., Conte, R., Cantoni, C., Fulcheri, E., Darretta, V. et al., CD34+ hematopoietic precursors are present in human decidua and differentiate into natural killer cells upon interaction with stromal cells. Proc. Natl. Acad. Sci. USA 2011. 108: 2402 - 2407.; Hanna, J., Goldman-Wohl, D., Hamani, Y., Avraham, I., Greenfield, C., Natanson-Yaron, S., Prus, D. et al., Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat. Med. 2006. 12: 1065 - 1074.; Fehniger, T. A., Cooper, M. A., Nuovo, G. J., Cella, M., Facchetti, F., Colonna, M. and Caligiuri, M. A., CD56bright natural killer cells are present in human lymph nodes and are activated by T cell-derived IL-2: a potential new link between adaptive and innate immunity. Blood 2003. 101: 3052 - 3057.; Ferlazzo, G., Thomas, D., Lin, S. L., Goodman, K., Morandi, B., Muller, W. A., Moretta, A. et al., The abundant NK cells in human secondary lymphoid tissues require activation to express killer cell Ig-like receptors and become cytolytic. J. Immunol. 2004. 172: 1455 - 1462.; Merad, M., Sathe, P., Helft, J., Miller, J. and Mortha, A., The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol. 2013. 31: 563 - 604.; Ginhoux, F. and Guilliams, M., Tissue-resident macrophage ontogeny and homeostasis. Immunity 2016. 44: 439 - 449.; Heidkamp, G. F. et al., Functional specialization of Dendritic cell subsets. Encyclopedia of Cell Biology, (Elsevier) 2016. 588 - 604.; Dress, R. J., Wong, A. Y. and Ginhoux, F., Homeostatic control of dendritic cell numbers and differentiation. Immunol. Cell Biol. 2018. 96: 463 - 476.; Hoeffel, G. and Ginhoux, F., Fetal monocytes and the origins of tissue-resident macrophages. Cell. Immunol. 2018. 330: 5 - 15.; Collin, M. and Ginhoux, F., Human dendritic cells. Semin. Cell Dev. Biol. 2019. 86: 1 - 2.; Schlitzer, A., Sivakamasundari, V., Chen, J., Sumatoh, H. R., Schreuder, J., Lum, J., Malleret, B. et al., Identification of cDC1- and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow. Nat. Immunol. 2015. 16: 718 - 728.; Guilliams, M., Dutertre, C. A., Scott, C. L., McGovern, N., Sichien, D., Chakarov, S., Van Gassen, S. et al., Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species. Immunity 2016. 45: 669 - 684.; Dress, R. J., Dutertre, C. A., Giladi, A., Schlitzer, A., Low, I., Shadan, N. B., Tay, A. et al., Plasmacytoid dendritic cells develop from Ly6D+ lymphoid progenitors distinct from the myeloid lineage. Nat. Immunol. 2019. 20: 852 - 864.; Rodrigues, P. F., Alberti-Servera, L., Eremin, A., Grajales-Reyes, G. E., Ivanek, R. and Tussiwand, R., Distinct progenitor lineages contribute to the heterogeneity of plasmacytoid dendritic cells. Nat. Immunol. 2018. 19: 711 - 722.; Herman, J. S., Sagar and Grun, D., FateID infers cell fate bias in multipotent progenitors from single-cell RNA-seq data. Nat. Methods 2018. 15: 379 - 386.; Hoeffel, G., Wang, Y., Greter, M., See, P., Teo, P., Malleret, B., Leboeuf, M. et al., Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J. Exp. Med. 2012. 209: 1167 - 1181.; Ginhoux, F., Tacke, F., Angeli, V., Bogunovic, M., Loubeau, M., Dai, X. M., Stanley, E. R. et al., Langerhans cells arise from monocytes in vivo. Nat. Immunol. 2006. 7: 265 - 273.; Doebel, T., Voisin, B. and Nagao, K., Langerhans Cells - The Macrophage in Dendritic Cell Clothing. Trends Immunol. 2017. 38: 817 - 828.; Ginhoux, F. and Jung, S., Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat. Rev. Immunol. 2014. 14: 392 - 404.; Geissmann, F., Jung, S. and Littman, D. R., Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 2003. 19: 71 - 82.; Tamoutounour, S., Henri, S., Lelouard, H., de Bovis, B., de Haar, C., van der Woude, C. J., Woltman, A. M. et al., CD64 distinguishes macrophages from dendritic cells in the gut and reveals the Th1-inducing role of mesenteric lymph node macrophages during colitis. Eur. J. Immunol. 2012. 42: 3150 - 3166.; Bain, C. C., Scott, C. L., Uronen-Hansson, H., Gudjonsson, S., Jansson, O., Grip, O., Guilliams, M. et al., Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunol 2013. 6: 498 - 510.; Heidkamp, G. F., Sander, J., Lehmann, C. H. K., Heger, L., Eissing, N., Heger, L., Baranska, A. et al., Human lymphoid organ dendritic cell identity is predominantly dictated by ontogeny, not tissue microenvironment. Sci. Immunol. 2016. 1: pii: eaai7677.; Alcántara-Hernández, M., Leylek, R., Wagar, L. E., Engleman, E. G., Keler, T., Marinkovich, M. P., Davis, M. M. et al., High-Dimensional Phenotypic Mapping of Human Dendritic Cells Reveals Interindividual Variation and Tissue Specialization. Immunity. 2017. 47: 1037 - 1050.e6.; See, P., Dutertre, C. A., Chen, J., Gunther, P., McGovern, N., Irac, S. E., Gunawan, M. et al., Mapping the human DC lineage through the integration of high-dimensional techniques. Science 2017. 356: eaag3009.; Ziegler-Heitbrock, L., Ancuta, P., Crowe, S., Dalod, M., Grau, V., Hart, D. N., Leenen, P. J. et al., Nomenclature of monocytes and dendritic cells in blood. Blood 2010. 116: e74 - 80.; Briseno, C. G., Haldar, M., Kretzer, N. M., Wu, X., Theisen, D. J., Kc, W., Durai, V. et al., Distinct transcriptional programs control cross-priming in classical and monocyte-derived dendritic cells. Cell Rep 2016. 15: 2462 - 2474.; Fujiyama, S., Nakahashi-Oda, C., Abe, F., Wang, Y., Sato, K. and Shibuya, A., Identification and isolation of splenic tissue-resident macrophage sub-populations by flow cytometry. Int. Immunol. 2019. 31: 51 - 56.; Crozat, K., Guiton, R., Contreras, V., Feuillet, V., Dutertre, C. A., Ventre, E., Vu Manh, T. P. et al., The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8alpha+ dendritic cells. J. Exp. Med. 2010. 207: 1283 - 1292.; Gurka, S., Hartung, E., Becker, M. and Kroczek, R. A., Mouse conventional dendritic cells can be universally classified based on the mutually exclusive expression of XCR1 and SIRPalpha. Front Immunol 2015. 6: 35.; Misharin, A. V., Morales-Nebreda, L., Mutlu, G. M., Budinger, G. R. and Perlman, H., Flow cytometric analysis of macrophages and dendritic cell subsets in the mouse lung. Am. J. Respir. Cell Mol. Biol. 2013. 49: 503 - 510.; Chakarov, S., Lim, H. Y., Tan, L., Lim, S. Y., See, P., Lum, J., Zhang, X. M. et al., Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science 2019. 363.; Schlitzer, A., McGovern, N., Teo, P., Zelante, T., Atarashi, K., Low, D., Ho, A. W. et al., IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity 2013. 38: 970 - 983.; Shaw, T. N., Houston, S. A., Wemyss, K., Bridgeman, H. M., Barbera, T. A., Zangerle-Murray, T., Strangward, P. et al., Tissue-resident macrophages in the intestine are long lived and defined by Tim-4 and CD4 expression. J. Exp. Med. 2018. 215: 1507 - 1518.; Takenaka, S., Safroneeva, E., Xing, Z. and Gauldie, J., Dendritic cells derived from murine colonic mucosa have unique functional and phenotypic characteristics. J. Immunol. 2007. 178: 7984 - 7993.; Johansson-Lindbom, B., Svensson, M., Pabst, O., Palmqvist, C., Marquez, G., Forster, R. and Agace, W. W., Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing. J. Exp. Med. 2005. 202: 1063 - 1073.; Harusato, A., Geem, D. and Denning, T. L., Macrophage isolation from the mouse small and large intestine. Methods Mol. Biol. 2016. 1422: 171 - 180.; Gross, M., Salame, T. M. and Jung, S., Guardians of the gut-murine intestinal macrophages and dendritic cells. Front Immunol 2015. 6: 254.; Helft, J. and Merad, M., Isolation of cutaneous dendritic cells. Methods Mol. Biol. 2010. 595: 231 - 233.; Benck, C. J., Martinov, T., Fife, B. T. and Chatterjea, D., Isolation of infiltrating leukocytes from mouse skin using enzymatic digest and gradient separation. J Vis Exp 2016: e53638.; Forni, M. F., Ramos Maia Lobba, A., Pereira Ferreira, A. H. and Sogayar, M. C., Simultaneous isolation of three different stem cell populations from murine skin. PLoS One 2015. 10: e0140143.; Merad, M., Ginhoux, F. and Collin, M., Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat. Rev. Immunol. 2008. 8: 935 - 947.; Stutte, S., Jux, B., Esser, C. and Forster, I., CD24a expression levels discriminate Langerhans cells from dermal dendritic cells in murine skin and lymph nodes. J. Invest. Dermatol. 2008. 128: 1470 - 1475.; Malissen, B., Tamoutounour, S. and Henri, S., The origins and functions of dendritic cells and macrophages in the skin. Nat. Rev. Immunol. 2014. 14: 417 - 428.; Becht, E., McInnes, L., Healy, J., Dutertre, C. A., Kwok, I. W. H., Ng, L. G., Ginhoux, F. et al., Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 2019. 37: 38 - 44.; McInnes, L., Healy, J., Saul, N. and Groà berger, L., UMAP: uniform manifold approximation and projection. J. Open Source Softw. 2018. 3: 861.; Ester, M., Kriegel, H. P., Sander, J. and Xu, X., A density-based algorithm for discovering clusters in large spatial databases with noise. In KDD’96 Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. Portland, OR, 1996, pp. 226 - 231.; Levine, J. H., Simonds, E. F., Bendall, S. C., Davis, K. L., Amir el, A. D., Tadmor, M. D., Litvin, O. et al., Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 2015. 162: 184 - 197.; Villani, A. C., Satija, R., Reynolds, G., Sarkizova, S., Shekhar, K., Fletcher, J., Griesbeck, M. et al., Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 2017. 356: eaaah4573.; Dutertre, C.-A., Becht, E., Irac, S. E., Khalilnezhad, A., Narang, V., Khalilnezhad, S., Ng, P. Y. et al., Single-cell analysis of human mononuclear phagocytes reveals subset-defining markers and identifies circulating inflammatory dendritic cells. Immunity 2019. 51: 573 - 589.e8.; Casanova-Acebes, M., Pitaval, C., Weiss, L. A., Nombela-Arrieta, C., Chevre, R., N, A. G., Kunisaki, Y., Zhang, D. et al., Rhythmic modulation of the hematopoietic niche through neutrophil clearance. Cell 2013. 153: 1025 - 1035.; Maueroder, C., Mahajan, A., Paulus, S., Gosswein, S., Hahn, J., Kienhofer, D., Biermann, M. H. et al., Menage-a-Trois: the ratio of bicarbonate to CO 2 and the pH regulate the capacity of neutrophils to form NETs. Front. Immunol. 2016. 7: 583.; Evrard, M., Kwok, I. W. H., Chong, S. Z., Teng, K. W. W., Becht, E., Chen, J., Sieow, J. L. et al., Developmental analysis of bone marrow neutrophils reveals populations specialized in expansion, trafficking, and effector functions. Immunity 2018. 48: 364 - 379 e368.; Majeti, R., Park, C. Y., Weissman, I. L., Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood. Cell Stem Cell 2007. 1 ( 6 ): 635 - 645.; Kim, M. H., Yang, D., Kim, M., Kim, S. Y., Kim, D. and Kang, S. J., A late-lineage murine neutrophil precursor population exhibits dynamic changes during demand-adapted granulopoiesis. Sci. Rep. 2017. 7: 39804.; Zhu, Y. P., Padgett, L., Dinh, H. Q., Marcovecchio, P., Blatchley, A., Wu, R., Ehinger, E. et al., Identification of an early unipotent neutrophil progenitor with pro-tumoral activity in mouse and human bone marrow. Cell Rep. 2018. 24: 2329 - 2341 e2328.; Geering, B., Stoeckle, C., Conus, S. and Simon, H. U., Living and dying for inflammation: neutrophils, eosinophils, basophils. Trends Immunol. 2013. 34: 398 - 409.; Borregaard, N., Neutrophils, from marrow to microbes. Immunity 2010. 33: 657 - 670.; Ley, K., Hoffman, H. M., Kubes, P., Cassatella, M. A., Zychlinsky, A., Hedrick, C. C. and Catz, S. D., Neutrophils: new insights and open questions. Sci. Immunol. 2018. 3.; Ng, L. G., Ostuni, R. and Hidalgo, A., Heterogeneity of neutrophils. Nat. Rev. Immunol. 2019. 19: 255 - 265.; Terstappen, L. W., Safford, M. and Loken, M. R., Flow cytometric analysis of human bone marrow. III. Neutrophil maturation. Leukemia 1990. 4: 657 - 663.; Satake, S., Hirai, H., Hayashi, Y., Shime, N., Tamura, A., Yao, H., Yoshioka, S. et al., C/EBPbeta is involved in the amplification of early granulocyte precursors during candidemia-induced -emergency- granulopoiesis. J. Immunol. 2012. 189: 4546 - 4555.; Theilgaard-Monch, K., Jacobsen, L. C., Borup, R., Rasmussen, T., Bjerregaard, M. D., Nielsen, F. C., Cowland, J. B. et al., The transcriptional program of terminal granulocytic differentiation. Blood 2005. 105: 1785 - 1796.; Garley, M. and Jablonska, E., Heterogeneity among neutrophils. Arch. Immunol. Ther. Exp. 2018. 66: 21 - 30.; Scapini, P., Marini, O., Tecchio, C. and Cassatella, M. A., Human neutrophils in the saga of cellular heterogeneity: insights and open questions. Immunol. Rev. 2016. 273: 48 - 60.; Coffelt, S. B., Kersten, K., Doornebal, C. W., Weiden, J., Vrijland, K., Hau, C. S., Verstegen, N. J. M. et al., IL-17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis. Nature 2015. 522: 345 - 348.; Engblom, C., Pfirschke, C., Zilionis, R., Da Silva Martins, J., Bos, S. A., Courties, G., Rickelt, S. et al., Osteoblasts remotely supply lung tumors with cancer-promoting SiglecF(high) neutrophils. Science 2017. 358: eaal5081.; Youn, J. I., Collazo, M., Shalova, I. N., Biswas, S. K. and Gabrilovich, D. I., Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. J. Leukoc. Biol. 2012. 91: 167 - 181.; McAlpine, C. S., Kiss, M. G., Rattik, S., He, S., Vassalli, A., Valet, C., Anzai, A. et al., Sleep modulates haematopoiesis and protects against atherosclerosis. Nature 2019. 566: 383 - 387.; Grassi, L., Pourfarzad, F., Ullrich, S., Merkel, A., Were, F., Carrillo-de-Santa-Pau, E., Yi, G. et al., Dynamics of transcription regulation in human bone marrow myeloid differentiation to mature blood neutrophils. Cell Rep. 2018. 24: 2784 - 2794.; Friedenstein, A. J., Chailakhjan, R. K. and Lalykina, K. S., The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970. 3: 393 - 403.; Friedenstein, A. J., Chailakhyan, R. K., Latsinik, N. V., Panasyuk, A. F. and Keiliss-Borok, I. V., Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 1974. 17: 331 - 340.; Frenette, P. S., Pinho, S., Lucas, D. and Scheiermann, C., Mesenchymal stem cell: keystone of the hematopoietic stem cell niche and a stepping-stone for regenerative medicine. Annu. Rev. Immunol. 2013. 31: 285 - 316.; Pinho, S. and Frenette, P. S., Haematopoietic stem cell activity and interactions with the niche. Nat. Rev. Mol. Cell Biol. 2019.; Chan, C. K., Chen, C. C., Luppen, C. A., Kim, J. B., DeBoer, A. T., Wei, K., Helms, J. A. et al., Endochondral ossification is required for haematopoietic stem-cell niche formation. Nature 2009. 457: 490 - 494.; Mendez-Ferrer, S., Michurina, T. V., Ferraro, F., Mazloom, A. R., Macarthur, B. D., Lira, S. A., Scadden, D. T. et al., Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 2010. 466: 829 - 834.; Kunisaki, Y., Bruns, I., Scheiermann, C., Ahmed, J., Pinho, S., Zhang, D., Mizoguchi, T. et al., Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 2013. 502: 637 - 643.; Zhou, B. O., Yue, R., Murphy, M. M., Peyer, J. G. and Morrison, S. J., Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 2014. 15: 154 - 168.; Omatsu, Y., Sugiyama, T., Kohara, H., Kondoh, G., Fujii, N., Kohno, K. and Nagasawa, T., The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 2010. 33: 387 - 399.; Greenbaum, A., Hsu, Y. M., Day, R. B., Schuettpelz, L. G., Christopher, M. J., Borgerding, J. N., Nagasawa, T. et al., CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 2013. 495: 227 - 230.; Mizoguchi, T., Pinho, S., Ahmed, J., Kunisaki, Y., Hanoun, M., Mendelson, A., Ono, N. et al., Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development. Dev. Cell 2014. 29: 340 - 349.; Chan, C. K., Seo, E. Y., Chen, J. Y., Lo, D., McArdle, A., Sinha, R., Tevlin, R. et al., Identification and specification of the mouse skeletal stem cell. Cell 2015. 160: 285 - 298.; Marecic, O., Tevlin, R., McArdle, A., Seo, E. Y., Wearda, T., Duldulao, C., Walmsley, G. G. et al., Identification and characterization of an injury-induced skeletal progenitor. Proc Natl Acad Sci USA 2015. 112: 9920 - 9925.; Debnath, S., Yallowitz, A. R., McCormick, J., Lalani, S., Zhang, T., Xu, R., Li, N. et al., Discovery of a periosteal stem cell mediating intramembranous bone formation. Nature 2018. 562: 133 - 139.; Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R. et al., Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006. 8: 315 - 317.; Suire, C., Brouard, N., Hirschi, K. and Simmons, P. J., Isolation of the stromal-vascular fraction of mouse bone marrow markedly enhances the yield of clonogenic stromal progenitors. Blood 2012. 119: e86 - 95.; Pinho, S., Lacombe, J., Hanoun, M., Mizoguchi, T., Bruns, I., Kunisaki, Y. and Frenette, P. S., PDGFRalpha and CD51 mark human nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. J. Exp. Med. 2013. 210: 1351 - 1367.; Morikawa, S., Mabuchi, Y., Kubota, Y., Nagai, Y., Niibe, K., Hiratsu, E., Suzuki, S. et al., Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J. Exp. Med. 2009. 206: 2483 - 2496.; Houlihan, D. D., Mabuchi, Y., Morikawa, S., Niibe, K., Araki, D., Suzuki, S., Okano, H. et al., Isolation of mouse mesenchymal stem cells on the basis of expression of Sca-1 and PDGFR-alpha. Nat. Protoc. 2012. 7: 2103 - 2111.; Worthley, D. L., Churchill, M., Compton, J. T., Tailor, Y., Rao, M., Si, Y., Levin, D. et al., Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential. Cell 2015. 160: 269 - 284.; Boulais, P. E., Mizoguchi, T., Zimmerman, S., Nakahara, F., Vivie, J., Mar, J. C., van Oudenaarden, A. et al., The majority of CD45(-) Ter119(-) CD31(-) bone marrow cell fraction is of hematopoietic origin and contains erythroid and lymphoid progenitors. Immunity 2018. 49: 627 - 639, e626.; Morrison, S. J., Uchida, N. and Weissman, I. L., The biology of hematopoietic stem cells. Annu. Rev. Cell. Dev. Biol. 1995. 11: 35 - 71.; Spangrude, G. J., Brooks, D. M. and Tumas, D. B., Long-term repopulation of irradiated mice with limiting numbers of purified hematopoietic stem cells: in vivo expansion of stem cell phenotype but not function. Blood 1995. 85 ( 4 ): 1006 - 1016.; Cheshier, S. H., Morrison, S. J., Liao, X. and Weissman, I. L., In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 1999. 96 ( 6 ): 3120 - 3125.; Calvi, L. M., Adams, G. B., Weibrecht, K. W., Weber, J. M., Olson, D. P., Knight, M. C., Martin, R. P. et al., Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003. 425 ( 6960 ): 841 - 846.; Arai, F., Hirao, A., Ohmura, M., Sato, H., Matsuoka, S., Takubo, K., Ito, K. et al., Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 2004. 118 ( 2 ): 149 - 161.; Zhang, J., Niu, C., Ye, L., Huang, H., He, X., Tong, W. G., Ross, J. et al., Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003. 425 ( 6960 ): 836 - 841.; Hofer, T., Busch, K., Klapproth, K. and Rodewald, H. R., Fate mapping and quantitation of hematopoiesis in vivo. Annu. Rev. Immunol. 2016. 34: 449 - 478.; Carrelha, J., Meng, Y., Kettyle, L. M., Luis, T. C., Norfo, R., Alcolea, V., Boukarabila, H. et al., Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells. Nature 2018. 554 ( 7690 ): 106 - 111.; Haas, S., Hansson, J., Klimmeck, D., Loeffler, D., Velten, L., Uckelmann, H., Wurzer, S. et al., Inflammation-induced emergency megakaryopoiesis driven by hematopoietic stem cell-like megakaryocyte progenitors. Cell Stem Cell 2015. 17 ( 4 ): 422 - 434.; Medvinsky, A., Rybtsov, S. and Taoudi, S., Embryonic origin of the adult hematopoietic system: advances and questions. Development 2011. 138 ( 6 ): 1017 - 1031.; Kajikhina, K., Melchers, F. and Tsuneto, M., Chemokine polyreactivity of IL7Ralpha+CSF-1R+ lympho-myeloid progenitors in the developing fetal liver. Sci. Rep. 2015. 5: 12817.; Mikkola, H. K. and Orkin, S. H., The journey of developing hematopoietic stem cells. Development 2006. 133 ( 19 ): 3733 - 3744.; Notta, F., Zandi, S., Takayama, N., Dobson, S., Gan, O. I., Wilson, G., Kaufmann, K. B. et al., Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science 2016. 351 ( 6269 ): aab2116.; Cosgun, K. N., Rahmig, S., Mende, N., Reinke, S., Hauber, I., Schafer, C., Petzold, A. et al., Kit regulates HSC engraftment across the human-mouse species barrier. Cell Stem Cell 2014. 15 ( 2 ): 227 - 238.; Kiel, M. J., Yilmaz, O. H., Iwashita, T., Yilmaz, O. H., Terhorst, C. and Morrison, S. J., SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 2005. 121 ( 7 ): 1109 - 1121.; Papathanasiou, P., Attema, J. L., Karsunky, H., Xu, J., Smale, S. T. and Weissman, I. L., Evaluation of the long-term reconstituting subset of hematopoietic stem cells with CD150. Stem Cells 2009. 27 ( 10 ): 2498 - 2508.; Yilmaz, O. H., Kiel, M. J. and Morrison, S. J., SLAM family markers are conserved among hematopoietic stem cells from old and reconstituted mice and markedly increase their purity. Blood 2006. 107 ( 3 ): 924 - 930.; Pei, W., Feyerabend, T. B., Rossler, J., Wang, X., Postrach, D., Busch, K., Rode, I. et al., Polylox barcoding reveals haematopoietic stem cell fates realized in vivo. Nature 2017. 548 ( 7668 ): 456 - 460.; Busch, K., Klapproth, K., Barile, M., Flossdorf, M., Holland-Letz, T., Schlenner, S. M., Reth, M. et al., Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature 2015. 518 ( 7540 ): 542 - 546.; Gomez Perdiguero, E., Klapproth, K., Schulz, C., Busch, K., Azzoni, E., Crozet, L., Garner, H. et al., Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 2015. 518 ( 7540 ): 547 - 551.; Tornack, J., Reece, S. T., Bauer, W. M., Vogelzang, A., Bandermann, S., Zedler, U., Stingl, G. et al., Human and Mouse Hematopoietic Stem Cells Are a Depot for Dormant Mycobacterium tuberculosis. PLoS One 2017. 12 ( 1 ): e0169119.; Spangrude, G. J., Heimfeld, S. and Weissman, I. L., Purification and characterization of mouse hematopoietic stem cells. Science 1988. 241 ( 4861 ): 58 - 62.; Ikuta, K. and Weissman, I. L., Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation. Proc. Natl. Acad. Sci. USA 1992. 89 ( 4 ): 1502 - 1506.; Morrison, S. J. and Weissman, I. L., The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1994. 1 ( 8 ): 661 - 673.; Okada, S., Nakauchi, H., Nagayoshi, K., Nishikawa, S., Miura, Y. and Suda, T., In vivo and in vitro stem cell function of c-kit- and Sca-1-positive murine hematopoietic cells. Blood 1992. 80: 3044 - 3050.; Balazs, A. B., Fabian, A. J., Esmon, C. T. and Mulligan, R. C., Endothelial protein C receptor (CD201) explicitly identifies hematopoietic stem cells in murine bone marrow. Blood 2006. 107: 2317 - 2321.; Osawa, M., Hanada, K., Hamada, H. and Nakauchi, H., Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 1996. 273: 242 - 245.; Tornack, J., Kawano, Y., Garbi, N., Hammerling, G. J., Melchers, F. and Tsuneto, M., Flt3 ligand-eGFP-reporter expression characterizes functionally distinct subpopulations of CD150(+) long-term repopulating murine hematopoietic stem cells. Eur. J. Immunol. 2017. 47: 1477 - 1487.; Zhou, S., Schuetz, J. D., Bunting, K. D., Colapietro, A. M., Sampath, J., Morris, J. J., Lagutina, I. et al., The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat. Med. 2001. 7: 1028 - 1034.; Ergen, A. V., Jeong, M., Lin, K. K., Challen, G. A., Goodell, M. A., Isolation and characterization of mouse side population cells. Methods Mol. Biol. 2013. 946: 151 - 162.; Lu, R., Neff, N. F., Quake, S. R. and Weissman, I. L., Tracking single hematopoietic stem cells in vivo using high-throughput sequencing in conjunction with viral genetic barcoding. Nat. Biotechnol. 2011. 29: 928 - 933.; Bystrykh, L. V., de Haan, G. and Verovskaya, E., Barcoded vector libraries and retroviral or lentiviral barcoding of hematopoietic stem cells. Methods Mol. Biol. 2014. 1185: 345 - 360.; Kawano, Y., Petkau, G., Stehle, C., Durek, P., Heinz, G. A., Tanimoto, K., Karasuyama, H. et al., Stable lines and clones of long-term proliferating normal, genetically unmodified murine common lymphoid progenitors. Blood 2018. 131 ( 18 ): 2026 - 2035.; Knapp, D. J., Hammond, C. A., Miller, P. H., Rabu, G. M., Beer, P. A., Ricicova, M., Lecault, V. et al., Dissociation of survival, proliferation, and state control in human hematopoietic stem cells. Stem Cell Rep. 2017. 8 ( 1 ): 152 - 162.; Yamamoto, R., Morita, Y., Ooehara, J., Hamanaka, S., Onodera, M., Rudolph, K. L., Ema, H. et al., Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell 2013. 154 ( 5 ): 1112 - 1126.; Uchida, N. and Weissman, I. L., Searching for hematopoietic stem cells: evidence that Thy-1.1lo Lin- Sca-1+ cells are the only stem cells in C57BL/Ka-Thy-1.1 bone marrow. J. Exp. Med. 1992. 175 ( 1 ): 175 - 184.; Murray, L., Chen, B., Galy, A., Chen, S., Tushinski, R., Uchida, N., Negrin, R. et al., Enrichment of human hematopoietic stem cell activity in the CD34+Thy-1+Lin- subpopulation from mobilized peripheral blood. Blood 1995. 85 ( 2 ): 368 - 378.; Civin, C. I., Strauss, L. C., Brovall, C., Fackler, M. J., Schwartz, J. F. and Shaper, J. H., Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J. Immunol. 1984. 133 ( 1 ): 157 - 165.; Goodell, M. A., Rosenzweig, M., Kim, H., Marks, D. F., DeMaria, M., Paradis, G., Grupp, S. A. et al., Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat. Med. 1997. 3 ( 12 ): 1337 - 1345.; Kang, Y., Chao, N. J., Aversa, F., Unmanipulated or CD34 selected haplotype mismatched transplants. Curr. Opin. Hematol. 2008. 15 ( 6 ): 561 - 567.; Wang, J., Kimura, T., Asada, R., Harada, S., Yokota, S., Kawamoto, Y., Fujimura, Y. et al., SCID-repopulating cell activity of human cord blood-derived CD34- cells assured by intra-bone marrow injection. Blood 2003. 101 ( 8 ): 2924 - 2931.; Bhatia, M., Bonnet, D., Murdoch, B., Gan, O. I. and Dick, J. E., A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nat. Med. 1998. 4 ( 9 ): 1038 - 1045.; Danet, G. H., Luongo, J. L., Butler, G., Lu, M. M., Tenner, A. J., Simon, M. C. and Bonnet, D. A., C1qRp defines a new human stem cell population with hematopoietic and hepatic potential. Proc. Natl. Acad. Sci. USA 2002. 99 ( 16 ): 10441 - 10445.; Herbein, G., Sovalat, H., Wunder, E., Baerenzung, M., Bachorz, J., Lewandowski, H., Schweitzer, C. et al., Isolation and identification of two CD34+ cell subpopulations from normal human peripheral blood. Stem Cells 1994. 12: 187 - 197.; Bhatia, M., Wang, J. C., Kapp, U., Bonnet, D. and Dick, J. E., Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc. Natl. Acad. Sci. USA 1997. 94 ( 10 ): 5320 - 5325.; Notta, F., Doulatov, S., Laurenti, E., Poeppl, A., Jurisica, I. and Dick, J. E., Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science 2011. 333 ( 6039 ): 218 - 221.; Fares, I., Chagraoui, J., Lehnertz, B., MacRae, T., Mayotte, N., Tomellini, E., Aubert, L. et al., EPCR expression marks UM171-expanded CD34(+) cord blood stem cells. Blood 2017. 129 ( 25 ): 3344 - 3351.; Iwasaki, H., Arai, F., Kubota, Y., Dahl, M., Suda, T., Endothelial protein C receptor-expressing hematopoietic stem cells reside in the perisinusoidal niche in fetal liver. Blood 2010. 116 ( 4 ): 544 - 553.; Galuzzi, L., Vacchelli, E., Bravo-San Pedro, J. M., Buqué, A., Senovilla, L., Baracco, E. E., Bloy, N. et al., Classification of current anticancer immunotherapies. Oncotarget 2015. 5 ( 24 ): 12472 - 12508.; Hanahan, D. and Weinberg, R. A., Hallmarks of cancer - the next generation. Cell 2011. 144: 646 - 674. https://doi.org/10.1016/j.cell.2011.02.013Test; Lansdorp, P. M., Sutherland, H. J. and Eaves, C. J., Selective expression of CD45 isoforms on functional subpopulations of CD34+ hemopoietic cells from human bone marrow. J. Exp. Med. 1990. 172: 363 - 366. https://doi.org/363-3660022-1007/90/07/0363/04Test; van Dongen, J. J. M., Lhermitte, L., Böttcher, S., Almeida, J., van der Velden, J. V. H., Flores-Montero, J., Rawstron, A. et al., on behalf of the EuroFlow Consortium (EU-FP6, LSHB-CT-2006-018708). EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia 2012. 26: 1908 - 1975.; Streitz, M., Miloud, T., Kapinsky, M., Reed, M. R., Magari, R., Geissler, E. K., Hutchinson, J. A. et al., Standardization of whole blood immune phenotype monitoring for clinical trials: panels and methods from the ONE study. Transplant Res. 2013. 2 ( 1 ): 17.; Alix-Panabières, C. and Pantel, K., Challenges in circulating tumour cell research. Nat. Rev. Cancer 2014. 14: 623 - 631. https://doi.org/10.1038/nrc3820Test; Lopresti, A., Malergue, F., Bertucci, F., Liberatoscioli, M. L., Garnier, S., DaCosta, Q., Finetti, P. et al., Sensitive and easy screening for circulating tumor cells by flow cytometry. JCI Insight. 2019. 5: 128180. https://doi.org/10.1172/jci.insight.128180Test; Schumacher, T. and Schreiber, R. D., Neoantigens in cancer immunotherapy. Science 2015. 348 ( 6230 ): 69 - 74.; Grizzi, F., Mirandola, L., Qehajaj, D., Cobos, E., Figueroa, J. A. and Chiriva-Internati, M., Cancer-testis antigens and immunotherapy in the light of cancer complexity. Int. Rev. Immunol. 2015. 34: 143 - 153. https://doi.org/10.3109/08830185.2015.1018418Test; Garrido, F., Aptsiauri, N., Doorduijn, E. M., Garcia Lora, A. M. and van Hall, T., The urgent need to recover MHC class I in cancers for effective immunotherapy. Curr. Opin. Immunol. 2016. 39: 44 - 51. https://doi.org/10.1016/j.coi.2015.12.007Test; Raulet, D. H., Gasser, S., Gowen, B. G., Deng, W. and Jung, H., Regulation of ligands for the NKG2D activating receptor. Annu. Rev. Immunol. 2013. 31: 413 - 441.; Bacher, R. and Kendziorski, C., Design and computational analysis of single-cell RNA-sequencing experiments. Genome Biol. 2016. 17: 63.; Sers, C., Kuner, R., Fak, C. S., Lund, P., Sueltmann, H., Braun, M., Buness, A. et al., Down-regulation of HLA Class I and NKG2D ligands through a concerted action of MAPK and DNA methyltransferases in colorectal cancer cells. Int. J. Cancer 2009. 125 ( 7 ): 1626 - 1639.; Luo, Z., Wu, R. R., Lv, L., Li, P., Zhang, L. Y., Hao, Q. L. and Li, W., Prognostic value of CD44 expression in non-small cell lung cancer: a systematic review. Int. J. Clin. Exp. Pathol. 2014. 7 ( 7 ): 3632 - 3646.; Paulis, Y. W., Huijbers, E. J., van der Schaft, D. W., Soetekouw, P. M., Pauwels, P., Tjan-Heijnen, V. C. and Griffioen, A. W., CD44 enhances tumor aggressiveness by promoting tumor cell plasticity. Oncotarget 2015. 6 ( 23 ): 19634 - 19646.; http://www.cancerresearchuk.org/about-cancer/what-is-cancer/how-cancer-starts/types-of-cancer#carcinomasTest; Weng, Y. R., Cui, Y. and Fang, J. Y., Biological functions of cytokeratin 18 in cancer. Mol. Cancer Res. 2012. 10 ( 4 ); 485 - 493.; Appert-Collin, A., Hubert, P., Crémel, G. and Bennasroune, A., Role of ErbB receptors in cancer cell migration and invasion. Front. Pharmacol. 2015. https://doi.org/10.3389/fphar.2015.00283Test; http://www.cancer.org/cancer/breastcancer/detailedguide/breast-cancer-breast-cancer-typesTest; Park, J. W., Lee, J. K., Phillips, J. W., Huang, P., Cheng, D., Huang, J. and Witte, O. N., Prostate epithelial cell of origin determines cancer differentiation state in an organoid transformation assay. Proc. Natl. Acad. Sci. USA 2016. 113: 4482 - 4487.; http://screening.iarc.fr/colpochap.php?chap=2Test; https://www.iarc.fr/en/publications/pdfs-online/pat-gen/bb2/bb2-chap1.pdfTest; http://www.cancer.org/cancer/bladdercancer/detailedguide/bladder-cancer-what-is-bladder-cancerTest; DuBois, S. G., Epling, C. L., Teague, J., Matthay, K. K. and Sinclair, E., Flow cytometric detection of ewing sarcoma cells in peripheral blood and bone marrow. Pediatr. Blood Cancer 2010. 54 ( 1 ): 13 - 18. https://doi.org/10.1002/pbc.22245Test; Avey, D., Brewers, B. and Zhu, F., Recent advances in the study of Kaposi’s sarcoma-associated herpesvirus replication and athogenesis. Virol Sin. 2015. 30 ( 2 ): 130 - 145. https://doi.org/10.1007/s12250-015-3595-2Test; Deel, M. D., Li, J. J., Crose, L. E. and Linardic, C. M., A Review: molecular aberrations within hippo signaling in bone and soft-tissue sarcomas. Front Oncol. 2015. 5: 190. https://doi.org/10.3389/fonc.2015.00190Test; Sullivan, R. J., The role of mitogen-activated protein targeting in melanoma beyond BRAFV600. Curr. Opin. Oncol. 2016. 28 ( 2 ): 185 - 191.; Sucker, A., Zhao, F., Real, B., Heeke, C., Bielefeld, N., Maà en, S., Horn, S. et al., Genetic evolution of T cell resistance in the course of melanoma progression. Clin. Canc. Res. 2014. 20 ( 24 ): 6593 - 6604.; Lakshmikanth, T., Burke, S., Ali, T. H., Kimpfler, S., Ursini, F., Ruggeri, L., Capanni, M. et al., NCRs and DNAM-1 mediate NK cell recognition and lysis of human and mouse melanoma cell lines in vitro and in vivo. J. Clin. Invest. 2009. 119 ( 5 ): 1251 - 1263. https://doi.org/10.1172/JCI36022Test; Binder, D. C., Davis, A. A. and Wainwright, D. A., Immunotherapy for cancer in the central nervous system: Current and future directions. Oncoimmunology 2015. 5 ( 2 ): e1082027.; Razavi, S. M., Lee, K. E., Jin, B. E., Aujla, P. S., Gholamin, S. and Li, G., Immune Evasion Strategies of Glioblastoma. Frnt. Surg. 2016. 3: 11.; Seifert, M., Garbe, M., Friedrich, B., Mittelbronn, M. and Klink, B., Comparative transcriptomics reveals similarities and differences between astrocytoma grades. BMC Cancer 2015. 15: 952.; Dranoff, G., Experimental mouse tumour models: what can be learnt about human cancer immunology? Nat. Rev. Immunol. 2012. 12: 61 - 66. https://doi.org/10.1038/nri3129Test; Morton, J. J., Bird, G., Fefaeli, Y. and Jimeno, A., Humanized mouse xenograft models: narrowing the tumor-microenvironment gap. Canc. Res. 2016. 76: 6153 - 6158.; Huntington, N. D., Xu, Y., Puthalakath, H., Light, A., Willis, S. N., Strasser, A. et al., CD45 links the B cell receptor with cell survival and is required for the persistence of germinal centers. Nat. Immunol. 2006. 7 ( 2 ): 190 - 198.; Oracki, S. A., Walker, J. A., Hibbs, M. L., Corcoran, L. M. and Tarlinton, D. M., Plasma cell development and survival. Immunol. Rev. 2010. 237 ( 1 ): 140 - 159.; Brynjolfsson, S. F., Persson Berg, L., Olsen Ekerhult, T., Rimkute, I., Wick, M. J., Martensson, I. L. et al., Long-lived plasma cells in mice and men. Front. Immunol. 2018. 9: 2673.; Steensma, D. P., Gertz, M. A., Greipp, P. R., Kyle, R. A., Lacy, M. Q., Lust, J. A. et al., A high bone marrow plasma cell labeling index in stable plateau-phase multiple myeloma is a marker for early disease progression and death. Blood 2001. 97 ( 8 ): 2522 - 2523.; Bakkus, M. H., Heirman, C., Van Riet, I., Van Camp, B. and Thielemans, K., Evidence that multiple myeloma Ig heavy chain VDJ genes contain somatic mutations but show no intraclonal variation. Blood 1992. 80 ( 9 ): 2326 - 2335.; Kosmas, C., Stamatopoulos, K., Stavroyianni, N., Zoi, K., Belessi, C., Viniou, N. et al., Origin and diversification of the clonogenic cell in multiple myeloma: lessons from the immunoglobulin repertoire. Leukemia 2000. 14 ( 10 ): 1718 - 1726.; Pfeifer, S., Perez-Andres, M., Ludwig, H., Sahota, S. S. and Zojer, N., Evaluating the clonal hierarchy in light-chain multiple myeloma: implications against the myeloma stem cell hypothesis. Leukemia 2011. 25 ( 7 ): 1213 - 1216.; Hansmann, L., Han, A., Penter, L., Liedtke, M. and Davis, M. M., Clonal expansion and interrelatedness of distinct B-lineage compartments in multiple myeloma bone marrow. Cancer Immunol. Res. 2017. 5: 744 - 754.; Hideshima, T., Nakamura, N., Chauhan, D. and Anderson, K. C., Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene 2001. 20 ( 42 ): 5991 - 6000.; de Haart, S. J., van de Donk, N. W., Minnema, M. C., Huang, J. H., Aarts-Riemens, T., Bovenschen, N. et al., Accessory cells of the microenvironment protect multiple myeloma from T-cell cytotoxicity through cell adhesion-mediated immune resistance. Clin. Cancer Res. 2013. 19 ( 20 ): 5591 - 5601.; Hideshima, T., Bergsagel, P. L., Kuehl, W. M. and Anderson, K. C., Advances in biology of multiple myeloma: clinical applications. Blood 2004. 104: 607 - 618.; Mitsiades, C. S., Mitsiades, N., Munshi, N. C. and Anderson, K. C., Focus on multiple myeloma. Cancer Cell 2004. 6 ( 5 ): 439 - 444.; Mitsiades, C. S., Mitsiades, N. S., Richardson, P. G., Munshi, N. C. and Anderson, K. C., Multiple myeloma: a prototypic disease model for the characterization and therapeutic targeting of interactions between tumor cells and their local microenvironment. J. Cell. Biochem. 2007. 101 ( 4 ): 950 - 968.; Bianchi, G. and Munshi, N. C., Pathogenesis beyond the cancer clone(s) in multiple myeloma. Blood 2015. 125 ( 20 ): 3049 - 3058.; Keats, J. J., Chesi, M., Egan, J. B., Garbitt, V. M., Palmer, S. E., Braggio, E. et al., Clonal competition with alternating dominance in multiple myeloma. Blood 2012. 120 ( 5 ): 1067 - 1076.; Lohr, J. G., Kim, S., Gould, J., Knoechel, B., Drier, Y., Cotton, M. J. et al., Genetic interrogation of circulating multiple myeloma cells at single-cell resolution. Sci. Transl. Med. 2016. 8 ( 363 ): 363ra147.; Lohr, J. G., Stojanov, P., Carter, S. L., Cruz-Gordillo, P., Lawrence, M. S., Auclair, D. et al., Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell 2014. 25 ( 1 ): 91 - 101.; Paino, T., Paiva, B., Sayagues, J. M., Mota, I., Carvalheiro, T., Corchete, L. A. et al., Phenotypic identification of subclones in multiple myeloma with different chemoresistant, cytogenetic and clonogenic potential. Leukemia 2015. 29 ( 5 ): 1186 - 1194.; Arroz, M., Came, N., Lin, P., Chen, W., Yuan, C., Lagoo, A. et al., Consensus guidelines on plasma cell myeloma minimal residual disease analysis and reporting. Cytom. B Clin. Cytom. 2016. 90 ( 1 ): 31 - 39.; Flores-Montero, J., de Tute, R., Paiva, B., Perez, J. J., Bottcher, S., Wind, H. et al., Immunophenotype of normal vs. myeloma plasma cells: Toward antibody panel specifications for MRD detection in multiple myeloma. Cytom. B Clin. Cytom. 2016. 90 ( 1 ): 61 - 72.; Jelinek, T. and Hajek, R., Monoclonal antibodies-a new era in the treatment of multiple myeloma. Blood Rev. 2016. 30 ( 2 ): 101 - 110.; Paiva, B., Puig, N., Cedena, M. T., de Jong, B. G., Ruiz, Y., Rapado, I. et al., Differentiation stage of myeloma plasma cells: biological and clinical significance. Leukemia 2017. 31 ( 2 ): 382 - 392.; Lisenko, K., Schonland, S., Hegenbart, U., Wallenwein, K., Braun, U., Mai, E. K. et al., Potential therapeutic targets in plasma cell disorders: a flow cytometry study. Cytom. B Clin. Cytom. 2017. 92 ( 2 ): 145 - 152.; Berliner, N., Ault, K. A., Martin, P. and Weinberg, D. S., Detection of clonal excess in lymphoproliferative disease by kappa/lambda analysis: correlation with immunoglobulin gene DNA rearrangement. Blood 1986. 67 ( 1 ): 80 - 85.; Smock, K. J., Perkins, S. L. and Bahler, D. W., Quantitation of plasma cells in bone marrow aspirates by flow cytometric analysis compared with morphologic assessment. Arch. Pathol. Lab. Med. 2007. 131 ( 6 ): 951 - 955.; Lokhorst, H. M., Laubach, J. and Nahi, H., Dose-dependent efficacy of daratumumab (DARA) as monotherapy in patients with relapsed or refractory multiple myeloma (RR MM). J Clin. Oncol. 2014. 32: abstract 8513.; Lammerts van Bueren, J., Jakobs, D. and Kaldenhoven, N., Direct in vitro comparison of daratumumab with surrogate analogs of CD38 antibodies MOR03087, SAR650984 and Ab79. In: 56th ASH Annual Meeting & Exposition: Oral and Poster Abstracts, 2014.; Oberle, A., Brandt, A., Alawi, M., Langebrake, C., Janjetovic, S., Wolschke, C. et al., Long-term CD38 saturation by daratumumab interferes with diagnostic myeloma cell detection. Haematologica 2017. 102 ( 9 ): e368 - e370.; Perincheri, S., Torres, R., Tormey, C. A., Smith, B. R., Rinder, H. M. and Siddon, A. J., Daratumumab interferes with flow cytometric evaluation of multiple myeloma. 2016. 128 ( 22 ): 5630 - 5630.; Malaer, J. D. and Mathew, P. A., CS1 (SLAMF7, CD319) is an effective immunotherapeutic target for multiple myeloma. Am. J. Cancer Res. 2017. 7 ( 8 ): 1637 - 1641.; Tellier, J., Shi, W., Minnich, M., Liao, Y., Crawford, S., Smyth, G. K. et al., Blimp-1 controls plasma cell function through the regulation of immunoglobulin secretion and the unfolded protein response. Nat. Immunol. 2016. 17 ( 3 ): 323 - 330.; Rawstron, A. C., Orfao, A., Beksac, M., Bezdickova, L., Brooimans, R. A., Bumbea, H. et al., Report of the European Myeloma Network on multiparametric flow cytometry in multiple myeloma and related disorders. Haematologica 2008. 93 ( 3 ): 431 - 438.; Paiva, B., Garcia-Sanz, R. and San Miguel, J. F., Multiple myeloma minimal residual disease. Cancer Treat. Res. 2016. 169: 103 - 122.; Paiva, B., van Dongen, J. J. and Orfao, A., New criteria for response assessment: role of minimal residual disease in multiple myeloma. Blood 2015. 125 ( 20 ): 3059 - 3068.; Flores-Montero, J., Sanoja-Flores, L., Paiva, B., Puig, N., Garcia-Sanchez, O., Bottcher, S. et al., Next Generation Flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. Leukemia 2017. 31 ( 10 ): 2094 - 2103.; Roschewski, M., Stetler-Stevenson, M., Yuan, C., Mailankody, S., Korde, N. and Landgren, O., Minimal residual disease: what are the minimum requirements? J. Clin. Oncol. 2014. 32 ( 5 ): 475 - 476.; Cahoy, J. D., Emery, B., Kaushal, A., Foo, L. C., Zamanian, J. L., Christopherson, K. S., Xing, Y. et al., A Transcriptome Database for Astrocytes, Neurons, and Oligodendrocytes: A New Resource for Understanding Brain Development and Function. J. Neurosci. 2008. 28: 264 - 278.; Hawrylycz, M. J., Lein, E. S., Guillozet-Bongaarts, A. L., Shen, E. H., Ng, L., Miller, J. A., Van De Lagemaat, L. N. et al., An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 2012. 489: 391.; Mink, J. W., Blumenschine, R. J. and Adams, D. B., Ratio of central nervous system to body metabolism in vertebrates: its constancy and functional basis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1981. 241: R203 - R212.; Lake, B. B., Ai, R., Kaeser, G. E., Salathia, N. S., Yung, Y. C., Liu, R., Wildberg, A. et al., Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science 2016. 352: 1586 - 1590.; Bradl, M. and Lassmann, H., Oligodendrocytes: biology and pathology. Acta Neuropathol. 2010. 119: 37 - 53.; Sofroniew, M. V. and Vinters, H. V., Astrocytes: biology and pathology. Acta Neuropathol. 2010. 119: 7 - 35.; Bergström, T. and Forsberg-Nilsson, K., Neural stem cells: brain building blocks and beyond. Ups. J. Med. Sci. 2012. 117: 132 - 142.; Ginhoux, F., Greter, M., Leboeuf, M., Nandi, S., See, P., Gokhan, S., Mehler, M. F. et al., Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010. 330: 841 - 845.; Goldmann, T., Wieghofer, P., Jordão, M. J. C., Prutek, F., Hagemeyer, N., Frenzel, K., Amann, L. et al., Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat. Immunol. 2016. 17: 797 - 805.; Kantzer, C. G., Boutin, C., Herzig, I. D., Wittwer, C., Reià , S., Tiveron, M. C., Drewes, J. et al., Anti-ACSA-2 defines a novel monoclonal antibody for prospective isolation of living neonatal and adult astrocytes. Glia 2017. 65: 990 - 1004.; Batiuk, M. Y., De Vin, F., Duque, S. I., Li, C., Saito, T., Saido, T., Fiers, M. et al., An immunoaffinity-based method for isolating ultrapure adult astrocytes based on ATP1B2 targeting by the ACSA-2 antibody. J. Biol. Chem. 2017. 292: 8874 - 8891.; Lin, C.-C. J., Yu, K., Hatcher, A., Huang, T.-W., Lee, H. K., Carlson, J., Weston, M. C. et al., Identification of diverse astrocyte populations and their malignant analogs. Nat. Neurosci. 2017. 20: 396.; Tsai, H.-H., Li, H., Fuentealba, L. C., Molofsky, A. V., Taveira-Marques, R., Zhuang, H., Tenney, A. et al., Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science 2012. 337: 358 - 362.; Guttenplan, K. A. and Liddelow, S. A., Astrocytes and microglia: models and tools. J. Exp. Med. 2018. 216: 71 - 83.; Zhuo, L., Sun, B., Zhang, C. L., Fine, A., Chiu, S. Y. and Messing, A., Live astrocytes visualized by green fluorescent protein in transgenic mice. Dev. Biol. 1997. 187: 36 - 42.; Nolte, C., Matyash, M., Pivneva, T., Schipke, C. G., Ohlemeyer, C., Hanisch, U.-K., Kirchhoff, F. et al., GFAP promoter-controlled EGFP-expressing transgenic mice: a tool to visualize astrocytes and astrogliosis in living brain tissue. Glia 2001. 33: 72 - 86.; Kuzmanovic, M., Dudley, V. J. and Sarthy, V. P., GFAP promoter drives Muller cell-specific expression in transgenic mice. Invest. Ophthalmol. Vis. Sci. 2003. 44: 3606 - 3613.; Cho, W., Hagemann, T. L., Johnson, D. A., Johnson, J. A. and Messing, A., Dual transgenic reporter mice as a tool for monitoring expression of glial fibrillary acidic protein. J. Neurochem. 2009. 110: 343 - 351.; Regan, M. R., Huang, Y. H., Kim, Y. S., Dykes-Hoberg, M. I., Jin, L., Watkins, A. M., Bergles, D. E. et al., Variations in promoter activity reveal a differential expression and physiology of glutamate transporters by glia in the developing and mature CNS. J. Neurosci. 2007. 27: 6607 - 6619.; Bardehle, S., Kruger, M., Buggenthin, F., Schwausch, J., Ninkovic, J., Clevers, H., Snippert, H. J. et al., Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation. Nat. Neurosci. 2013. 16: 580 - 586.; Yang, Y., Vidensky, S., Jin, L., Jie, C., Lorenzini, I., Frankl, M. and Rothstein, J. D., Molecular comparison of GLT1+ and ALDH1L1+ astrocytes in vivo in astroglial reporter mice. Glia 2011. 59: 200 - 207.; Gong, S., Zheng, C., Doughty, M. L., Losos, K., Didkovsky, N., Schambra, U. B., Nowak, N. J. et al., A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 2003. 425: 917 - 925.; Jung, S., Aliberti, J., Graemmel, P., Sunshine, M. J., Kreutzberg, G. W., Sher, A. and Littman, D. R., Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell Biol. 2000. 20: 4106 - 4114.; Yona, S., Kim, K. W., Wolf, Y., Mildner, A., Varol, D., Breker, M., Strauss-Ayali, D. et al., Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 2013. 38: 79 - 91.; Buttgereit, A., Lelios, I., Yu, X., Vrohlings, M., Krakoski, N. R., Gautier, E. L., Nishinakamura, R. et al., Sall1 is a transcriptional regulator defining microglia identity and function. Nat. Immunol. 2016. 17: 1397 - 1406.; Hirasawa, T., Ohsawa, K., Imai, Y., Ondo, Y., Akazawa, C., Uchino, S. and Kohsaka, S., Visualization of microglia in living tissues using Iba1-EGFP transgenic mice. J. Neurosci. Res. 2005. 81: 357 - 362.; Sasmono, R. T., Oceandy, D., Pollard, J. W., Tong, W., Pavli, P., Wainwright, B. J., Ostrowski, M. C. et al., A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood 2003. 101: 1155 - 1163.; Dziennis, S., Van Etten, R. A., Pahl, H. L., Morris, D. L., Rothstein, T. L., Blosch, C. M., Perlmutter, R. M. et al., The CD11b promoter directs high-level expression of reporter genes in macrophages in transgenic mice. Blood 1995. 85: 319 - 329.; Yang, J., Hills, D., Taylor, E., Pfeffer, K., Ure, J. and Medvinsky, A., Transgenic tools for analysis of the haematopoietic system: knock-in CD45 reporter and deletor mice. J. Immunol. Methods 2008. 337: 81 - 87.; Pillai, M. M., Hayes, B. and Torok-Storb, B., Inducible transgenes under the control of the hCD68 promoter identifies mouse macrophages with a distribution that differs from the F4/80 - and CSF-1R-expressing populations. Exp. Hematol. 2009. 37: 1387 - 1392.; Iqbal, A. J., Mcneill, E., Kapellos, T. S., Regan-Komito, D., Norman, S., Burd, S., Smart, N. et al., Human CD68 promoter GFP transgenic mice allow analysis of monocyte to macrophage differentiation in vivo. Blood 2014. 124: e33 - e44.; Hägglund, M., Borgius, L., Dougherty, K. J. and Kiehn, O., Activation of groups of excitatory neurons in the mammalian spinal cord or hindbrain evokes locomotion. Nat. Neurosci. 2010. 13: 246 - 252.; Blanco-Centurion, C., Bendell, E., Zou, B., Sun, Y., Shiromani, P. J. and Liu, M., VGAT and VGLUT2 expression in MCH and orexin neurons in double transgenic reporter mice. IBRO Rep. 2018. 4: 44 - 49.; Daigle, T. L., Madisen, L., Hage, T. A., Valley, M. T., Knoblich, U., Larsen, R. S., Takeno, M. M. et al., A suite of transgenic driver and reporter mouse lines with enhanced brain-cell-type targeting and functionality. Cell 2018. 174: 465 - 480.e422.; Martin, D., Xu, J., Porretta, C. and Nichols, C. D., Neurocytometry: flow cytometric sorting of specific neuronal populations from human and rodent brain. ACS Chem. Neurosci. 2017. 8: 356 - 367.; Evrony, G. D., Cai, X., Lee, E., Hills, L. B., Elhosary, P. C., Lehmann, H. S., Parker, J. J. et al., Single-neuron sequencing analysis of L1 retrotransposition and somatic mutation in the human brain. Cell 2012. 151: 483 - 496.; Cai, X., Evrony, G. D., Lehmann, H. S., Elhosary, P. C., Mehta, B. K., Poduri, A. and Walsh, C. A., Single-cell, genome-wide sequencing identifies clonal somatic copy-number variation in the human brain. Cell Rep. 2014. 8: 1280 - 1289.; Girdhar, K., Hoffman, G. E., Jiang, Y., Brown, L., Kundakovic, M., Hauberg, M. E., Francoeur, N. J. et al., Cell-specific histone modification maps in the human frontal lobe link schizophrenia risk to the neuronal epigenome. Nat. Neurosci. 2018. 21: 1126 - 1136.; Matevossian, A. and Akbarian, S., Neuronal nuclei isolation from human postmortem brain tissue. J. Vis. Exp. 2008. 1: 914.; McCarthy, K. D. and De Vellis, J., Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell. Biol. 1980. 85: 890 - 902.; Barres, B. A., Hart, I. K., Coles, H. S. R., Burne, J. F., Voyvodic, J. T., Richardson, W. D. and Raff, M. C., Cell death and control of cell survival in the oligodendrocyte lineage. Cell 1992. 70: 31 - 46.; Seiwa, C., Kojima-Aikawa, K., Matsumoto, I. and Asou, H., CNS myelinogenesis in vitro: myelin basic protein deficient shiverer oligodendrocytes. J. Neurosci. Res. 2002. 69: 305 - 317.; Yang, Z., Watanabe, M. and Nishiyama, A., Optimization of oligodendrocyte progenitor cell culture method for enhanced survival. J. Neurosci. Meth. 2005. 149: 50 - 56.; Robinson, A. P., Rodgers, J. M., Goings, G. E. and Miller, S. D., Characterization of oligodendroglial populations in mouse demyelinating disease using flow cytometry: clues for MS pathogenesis. PLoS ONE 2014. 9: e107649.; Zhang, Y., Sloan, S. A., Clarke, L. E., Caneda, C., Plaza, C. A., Blumenthal, P. D., Vogel, H. et al., Purification and Characterization of Progenitor and Mature Human Astrocytes Reveals Transcriptional and Functional Differences with Mouse. Neuron 2016. 89: 37 - 53.; Deng, Y., Kim, B., He, X., Kim, S., Lu, C., Wang, H., Cho, S. G. et al., Direct visualization of membrane architecture of myelinating cells in transgenic mice expressing membrane-anchored EGFP. Genesis 2014. 52: 341 - 349.; Hughes, E. G., Kang, S. H., Fukaya, M. and Bergles, D. E., Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain. Nat. Neurosci. 2013. 16: 668 - 676.; Sedgwick, J. D., Schwender, S., Imrich, H., Dörries, R., Butcher, G. W. and Ter Meulen, V., Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system. Proc. Natl. Acad. Sci. USA 1991. 88: 7438 - 7442.; Bennett, M. L., Bennett, F. C., Liddelow, S. A., Ajami, B., Zamanian, J. L., Fernhoff, N. B., Mulinyawe, S. B. et al., New tools for studying microglia in the mouse and human CNS. Proc. Natl. Acad. Sci. USA 2016. 113: E1738 - E1746.; Korin, B., Ben-Shaanan, T. L., Schiller, M., Dubovik, T., Azulay-Debby, H., Boshnak, N. T., Koren, T. et al., High-dimensional, single-cell characterization of the brain’s immune compartment. Nat. Neurosci. 2017. 20: 1300 - 1309.; Mrdjen, D., Hartmann, F. J. and Becher, B., High dimensional cytometry of central nervous system leukocytes during neuroinflammation. Methods Mol. Biol. 2017. 1559: 321 - 332.; Ajami, B., Samusik, N., Wieghofer, P., Ho, P. P., Crotti, A., Bjornson, Z., Prinz, M. et al., Single-cell mass cytometry reveals distinct populations of brain myeloid cells in mouse neuroinflammation and neurodegeneration models. Nat. Neurosci. 2018. 21: 541 - 551.; Mrdjen, D., Pavlovic, A., Hartmann, F. J., Schreiner, B., Utz, S. G., Leung, B. P., Lelios, I. et al., High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 2018. 48: 599.; Böttcher, C., Schlickeiser, S., Sneeboer, M. a. M., Kunkel, D., Knop, A., Paza, E., Fidzinski, P. et al., Human microglia regional heterogeneity and phenotypes determined by multiplexed single-cell mass cytometry. Nat. Neurosci. 2019. 22: 78 - 90.; Ecker, J. R., Geschwind, D. H., Kriegstein, A. R., Ngai, J., Osten, P., Polioudakis, D., Regev, A. et al., The BRAIN Initiative Cell Census Consortium: lessons learned toward generating a comprehensive brain cell atlas. Neuron 2017. 96: 542 - 557.; Tham, C. S., Lin, F. F., Rao, T. S., Yu, N. and Webb, M., Microglial activation state and lysophospholipid acid receptor expression. Int. J. Dev. Neurosci. 2003. 21: 431 - 443.; Pfenninger, C. V., Roschupkina, T., Hertwig, F., Kottwitz, D., Englund, E., Bengzon, J., Jacobsen, S. E. et al., CD133 is not present on neurogenic astrocytes in the adult subventricular zone, but on embryonic neural stem cells, ependymal cells, and glioblastoma cells. Cancer Res. 2007. 67: 5727 - 5736.; Moussaud, S. and Draheim, H. J., A new method to isolate microglia from adult mice and culture them for an extended period of time. J. Neurosci. Methods 2010. 187: 243 - 253.; Foo, L. C., Allen, N. J., Bushong, E. A., Ventura, P. B., Chung, W.-S., Zhou, L., Cahoy, J. D. et al., Development of a Method for the Purification and Culture of Rodent Astrocytes. Neuron 2011. 71: 799 - 811.; Horst, A. K., Neumann, K., Diehl, L. and Tiegs, G., Modulation of liver tolerance by conventional and nonconventional antigen-presenting cells and regulatory immune cells. Cell. Mol. Immunol. 2016. 13: 277 - 292.; Jenne, C. N. and Kubes, P., Immune surveillance by the liver. Nat. Immunol. 2013. 14: 996 - 1006.; Thomson, A. W. and Knolle, P. A., Antigen-presenting cell function in the tolerogenic liver environment. Nat. Rev. Immunol. 2010. 10: 753 - 766.; Crispe, I. N., Immune tolerance in liver disease. Hepatology 2014. 60: 2109 - 2117.; Racanelli, V. and Rehermann, B., The liver as an immunological organ. Hepatology. 2006. 43: S54 - 62.; Yang, H. and Parkhouse, R. M., Differential expression of CD8 epitopes amongst porcine CD8-positive functional lymphocyte subsets. Immunology 1997. 92 ( 1 ): 45 - 52.; Blom, K. G., Qazi, M. R., Matos, J. B., Nelson, B. D., DePierre, J. W. and Abedi-Valugerdi, M., Isolation of murine intrahepatic immune cells employing a modified procedure for mechanical disruption and functional characterization of the B, T and natural killer T cells obtained. Clin. Exp. Immunol. 2009. 155: 320 - 329.; Gao, B., Radaeva, S. and Park, O., Liver natural killer and natural killer T cells: immunobiology and emerging roles in liver diseases. J. Leukoc. Biol. 2009. 86: 513 - 528.; Niemeyer, M., Darmoise, A., Mollenkopf, H. J., Hahnke, K., Hurwitz, R., Besra, G. S., Schaible, U. E. et al., Natural killer T-cell characterization through gene expression profiling: an account of versatility bridging T helper type 1 (Th1), Th2 and Th17 immune responses. Immunology 2008. 123: 45 - 56.; Pang, D. J., Neves, J. F., Sumaria, N. and Pennington, D. J., Understanding the complexity of γδ T-cell subsets in mouse and human. Immunology 2012. 136: 283 - 290.; Golubovskaya, V. and Wu, L., Different subsets of T cells, memory, effector functions, and CAR-T immunotherapy. Cancers 2016. 8 ( 3 ): E36.; Davies, L. C., Jenkins, S. J., Allen, J. E. and Taylor, P. R., Tissue-resident macrophages. Nat. Immunol. 2013. 14: 986 - 995.; Gordon, S. and Plüddemann, A., Tissue macrophages: Heterogeneity and functions. BMC. Biol. 2017. 15: 53.; Gordon, S. and Taylor, P. R., Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 2005. 5: 953 - 964.; Shortman, K. and Liu, Y. J., Mouse and human dendritic cell subtypes. Nat. Rev. Immunol. 2002. 2: 151 - 161.; Meurens, F., Summerfield, A., Nauwynck, H., Saif, L. and Gerdts, V., The pig: a model for human infectious diseases. Trends Microbiol. 2012. 20: 50 - 57.; Piriou-Guzylack, L. and Salmon, H., Membrane markers of the immune cells in swine: an update. Vet. Res. 2008. 39: 54.; Dawson, H. D. and Lunney, J. K., Porcine cluster of differentiation (CD) markers 2018 update. Res. Vet. Sci. 2018. 118: 199 - 246.; Saalmüller, A., Reddehase, M. J., Bühring, H.-J., JonjiÄ , S. and Koszinowski, U. H., Simultaneous expression of CD4 and CD8 antigens by a substantial proportion of resting porcine T lymphocytes. Eur. J. Immunol. 1987. 17 ( 9 ): 1297 - 1301.; Saalmüller, A., Weiland, F. and Reddehase, M. J., Resting porcine T lymphocytes expressing class II major histocompatibility antigen. Immunobiology 1991. 183: 102 - 114.; Reutner, K., Leitner, J., Mullebner, A., Ladinig, A., Essler, S. E., Duvigneau, J. C., Ritzmann, M. et al., CD27 expression discriminates porcine T helper cells with functionally distinct properties. Vet. Res. 2013. 44 ( 1 ): 18.; Mair, K. H., Essler, S. E., Patzl, M., Storset, A. K., Saalmüller, A. and Gerner, W., NKp46 expression discriminates porcine NK cells with different functional properties. Eur. J. Immunol. 2012. 42 ( 5 ): 1261 - 1271.; à lvarez, B., Escalona, Z., Uenishi, H., Toki, D., Revilla, C., Yuste, M., Gómez del Moral, M. et al., Molecular and functional characterization of porcine Siglec-3/CD33 and analysis of its expression in blood and tissues. Dev. Comp. Immunol. 2015. 51 ( 2 ): 238 - 250.; Summerfield, A., Guzylack-Piriou, L., Schaub, A., Carrasco, C. P., Tâche, V., Charley, B. and McCullough, K. C., Porcine peripheral blood dendritic cells and natural interferon-producing cells. Immunology 2003. 110 ( 4 ): 440 - 449.; Escalona, Z., à lvarez, B., Uenishi, H., Toki, D., Yuste, M., Revilla, C., Gómez del Moral, M. et al., Molecular characterization of porcine Siglec-10 and analysis of its expression in blood and tissues. Dev. Comp. Immunol. 2015. 48 ( 1 ): 116 - 123. https://doi.org/10.1016/j.dci.2014.09.011Test; Sedlak, C., Patzl, M., Saalmüller, A. and Gerner, W., IL-12 and IL-18 induce interferon-γ production and de novo CD2 expression in porcine Πδ T cells. Dev. Comp. Immunol. 2014b. 47 ( 1 ): 115 - 122. https://doi.org/10.1016/j.dci.2014.07.007Test; Yang, H. and Parkhouse, R. M., Phenotypic classification of porcine lymphocyte subpopulations in blood and lymphoid tissues. Immunology 1996. 89 ( 1 ): 76 - 83.; Saalmüller, A., Hirt, W. and Reddehase, M. J., Porcine γ/δ T lymphocyte subsets differing in their propensity to home to lymphoid tissue. Eur. J. Immunol. 1990. 20 ( 10 ): 2343 - 2346.; Sinkora, M., Å inkorová, J. and Holtmeier, W., Development of γδ thymocyte subsets during prenatal and postnatal ontogeny. Immunology 2005. 115 ( 4 ): 544 - 555.; Wen, K., Bui, T., Li, G., Liu, F., Li, Y., Kocher, J. and Yuan, L., Characterization of immune modulating functions of γδ T cell subsets in a gnotobiotic pig model of human rotavirus infection. Comp. Immunol. Microbiol. Infect. Dis. 2012. 35 ( 4 ): 289 - 301.; Lee, J., Choi, K., Olin, M. R., Cho, S.-N. and Molitor, T. W., Πδ T cells in immunity induced by Mycobacterium bovis Bacillus Calmette-Guérin vaccination. Infect. Immun. 2004. 72 ( 3 ): 1504 - 1511.; Sedlak, C., Patzl, M., Saalmüller, A. and Gerner, W., CD2 and CD8α define porcine γδ T cells with distinct cytokine production profiles. Dev. Comp. Immunol. 2014. 45: 97 - 106.; Olin, M. R., Choi, K. H., Lee, J. and Molitor, T. W., Πδ T-lymphocyte cytotoxic activity against Mycobacterium bovis analyzed by flow cytometry. J. Immunol. Methods 2005. 297: 1 - 11.; Rodríguez-Gómez, I. M., Talker, S. C., Käser, T., Stadler, M., Reiter, L., Ladinig, A., Milburn, J. V. et al., Expression of T-Bet, eomesodermin, and GATA-3 correlates with distinct phenotypes and functional properties in porcine γδ T cells. Front. Immunol. 2019. 10. https://doi.org/10.3389/fimmu.2019.00396Test; Summerfield, A., Rziha, H.-J. and Saalmüller, A., Functional characterization of porcine CD4+CD8+extrathymic T lymphocytes. Cell. Immunol. 1996. 168 ( 2 ): 291 - 296. https://doi.org/10.1006/cimm.1996.0078Test; Rodríguez-Gómez, I. M., Talker, S. C., Käser, T., Stadler, M., Hammer, S. E., Saalmüller, A. and Gerner, W., Expression of T-bet, eomesodermin and GATA-3 in porcine αβ T cells. Dev. Comp. Immunol. 2016. 60: 115 - 126.; Talker, S. C., Käser, T., Reutner, K., Sedlak, C., Mair, K. H., Koinig, H., Graage, R. et al., Phenotypic maturation of porcine NK- and T-cell subsets. Dev. Comp. Immunol. 2013. 40 ( 1 ): 51 - 68.; Käser, T., Gerner, W., Hammer, S. E., Patzl, M. and Saalmüller, A., Detection of Foxp3 protein expression in porcine T lymphocytes. Vet. Immunol. Immunopathol. 2008. 125 ( 1-2 ): 92 - 101. https://doi.org/10.1016/j.vetimm.2008.05.007Test; Ebner, F., Rausch, S., Scharek-Tedin, L., Pieper, R., Burwinkel, M., Zentek, J. and Hartmann, S., A novel lineage transcription factor based analysis reveals differences in T helper cell subpopulation development in infected and intrauterine growth restricted (IUGR) piglets. Dev. Comp. Immunol. 2014. 46: 333 - 340.; Gerner, W., Denyer, M. S., Takamatsu, H.-H., Wileman, T. E., Wiesmüller, K.-H., Pfaff, E. and Saalmüller, A., Identification of novel foot-and-mouth disease virus specific T-cell epitopes in c/c and d/d haplotype miniature swine. Virus Res. 2006. 121 ( 2 ): 223 - 228.; Ebner, F., Schwiertz, P., Steinfelder, S., Pieper, R., Zentek, J., Schütze, N., Baums, C. G. et al., Pathogen-reactive T helper cell analysis in the pig. Front. Immunol. 2017. 8: 565. https://doi.org/10.3389/fimmu.2017.00565Test; Stepanova, K. and Sinkora, M., Porcine γδ T lymphocytes can be categorized into two functionally and developmentally distinct subsets according to expression of CD2 and level of TCR. J. Immunol. 2013. 190 ( 5 ): 2111 - 2120. https://doi.org/10.4049/jimmunol.1202890Test; Gerner, W., Talker, S. C., Koinig, H. C., Sedlak, C., Mair, K. H. and Saalmüller, A., Phenotypic and functional differentiation of porcine Πβ T cells: current knowledge and available tools. Mol. Immunol. 2015. 66 ( 1 ): 3 - 13. https://doi.org/10.1016/j.molimm.2014.10.025Test; Holzer, B., Morgan, S. B., Matsuoka, Y., Edmans, M., Salguero, F. J., Everett, H., Brookes, S. M. et al., Comparison of heterosubtypic protection in ferrets and pigs induced by a single-cycle influenza vaccine. J. Immunol. 2018. 200: 4068 - 4077.; Hayashi, Y., Okutani, M., Ogawa, S., Tsukahara, T. and Inoue, R., Generation of anti-porcine CD69 monoclonal antibodies and their usefulness to evaluate early activation of cellular immunity by flow cytometric analysis. Anim. Sci. J. 2018. 89: 825 - 832.; Yang, W. C., Schultz, R. D. and Spano, J. S., Isolation and characterization of porcine natural killer (NK) cells. Vet. Immunol. Immunopathol. 1987. 14 ( 4 ): 345 - 356.; Denyer, M. S., Wileman, T. E., Stirling, C. M., Zuber, B. and Takamatsu, H. H., Perforin expression can define CD8 positive lymphocyte subsets in pigs allowing phenotypic and functional analysis of natural killer, cytotoxic T, natural killer T and MHC un-restricted cytotoxic T-cells. Vet. Immunol. Immunopathol. 2006. 110: 279 - 292.; Walzer, T., Jaeger, S., Chaix, J. and Vivier, E., Natural Killer Cells: From CD3(-)NKp46(+) to post-genomics meta-analyses. Curr. Opin. Immunol. 2007. 19 ( 3 ): 365 - 372.; Mair, K. H., Müllebner, A., Essler, S. E., Duvigneau, J. C., Storset, A. K., Saalmüller, A. and Gerner, W., Porcine CD8αdim/-NKp46high NK cells are in a highly activated state. Vet. Res. 2013. 44 ( March ): 13. https://doi.org/10.1186/1297-9716-44-13Test; Forberg, H., Hauge, A. G., Valheim, M., Garcon, F., Nunez, A., Gerner, W., Mair, K. H. et al., Early responses of natural killer cells in pigs experimentally infected with 2009 pandemic H1N1 influenza A virus. PLoS One 2014. 9 ( 6 ): e100619. https://doi.org/10.1371/journal.pone.0100619Test; Jones, M., Cordell, J. L., Beyers, A. D., Tse, A. G. and Mason, D. Y., Detection of T and B cells in many animal species using cross-reactive anti-peptide antibodies. J. Immunol. 1993. 150: 5429 - 5435.; Reutner, K., Leitner, J., Essler, S. E., Witter, K., Patzl, M., Steinberger, P., Saalmüller, A. et al., Porcine CD27: identification, expression and functional aspects in lymphocyte subsets in swine. Dev. Comp. Immunol. 2012. 38 ( 2 ): 321 - 331.; Sinkora, M., Stepanova, K. and Sinkorova, J., Different Anti-CD21 antibodies can be used to discriminate developmentally and functionally different subsets of B lymphocytes in circulation of pigs. Dev. Comp. Immunol. 2013. 39 ( 4 ): 409 - 418.; Bharat, A., Bhorade, S. M., Morales-Nebreda, L., McQuattie-Pimentel, A. C., Soberanes, S., Ridge, K., DeCamp, M. M. et al., Flow cytometry reveals similarities between lung macrophages in humans and mice. Am. J. Respir Cell Mol Biol 2016. 54 ( 1 ): 147 - 149. https://doi.org/10.1165/rcmb.2015-0147LETest; Kandasamy, S., Chattha, K. S., Vlasova, A. N., Rajashekara, G. and Saif, L. J., Lactobacilli and Bifidobacteria enhance mucosal B cell responses and differentially modulate systemic antibody responses to an oral human rotavirus vaccine in a neonatal gnotobiotic pig disease model. Gut Microbes 2014. 5 ( 5 ): 639 - 651. https://doi.org/10.4161/19490976.2014.969972Test; Braun, R. O., Python, S. and Summerfield, A., Porcine B cell subset responses to toll-like receptor ligands. Front. Immunol. 2017. 8: 1044. https://doi.org/10.3389/fimmu.2017.01044Test; Summerfield, A., Auray, G. and Ricklin, M., Comparative dendritic cell biology of veterinary mammals. Annu. Rev. Anim. Biosci. 2015. 3: 533 - 557.; Vu Manh, T.-P., Elhmouzi-Younes, J., Urien, C., Ruscanu, S., Jouneau, L., Bourge, M., Moroldo, M. et al., Defining mononuclear phagocyte subset homology across several distant warm-blooded vertebrates through comparative transcriptomics. Front. Immunol. 2015. 6: 299.; Soldevila, F., Edwards, J. C., Graham, S. P., Stevens, L. M., Crudgington, B., Crooke, H. R., Werling, D. et al., Characterization of the myeloid cell populations- resident in the porcine palatine tonsil. Front. Immunol. 2018. 9: 1800.; Auray, G., Keller, I., Python, S., Gerber, M., Bruggmann, R., Ruggli, N. and Summerfield, A., Characterization and transcriptomic analysis of porcine blood conventional and plasmacytoid dendritic cells reveals striking species-specific differences. J. Immunol. 2016. 197 ( 12 ): 4791 - 4806.; Maisonnasse, P., Bouguyon, E., Piton, G., Ezquerra, A., Urien, C., Deloizy, C., Bourge, M. et al., The respiratory DC/macrophage network at steady-state and upon influenza infection in the swine biomedical model. Mucosal Immunol. 2016a. 9 ( 4 ): 835 - 849. https://doi.org/10.1038/mi.2015.105Test; Chun, T., Wang, K., Zuckermann, F. A. and Rex Gaskins, H., Molecular cloning and characterization of a novel CD1 gene from the pig. J. Immunol. 1999. 162 ( 11 ): 6562 - 6571.; Nestle, F. O., Zheng, X. G., Thompson, C. B., Turka, L. A. and Nickoloff, B. J., Characterization of dermal dendritic cells obtained from normal human skin reveals phenotypic and functionally distinctive subsets. J. Immunol. 1993. 151 ( 11 ): 6535 - 6545.; Dutertre, C.-A., Wang, L.-F. and Ginhoux, F., Aligning bona fide dendritic cell populations across species. Cell. Immunol. 2014. 291 ( 1 ): 3 - 10. https://doi.org/10.1016/j.cellimm.2014.08.006Test; Chamorro, S., Revilla, C., Alvarez, B., Alonso, F., Ezquerra, A. and Domínguez, J., Phenotypic and functional heterogeneity of porcine blood monocytes and its relation with maturation. Immunology 2005. 114 ( 1 ): 63 - 71.; Ondrackova, P., Nechvatalova, K., Kucerova, Z., Leva, L., Dominguez, J. and Faldyna, M., Porcine mononuclear phagocyte subpopulations in the lung, blood and bone marrow: dynamics during inflammation induced by actinobacillus pleuropneumoniae. Vet. Res. 2010. 41: 64.; Fairbairn, L., Kapetanovic, R., Beraldi, D., Sester, D. P., Tuggle, C. K., Archibald, A. L. and Hume, D. A., Comparative analysis of monocyte subsets in the pig. J. Immunol. 2013. 190 ( 12 ): 6389 - 6396. https://doi.org/10.4049/jimmunol.1300365Test; Ondrackova, P., Leva, L., Kucerova, Z., Vicenova, M., Mensikova, M. and Faldyna, M., Distribution of porcine monocytes in different lymphoid tissues and the lungs during experimental actinobacillus pleuropneumoniae infection and the role of chemokines. Vet. Res. 2013. 44: 98.; Moreno, S., Alvarez, B., Poderoso, T., Revilla, C. Ezquerra, A., Alonso, F. and Dominguez, J., Porcine monocyte subsets differ in the expression of CCR2 and in their responsiveness to CCL2. Vet Res. 2010. 41: 76.; Ezquerra, A., Revilla, C., Alvarez, B., Pérez, C., Alonso, F. and Domínguez, J., Porcine myelomonocytic markers and cell populations. Dev. Comp. Immunol. 2009. 33 ( 3 ): 284 - 298. https://doi.org/10.1016/j.dci.2008.06.002Test; Fernández-Caballero, T., à lvarez, B., Revilla, C., Zaldívar-López, S., Alonso, F., Garrido, J. J., Ezquerra, à . et al., Phenotypic and functional characterization of porcine bone marrow monocyte subsets. Dev. Comp. Immunol. 2018. 81: 95 - 104. https://doi.org/10.1016/j.dci.2017.11.012Test; Talker, S. C., Baumann, A., Tuba Barut, G., Keller, I., Bruggmann, R. and Summerfield, A., Precise delineation and transcriptional characterization of bovine blood dendritic-cell and monocyte subsets. Front. Immunol. 2018. 9: 2505.; Sinkora, M. and Sinkorova, J., B cell lymphogenesis in swine is located in the bone marrow. J. Immunol. 2014. 193 ( 10 ): 5023 - 5032.; Maisonnasse, P., Bordet, E., Bouguyon, E. and Bertho, N., Broncho alveolar dendritic cells and macrophages are highly similar to their interstitial counterparts. PLoS One 2016b. 11 ( 12 ): e0167315. https://doi.org/10.1371/journal.pone.0167315Test; Bordet, E., Maisonnasse, P., Renson, P., Bouguyon, E., Crisci, E., Tiret, M., Descamps, D. et al., Porcine alveolar macrophage-like cells are pro-inflammatory pulmonary intravascular macrophages that produce large titers of porcine reproductive and respiratory syndrome virus. Sci. Rep. 2018. 8 ( 1 ): 10172. https://doi.org/10.1038/s41598-018-28234-yTest; Guilliams, M., Ginhoux, F., Jakubzick, C., Naik, S. H., Onai, N., Schraml, B. U., Segura, E. et al., Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat. Rev. Immunol. 2014. 14: 571 - 578.; Arvaniti, E. and Claassen, M., Sensitive detection of rare disease-associated cell subsets via representation learning. Nat. Commun. 2017. 8: 14825; Cai, Y., Sugimoto, C., Arainga, M., Alvarez, X., Didier, E. S. and Kuroda, M. J., In vivo characterization of alveolar and interstitial lung macrophages in rhesus macaques: implications for understanding lung disease in humans. J. Immunol. (Baltimore, Md.: 1950) 2014. 192 ( 6 ): 2821 - 2829. https://doi.org/10.4049/jimmunol.1302269Test; Yu, Y.-R. A., Hotten, D. F., Malakhau, Y., Volker, E., Ghio, A. J., Noble, P. W., Kraft, M. et al., Flow cytometric analysis of myeloid cells in human blood, bronchoalveolar lavage, and lung tissues. Am. J. Respir. Cell Mol. Biol. 2016. 54 ( 1 ): 13 - 24.; Marquet, F., Vu Manh, T.-P., Maisonnasse, P., Elhmouzi-Younes, J., Urien, C., Bouguyon, E., Jouneau, L. et al., Pig skin includes dendritic cell subsets transcriptomically related to human CD1a and CD14 dendritic cells presenting different migrating behaviors and T cell activation capacities. J. Immunol. 2014. 193 ( 12 ): 5883 - 5893.; Parra-Sánchez, H., Puebla-Clark, L., Reséndiz, M., Valenzuela, O. and Hernández, J., Characterization and expression of DEC205 in the CDC1 and CDC2 subsets of porcine dendritic cells from spleen, tonsil, and submaxillary and mesenteric lymph nodes. Mol. Immunol. 2018. 96: 1 - 7.; Saalmüller, A., Pauly, T., Lunney, J. K., Boyd, P., Aasted, B., Sachs, D. H., Arn, S. et al., Overview of the second international workshop to define swine cluster of differentiation (CD) antigens. Vet. Immunol. Immunopathol. 1998. 60 ( 3-4 ): 207 - 228.; Leitner, J., Reutner, K., Essler, S. E., Popow, I., Gerner, W., Steinberger, P. and Saalmüller, A., Porcine SWC1 Is CD52-final determination by the use of a retroviral CDNA expression library. Vet. Immunol. Immunopathol. 2012. 146 ( 1 ): 27 - 34.; Pérez, C., Revilla, C., Alvarez, B., Chamorro, S., Correa, C., Domenech, N., Alonso, F. et al., Phenotypic and functional characterization of porcine granulocyte developmental stages using two new markers. Dev. Comp. Immunol. 2007. 31 ( 3 ): 296 - 306.; Saalmüller, A. and Aasted, B., Summary of the animal homologue section of HLDA8. Vet. Immunol. Immunopathol. 2007. 119: 2 - 13.; Saalmüller, A., Lunney, J. K., Daubenberger, C., Davis, W., Fischer, U., Göbel, T. W. and Griebel, P. et al., Summary of the animal homologue section of HLDA8. Cell. Immunol. 2005. 236: 51 - 58.; Cobaleda, C., Schebesta, A., Delogu, A. and Busslinger, M., Pax5: the guardian of B cell identity and function. Nat. Immunol. 2007. 8: 463 - 470.; Brodie, T., Brenna, E. and Sallusto, F., OMIP-018: chemokine receptor expression on human T helper cells. Cytometry A 2013. 83: 530 - 532.; Shaffer, A. L., Lin, K.-I., Kuo, T. C., Yu, X., Hurt, E. M., Rosenwald, A. and Giltnane, J. M. et al., Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity 2002. 17: 51 - 62.; Bekeredjian-Ding, I. and Jego, G., Toll-like receptors-sentries in the B-cell response. Immunology 2009. 128: 311 - 323.; Calame, K., Activation-dependent induction of Blimp-1. Curr. Opin. Immunol. 2008. 20: 259 - 264.; Gerner, W., Käser, T. and Saalmüller, A., Porcine T lymphocytes and NK cells - an update. Dev. Comp. Immunol. 2009. 33: 310 - 320.; Saalmüller, A., Werner, T. and Fachinger, V., T-helper cells from naive to committed. Vet. Immunol. Immunopathol. 2002. 87: 137 - 145.; Bolzer, K., Käser, T., Saalmüller, A. and Hammer, S. E., Molecular characterisation of porcine Forkhead-box p3 (Foxp3). Vet. Immunol. Immunopathol. 2009. 132: 275 - 281.; Rocchi, M. S., Wattegedera, S. R., Frew, D., Entrican, G., Huntley, J. F. and McNeilly, T. N., Identification of CD4 + CD25 high Foxp3 + T cells in ovine peripheral blood. Vet. Immunol. Immunopathol. 2011. 144: 172 - 177.; Käser, T., Mair, K. H., Hammer, S. E., Gerner, W. and Saalmüller, A., Natural and inducible Tregs in swine: helios expression and functional properties. Dev. Comp. Immunol. 2015. 49: 323 - 331.; Kwong, L. S., Thom, M., Sopp, P., Rocchi, M., Wattegedera, S., Entrican, G. and Hope, J. C., Production and characterization of two monoclonal antibodies to bovine tumour necrosis factor alpha (TNF-alpha) and their cross-reactivity with ovine TNF-alpha. Vet. Immunol. Immunopathol. 2010. 135: 320 - 324.; Wattegedera, S. R., Corripio-Miyar, Y., Pang, Y., Frew, D., McNeilly, T. N., Palarea-Albaladejo, J. and McInnes, C. J. et al., Enhancing the toolbox to study IL-17A in cattle and sheep. Vet. Res. 2017. 48: 20.; Pedersen, L. G., Castelruiz, Y., Jacobsen, S. and Aasted, B., Identification of monoclonal antibodies that cross-react with cytokines from different animal species. Vet. Immunol. Immunopathol. 2002. 88: 111 - 122.; Franzoni, G., Kurkure, N. V., Edgar, D. S., Everett, H. E., Gerner, W., Bodman-Smith, K. B., Crooke, H. R. et al., Assessment of the phenotype and functionality of porcine CD8 T cell responses following vaccination with live attenuated classical swine fever virus (CSFV) and virulent CSFV challenge. Clin. Vaccine Immunol. 2013. 20: 1604 - 1616.; Takamatsu, H. H., Denyer, M. S., Stirling, C., Cox, S., Aggarwal, N., Dash, P., Wileman, T. E. et al., Porcine γδ T cells: possible roles on the innate and adaptive immune responses following virus infection. Vet. Immunol. Immunopathol. 2006. 112: 49 - 61.; Saeys, Y., Gassen, S. V. and Lambrecht, B. N., Computational flow cytometry: helping to make sense of high-dimensional immunology data. Nat. Rev. Immunol. 2016. 16: 449 - 462.; Aghaeepour, N., Finak, G., The FlowCAP Consortium, The DREAM Consortium, Hoos, H., Mosmann, T. R., Brinkman, R. et al., Critical assessment of automated flow cytometry data analysis techniques. Nat. Methods 2013. 10: 228 - 238.; Bashashati, A. and Brinkman, R. R., A survey of flow cytometry data analysis methods. Adv. Bioinformatics 2009. 2009: 584603; O’Neill, K., Aghaeepour, N., Spidlen, J. and Brinkman, R. R., Flow cytometry bioinformatics. PLoS Comput. Biol. 2013. 9: e1003365.; Aghaeepour, N., Chattopadhyay, P. K., Ganesan, A., O’Neill, K., Zare, H., Jalali, A., Hoos, H. et al., Early immunologic correlates of HIV protection can be identified from computational analysis of complex multivariate T-cell flow cytometry assays. Bioinformatics 2012. 28: 1009 - 1016.; Aghaeepour, N., Nikolic, R., Hoos, H. H., and Brinkman, R. R. Rapid cell population identification in flow cytometry data. Cytometry Part A 2011. 79A: 6 - 13.; Finak, G., Bashashati, A., Brinkman, R. and Gottardo, R., Merging mixture components for cell population identification in flow cytometry. Adv. Bioinformatics 2009, 247646.; Mosmann, T. R., Naim, I., Rebhahn, J., Rebhahn, J., Datta, S., Cavenaugh, J. S., Weaver, J. M. and Sharma, G., SWIFT-scalable clustering for automated identification of rare cell populations in large, high-dimensional flow cytometry datasets, Part 2: Biological evaluation. Cytometry A 2014. 85: 422 - 433.; Finak, G., Langweiler, M., Jaimes, M., Malek, M., Taghiyar, J., Korin, Y., Raddassi, K. et al., Standardizing flow cytometry immunophenotyping analysis from the human immunophenotyping consortium. Sci. Rep. 2016. 6: 20686.; Qian, Y., Wei, C., Eun-Hyung Lee, F., Campbell, J., Halliley, J., Lee, J. A., Cai, J. et al., Elucidation of seventeen human peripheral blood B-cell subsets and quantification of the tetanus response using a density-based method for the automated identification of cell populations in multidimensional flow cytometry data. Cytometry B Clin. Cytom. 2010. 78 ( Suppl 1 ): S69 - S82.

  9. 9
    دورية أكاديمية

    المؤلفون: Cossarizza, Andrea, Chang, Hyun-Dong, Radbruch, Andreas, Acs, Andreas, Adam, Dieter, Adam-Klages, Sabine, Agace, William W, Aghaeepour, Nima, Akdis, Mübeccel, Allez, Matthieu, Almeida, Larissa Nogueira, Alvisi, Giorgia, Anderson, Graham, Andrä, Immanuel, Annunziato, Francesco, Anselmo, Achille, Bacher, Petra, Baldari, Cosima T, Bari, Sudipto, Barnaba, Vincenzo, Barros-Martins, Joana, Battistini, Luca, Bauer, Wolfgang, Baumgart, Sabine, Baumgarth, Nicole, Baumjohann, Dirk, Baying, Bianka, Bebawy, Mary, Becher, Burkhard, Beisker, Wolfgang, Benes, Vladimir, Beyaert, Rudi, Blanco, Alfonso, Boardman, Dominic A, Bogdan, Christian, Borger, Jessica G, Borsellino, Giovanna, Boulais, Philip E, Bradford, Jolene A, Brenner, Dirk, Brinkman, Ryan R, Brooks, Anna E S, Busch, Dirk H, Büscher, Martin, Bushnell, Timothy P, Calzetti, Federica, Cameron, Garth, Cammarata, Ilenia, Cao, Xuetao, Cardell, Susanna L, Casola, Stefano, Cassatella, Marco A, Cavani, Andrea, Celada, Antonio, Chatenoud, Lucienne, Chattopadhyay, Pratip K, Chow, Sue, Christakou, Eleni, Čičin-Šain, Luka, Clerici, Mario, Colombo, Federico S, Cook, Laura, Cooke, Anne, Cooper, Andrea M, Corbett, Alexandra J, Cosma, Antonio, Cosmi, Lorenzo, Coulie, Pierre G, Cumano, Ana, Cvetkovic, Ljiljana, Dang, Van Duc, Dang-Heine, Chantip, Davey, Martin S, Davies, Derek, De Biasi, Sara, Del Zotto, Genny, Dela Cruz, Gelo Victoriano, Delacher, Michael, Della Bella, Silvia, Dellabona, Paolo, Deniz, Günnur, Dessing, Mark, Di Santo, James P, Diefenbach, Andreas, Dieli, Francesco, Dolf, Andreas, Dörner, Thomas, Dress, Regine J, Dudziak, Diana, Dustin, Michael, Dutertre, Charles-Antoine, Ebner, Friederike, Eckle, Sidonia B G, Edinger, Matthias, Eede, Pascale, Ehrhardt, Götz R A, Eich, Marcus, Engel, Pablo, Engelhardt, Britta, Erdei, Anna, Esser, Charlotte, Everts, Bart, Evrard, Maximilien, Falk, Christine S, Fehniger, Todd A, Felipo-Benavent, Mar, Ferry, Helen, Feuerer, Markus, Filby, Andrew, Filkor, Kata, Fillatreau, Simon, Follo, Marie, Förster, Irmgard, Foster, John, Foulds, Gemma A, Frehse, Britta, Frenette, Paul S, Frischbutter, Stefan, Fritzsche, Wolfgang, Galbraith, David W, Gangaev, Anastasia, Garbi, Natalio, Gaudilliere, Brice, Gazzinelli, Ricardo T, Geginat, Jens, Gerner, Wilhelm, Gherardin, Nicholas A, Ghoreschi, Kamran, Gibellini, Lara, Ginhoux, Florent, Goda, Keisuke, Godfrey, Dale I, Goettlinger, Christoph, González-Navajas, Jose M, Goodyear, Carl S., Gori, Andrea, Grogan, Jane L, Grummitt, Daryl, Grützkau, Andreas, Haftmann, Claudia, Hahn, Jonas, Hammad, Hamida, Hämmerling, Günter, Hansmann, Leo, Hansson, Goran, Harpur, Christopher M, Hartmann, Susanne, Hauser, Andrea, Hauser, Anja E, Haviland, David L, Hedley, David, Hernández, Daniela C, Herrera, Guadalupe, Herrmann, Martin, Hess, Christoph, Höfer, Thomas, Hoffmann, Petra, Hogquist, Kristin, Holland, Tristan, Höllt, Thomas, Holmdahl, Rikard, Hombrink, Pleun, Houston, Jessica P, Hoyer, Bimba F, Huang, Bo, Huang, Fang-Ping, Huber, Johanna E, Huehn, Jochen, Hundemer, Michael, Hunter, Christopher A, Hwang, William Y K, Iannone, Anna, Ingelfinger, Florian, Ivison, Sabine M, Jäck, Hans-Martin, Jani, Peter K, Jávega, Beatriz, Jonjic, Stipan, Kaiser, Toralf, Kalina, Tomas, Kamradt, Thomas, Kaufmann, Stefan H E, Keller, Baerbel, Ketelaars, Steven L C, Khalilnezhad, Ahad, Khan, Srijit, Kisielow, Jan, Klenerman, Paul, Knopf, Jasmin, Koay, Hui-Fern, Kobow, Katja, Kolls, Jay K, Kong, Wan Ting, Kopf, Manfred, Korn, Thomas, Kriegsmann, Katharina, Kristyanto, Hendy, Kroneis, Thomas, Krueger, Andreas, Kühne, Jenny, Kukat, Christian, Kunkel, Désirée, Kunze-Schumacher, Heike, Kurosaki, Tomohiro, Kurts, Christian, Kvistborg, Pia, Kwok, Immanuel, Landry, Jonathan, Lantz, Olivier, Lanuti, Paola, LaRosa, Francesca, Lehuen, Agnès, LeibundGut-Landmann, Salomé, Leipold, Michael D, Leung, Leslie Y T, Levings, Megan K, Lino, Andreia C, Liotta, Francesco, Litwin, Virginia, Liu, Yanling, Ljunggren, Hans-Gustaf, Lohoff, Michael, Lombardi, Giovanna, Lopez, Lilly, López-Botet, Miguel, Lovett-Racke, Amy E, Lubberts, Erik, Luche, Herve, Ludewig, Burkhard, Lugli, Enrico, Lunemann, Sebastian, Maecker, Holden T, Maggi, Laura, Maguire, Orla, Mair, Florian, Mair, Kerstin H, Mantovani, Alberto, Manz, Rudolf A, Marshall, Aaron J, Martínez-Romero, Alicia, Martrus, Glòria, Marventano, Ivana, Maslinski, Wlodzimierz, Matarese, Giuseppe, Mattioli, Anna Vittoria, Maueröder, Christian, Mazzoni, Alessio, McCluskey, James, McGrath, Mairi, McGuire, Helen M, McInnes, Iain B., Mei, Henrik E, Melchers, Fritz, Melzer, Susanne, Mielenz, Dirk, Miller, Stephen D, Mills, Kingston H G, Minderman, Hans, Mjösberg, Jenny, Moore, Jonni, Moran, Barry, Moretta, Lorenzo, Mosmann, Tim R, Müller, Susann, Multhoff, Gabriele, Muñoz, Luis Enrique, Münz, Christian, Nakayama, Toshinori, Nasi, Milena, Neumann, Katrin, Ng, Lai Guan, Niedobitek, Antonia, Nourshargh, Sussan, Núñez, Gabriel, O'Connor, José-Enrique, Ochel, Aaron, Oja, Anna, Ordonez, Diana, Orfao, Alberto, Orlowski-Oliver, Eva, Ouyang, Wenjun, Oxenius, Annette, Palankar, Raghavendra, Panse, Isabel, Pattanapanyasat, Kovit, Paulsen, Malte, Pavlinic, Dinko, Penter, Livius, Peterson, Pärt, Peth, Christian, Petriz, Jordi, Piancone, Federica, Pickl, Winfried F, Piconese, Silvia, Pinti, Marcello, Pockley, A Graham, Podolska, Malgorzata Justyna, Poon, Zhiyong, Pracht, Katharina, Prinz, Immo, Pucillo, Carlo E M, Quataert, Sally A, Quatrini, Linda, Quinn, Kylie M, Radbruch, Helena, Radstake, Tim R D J, Rahmig, Susann, Rahn, Hans-Peter, Rajwa, Bartek, Ravichandran, Gevitha, Raz, Yotam, Rebhahn, Jonathan A, Recktenwald, Diether, Reimer, Dorothea, Reis E Sousa, Caetano, Remmerswaal, Ester B M, Richter, Lisa, Rico, Laura G, Riddell, Andy, Rieger, Aja M, Robinson, J Paul, Romagnani, Chiara, Rubartelli, Anna, Ruland, Jürgen, Saalmüller, Armin, Saeys, Yvan, Saito, Takashi, Sakaguchi, Shimon, Sala-de-Oyanguren, Francisco, Samstag, Yvonne, Sanderson, Sharon, Sandrock, Inga, Santoni, Angela, Sanz, Ramon Bellmàs, Saresella, Marina, Sautes-Fridman, Catherine, Sawitzki, Birgit, Schadt, Linda, Scheffold, Alexander, Scherer, Hans U, Schiemann, Matthias, Schildberg, Frank A, Schimisky, Esther, Schlitzer, Andreas, Schlosser, Josephine, Schmid, Stephan, Schmitt, Steffen, Schober, Kilian, Schraivogel, Daniel, Schuh, Wolfgang, Schüler, Thomas, Schulte, Reiner, Schulz, Axel Ronald, Schulz, Sebastian R, Scottá, Cristiano, Scott-Algara, Daniel, Sester, David P, Shankey, T Vincent, Silva-Santos, Bruno, Simon, Anna Katharina, Sitnik, Katarzyna M, Sozzani, Silvano, Speiser, Daniel E, Spidlen, Josef, Stahlberg, Anders, Stall, Alan M, Stanley, Natalie, Stark, Regina, Stehle, Christina, Steinmetz, Tobit, Stockinger, Hannes, Takahama, Yousuke, Takeda, Kiyoshi, Tan, Leonard, Tárnok, Attila, Tiegs, Gisa, Toldi, Gergely, Tornack, Julia, Traggiai, Elisabetta, Trebak, Mohamed, Tree, Timothy I M, Trotter, Joe, Trowsdale, John, Tsoumakidou, Maria, Ulrich, Henning, Urbanczyk, Sophia, van de Veen, Willem, van den Broek, Maries, van der Pol, Edwin, Van Gassen, Sofie, Van Isterdael, Gert, van Lier, René A W, Veldhoen, Marc, Vento-Asturias, Salvador, Vieira, Paulo, Voehringer, David, Volk, Hans-Dieter, von Borstel, Anouk, von Volkmann, Konrad, Waisman, Ari, Walker, Rachael V, Wallace, Paul K, Wang, Sa A, Wang, Xin M, Ward, Michael D, Ward-Hartstonge, Kirsten A, Warnatz, Klaus, Warnes, Gary, Warth, Sarah, Waskow, Claudia, Watson, James V, Watzl, Carsten, Wegener, Leonie, Weisenburger, Thomas, Wiedemann, Annika, Wienands, Jürgen, Wilharm, Anneke, Wilkinson, Robert John, Willimsky, Gerald, Wing, James B, Winkelmann, Rieke, Winkler, Thomas H, Wirz, Oliver F, Wong, Alicia, Wurst, Peter, Yang, Jennie H M, Yang, Juhao, Yazdanbakhsh, Maria, Yu, Liping, Yue, Alice, Zhang, Hanlin, Zhao, Yi, Ziegler, Susanne Maria, Zielinski, Christina, Zimmermann, Jakob, Zychlinsky, Arturo

    العلاقة: Cossarizza, A. et al. (2019) Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology , 49(10), pp. 1457-1973. (doi:10.1002/eji.201970107 ) (PMID:31633216)

  10. 10
    دورية أكاديمية

    المؤلفون: Cossarizza, Andrea, Chang, Hyun-Dong, Radbruch, Andreas, Acs, Andreas, Adam, Dieter, Adam-Klages, Sabine, Agace, William W, Aghaeepour, Nima, Akdis, Mübeccel, Allez, Matthieu, Almeida, Larissa Nogueira, Alvisi, Giorgia, Anderson, Graham, Andrä, Immanuel, Annunziato, Francesco, Anselmo, Achille, Bacher, Petra, Baldari, Cosima T, Bari, Sudipto, Barnaba, Vincenzo, Barros-Martins, Joana, Battistini, Luca, Bauer, Wolfgang, Baumgart, Sabine, Baumgarth, Nicole, Baumjohann, Dirk, Baying, Bianka, Bebawy, Mary, Becher, Burkhard, Beisker, Wolfgang, Benes, Vladimir, Beyaert, Rudi, Blanco, Alfonso, Boardman, Dominic A, Bogdan, Christian, Borger, Jessica G, Borsellino, Giovanna, Boulais, Philip E, Bradford, Jolene A, Brenner, Dirk, Brinkman, Ryan R, Brooks, Anna E S, Busch, Dirk H, Büscher, Martin, Bushnell, Timothy P, Calzetti, Federica, Cameron, Garth, Cammarata, Ilenia, Cao, Xuetao, Cardell, Susanna L, Casola, Stefano, Cassatella, Marco A, Cavani, Andrea, Celada, Antonio, Chatenoud, Lucienne, Chattopadhyay, Pratip K, Chow, Sue, Christakou, Eleni, Čičin-Šain, Luka, Clerici, Mario, Colombo, Federico S, Cook, Laura, Cooke, Anne, Cooper, Andrea M, Corbett, Alexandra J, Cosma, Antonio, Cosmi, Lorenzo, Coulie, Pierre G, Cumano, Ana, Cvetkovic, Ljiljana, Dang, Van Duc, Dang-Heine, Chantip, Davey, Martin S, Davies, Derek, De Biasi, Sara, Del Zotto, Genny, Dela Cruz, Gelo Victoriano, Delacher, Michael, Della Bella, Silvia, Dellabona, Paolo, Deniz, Günnur, Dessing, Mark, Di Santo, James P, Diefenbach, Andreas, Dieli, Francesco, Dolf, Andreas, Dörner, Thomas, Dress, Regine J, Dudziak, Diana, Dustin, Michael, Dutertre, Charles-Antoine, Ebner, Friederike, Eckle, Sidonia B G, Edinger, Matthias, Eede, Pascale, Ehrhardt, Götz R A, Eich, Marcus, Engel, Pablo, Engelhardt, Britta, Erdei, Anna, Esser, Charlotte, Everts, Bart, Evrard, Maximilien, Falk, Christine S, Fehniger, Todd A, Felipo-Benavent, Mar, Ferry, Helen, Feuerer, Markus, Filby, Andrew, Filkor, Kata, Fillatreau, Simon, Follo, Marie, Förster, Irmgard, Foster, John, Foulds, Gemma A, Frehse, Britta, Frenette, Paul S, Frischbutter, Stefan, Fritzsche, Wolfgang, Galbraith, David W, Gangaev, Anastasia, Garbi, Natalio, Gaudilliere, Brice, Gazzinelli, Ricardo T, Geginat, Jens, Gerner, Wilhelm, Gherardin, Nicholas A, Ghoreschi, Kamran, Gibellini, Lara, Ginhoux, Florent, Goda, Keisuke, Godfrey, Dale I, Goettlinger, Christoph, González-Navajas, Jose M, Goodyear, Carl S, Gori, Andrea, Grogan, Jane L, Grummitt, Daryl, Grützkau, Andreas, Haftmann, Claudia, Hahn, Jonas, Hammad, Hamida, Hämmerling, Günter, Hansmann, Leo, Hansson, Goran, Harpur, Christopher M, Hartmann, Susanne, Hauser, Andrea, Hauser, Anja E, Haviland, David L, Hedley, David, Hernández, Daniela C, Herrera, Guadalupe, Herrmann, Martin, Hess, Christoph, Höfer, Thomas, Hoffmann, Petra, Hogquist, Kristin, Holland, Tristan, Höllt, Thomas, Holmdahl, Rikard, Hombrink, Pleun, Houston, Jessica P, Hoyer, Bimba F, Huang, Bo, Huang, Fang-Ping, Huber, Johanna E, Huehn, Jochen, Hundemer, Michael, Hunter, Christopher A, Hwang, William Y K, Iannone, Anna, Ingelfinger, Florian, Ivison, Sabine M, Jäck, Hans-Martin, Jani, Peter K, Jávega, Beatriz, Jonjic, Stipan, Kaiser, Toralf, Kalina, Tomas, Kamradt, Thomas, Kaufmann, Stefan H E, Keller, Baerbel, Ketelaars, Steven L C, Khalilnezhad, Ahad, Khan, Srijit, Kisielow, Jan, Klenerman, Paul, Knopf, Jasmin, Koay, Hui-Fern, Kobow, Katja, Kolls, Jay K, Kong, Wan Ting, Kopf, Manfred, Korn, Thomas, Kriegsmann, Katharina, Kristyanto, Hendy, Kroneis, Thomas, Krueger, Andreas, Kühne, Jenny, Kukat, Christian, Kunkel, Désirée, Kunze-Schumacher, Heike, Kurosaki, Tomohiro, Kurts, Christian, Kvistborg, Pia, Kwok, Immanuel, Landry, Jonathan, Lantz, Olivier, Lanuti, Paola, LaRosa, Francesca, Lehuen, Agnès, LeibundGut-Landmann, Salomé, Leipold, Michael D, Leung, Leslie Y T, Levings, Megan K, Lino, Andreia C, Liotta, Francesco, Litwin, Virginia, Liu, Yanling, Ljunggren, Hans-Gustaf, Lohoff, Michael, Lombardi, Giovanna, Lopez, Lilly, López-Botet, Miguel, Lovett-Racke, Amy E, Lubberts, Erik, Luche, Herve, Ludewig, Burkhard, Lugli, Enrico, Lunemann, Sebastian, Maecker, Holden T, Maggi, Laura, Maguire, Orla, Mair, Florian, Mair, Kerstin H, Mantovani, Alberto, Manz, Rudolf A, Marshall, Aaron J, Martínez-Romero, Alicia, Martrus, Glòria, Marventano, Ivana, Maslinski, Wlodzimierz, Matarese, Giuseppe, Mattioli, Anna Vittoria, Maueröder, Christian, Mazzoni, Alessio, McCluskey, James, McGrath, Mairi, McGuire, Helen M, McInnes, Iain B, Mei, Henrik E, Melchers, Fritz, Melzer, Susanne, Mielenz, Dirk, Miller, Stephen D, Mills, Kingston H G, Minderman, Hans, Mjösberg, Jenny, Moore, Jonni, Moran, Barry, Moretta, Lorenzo, Mosmann, Tim R, Müller, Susann, Multhoff, Gabriele, Muñoz, Luis Enrique, Münz, Christian, Nakayama, Toshinori, Nasi, Milena, Neumann, Katrin, Ng, Lai Guan, Niedobitek, Antonia, Nourshargh, Sussan, Núñez, Gabriel, O'Connor, José-Enrique, Ochel, Aaron, Oja, Anna, Ordonez, Diana, Orfao, Alberto, Orlowski-Oliver, Eva, Ouyang, Wenjun, Oxenius, Annette, Palankar, Raghavendra, Panse, Isabel, Pattanapanyasat, Kovit, Paulsen, Malte, Pavlinic, Dinko, Penter, Livius, Peterson, Pärt, Peth, Christian, Petriz, Jordi, Piancone, Federica, Pickl, Winfried F, Piconese, Silvia, Pinti, Marcello, Pockley, A Graham, Podolska, Malgorzata Justyna, Poon, Zhiyong, Pracht, Katharina, Prinz, Immo, Pucillo, Carlo E M, Quataert, Sally A, Quatrini, Linda, Quinn, Kylie M, Radbruch, Helena, Radstake, Tim R D J, Rahmig, Susann, Rahn, Hans-Peter, Rajwa, Bartek, Ravichandran, Gevitha, Raz, Yotam, Rebhahn, Jonathan A, Recktenwald, Diether, Reimer, Dorothea, Reis E Sousa, Caetano, Remmerswaal, Ester B M, Richter, Lisa, Rico, Laura G, Riddell, Andy, Rieger, Aja M, Robinson, J Paul, Romagnani, Chiara, Rubartelli, Anna, Ruland, Jürgen, Saalmüller, Armin, Saeys, Yvan, Saito, Takashi, Sakaguchi, Shimon, Sala-de-Oyanguren, Francisco, Samstag, Yvonne, Sanderson, Sharon, Sandrock, Inga, Santoni, Angela, Sanz, Ramon Bellmàs, Saresella, Marina, Sautes-Fridman, Catherine, Sawitzki, Birgit, Schadt, Linda, Scheffold, Alexander, Scherer, Hans U, Schiemann, Matthias, Schildberg, Frank A, Schimisky, Esther, Schlitzer, Andreas, Schlosser, Josephine, Schmid, Stephan, Schmitt, Steffen, Schober, Kilian, Schraivogel, Daniel, Schuh, Wolfgang, Schüler, Thomas, Schulte, Reiner, Schulz, Axel Ronald, Schulz, Sebastian R, Scottá, Cristiano, Scott-Algara, Daniel, Sester, David P, Shankey, T Vincent, Silva-Santos, Bruno, Simon, Anna Katharina, Sitnik, Katarzyna M, Sozzani, Silvano, Speiser, Daniel E, Spidlen, Josef, Stahlberg, Anders, Stall, Alan M, Stanley, Natalie, Stark, Regina, Stehle, Christina, Steinmetz, Tobit, Stockinger, Hannes, Takahama, Yousuke, Takeda, Kiyoshi, Tan, Leonard, Tárnok, Attila, Tiegs, Gisa, Toldi, Gergely, Tornack, Julia, Traggiai, Elisabetta, Trebak, Mohamed, Tree, Timothy I M, Trotter, Joe, Trowsdale, John, Tsoumakidou, Maria, Ulrich, Henning, Urbanczyk, Sophia, van de Veen, Willem, van den Broek, Maries, van der Pol, Edwin, Van Gassen, Sofie, Van Isterdael, Gert, van Lier, René A W, Veldhoen, Marc, Vento-Asturias, Salvador, Vieira, Paulo, Voehringer, David, Volk, Hans-Dieter, von Borstel, Anouk, von Volkmann, Konrad, Waisman, Ari, Walker, Rachael V, Wallace, Paul K, Wang, Sa A, Wang, Xin M, Ward, Michael D, Ward-Hartstonge, Kirsten A, Warnatz, Klaus, Warnes, Gary, Warth, Sarah, Waskow, Claudia, Watson, James V, Watzl, Carsten, Wegener, Leonie, Weisenburger, Thomas, Wiedemann, Annika, Wienands, Jürgen, Wilharm, Anneke, Wilkinson, Robert John, Willimsky, Gerald, Wing, James B, Winkelmann, Rieke, Winkler, Thomas H, Wirz, Oliver F, Wong, Alicia, Wurst, Peter, Yang, Jennie H M, Yang, Juhao, Yazdanbakhsh, Maria, Yu, Liping, Yue, Alice, Zhang, Hanlin, Zhao, Yi, Ziegler, Susanne Maria, Zielinski, Christina, Zimmermann, Jakob, Zychlinsky, Arturo

    المساهمون: 33, Institut für Klinische Chemie und Pathobiochemie, Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Institut für Virologie, Klinik und Poliklinik für RadioOnkologie und Strahlentherapie, Molekulare Immunologie (Prof. Knolle)

    مصطلحات موضوعية: info:eu-repo/classification/ddc