يعرض 1 - 10 نتائج من 78 نتيجة بحث عن '"water microbiology"', وقت الاستعلام: 1.74s تنقيح النتائج
  1. 1
    رسالة جامعية
  2. 2
    رسالة جامعية

    المؤلفون: Calgua de León, Byron Tomas

    المساهمون: University/Department: Universitat de Barcelona. Departament de Microbiologia

    مرشدي الرسالة: Gironès Llop, Rosina

    المصدر: TDX (Tesis Doctorals en Xarxa)

    وصف الملف: application/pdf

  3. 3
    دورية أكاديمية

    المصدر: Revista de la Facultad de Ciencias Médicas de Córdoba; Vol. 79 Núm. 2 (2022); 210-214 ; Revista da Faculdade de Ciências Médicas de Córdoba; v. 79 n. 2 (2022); 210-214 ; 1853-0605 ; 0014-6722 ; 10.31053/1853.0605.v79.n2

    وصف الملف: application/pdf; text/html

  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية

    المصدر: Revista Colombiana de Biotecnología; Vol. 21 Núm. 1 (2019); 135-143 ; Revista Colombiana de Biotecnología; Vol. 21 No. 1 (2019); 135-143 ; 1909-8758 ; 0123-3475

    وصف الملف: application/pdf; application/xml

    العلاقة: https://revistas.unal.edu.co/index.php/biotecnologia/article/view/65146/pdfTest; https://revistas.unal.edu.co/index.php/biotecnologia/article/view/65146/71959Test; Abdel Ghani, N. T., & El Chaghaby, G. A. (2014). Bio-sorption for metal ions removal from aqueous solu-tions: A review of recent studies. International Jour-nal of Latest Research in Science and Technology, 3(1), 24–42. https://doi.org/10.1007/978-3-540-87781-3_47Test.; Ahmed, E., & Holmström, S. J. M. (2014). Siderophores in environmental research: Roles and applications. Microbial Biotechnology, 7(3), 196–208. https://doi.org/10.1111/1751-7915.12117Test.; APHA (2005) Standard Methods for the Examination of Water and Wastewater. 21st Edition, American Public Health Association/American Water Works Association/Water Environment Federation, Wa-shington DC.; Ballardo de la Cruz, C. E., Merino Rafael, F. A., & Gutiérrez Moreno, S. M. (2015). Evaluación de la capacidad de bioadsorción de Cadmio (II) y Plomo (II) mediante el uso de biomasa bacteriana muerta en soluciones acuosas. Theorema UNMSM, 2(2), 95–106.; Barakat, M. A. (2011). New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 4(4), 361–377. https://doi.org/10.1016/j.arabjc.2010.07.019Test.; Capdevila, M., Bofill, R., Palacios, O., & Atrian, S. (2012). State-of-the-art of metallothioneins at the beginning of the 21st century. Coordination Chemistry Re-views, 256(1–2), 46–62. https://doi.org/10.1016/j.ccr.2011.07.006Test.; Chien, C. C., Lin, B. C., & Wu, C. H. (2013). Biofilm for-mation and heavy metal resistance by an environ-mental Pseudomonassp. Biochemical Engineering Journal,78, 132–137. https://doi.org/10.1016/j.bej.2013.01.014Test.; Fairbrother, A., Wenstel, R., Sappington, K., & Wood, W. (2007). Framework for Metals Risk Assessment. Ecotoxicology and Environmental Safety, 68(2), 145–2 2 7 . https://doi.org/10.1016/j.ecoenv.2007.03.015Test.; Gabr, R. M., Hassan, S. H. A., & Shoreit, A. A. M. (2008). Biosorption of lead and nickel by living and non-living cells of Pseudomonas aeruginosaASU 6a. International Biodeterioration & Biodegradation, 62(2), 195–203. https://doi.org/10.1016/j.ibiod.2008.01.008Test.; Garza González, M. T. (2005). Aislamiento de microor-ganismos con alta capacidad de tolerar y remover Pb (II), Cr (VI), Cd (II), Cu (II), Zn (II) y Ni (II). Uni-versidad de la Habana.; Jarosławiecka, A., & Piotrowska-Seget, Z. (2014). Lead resistance in micro-organisms. Microbiology(United Kingdom), 160, 12–25. https://doi.org/10.1099/mic.0.070284-0Test; Kang, C.-H., Kwon, Y.-J., & So, J.-S. (2016). Bioremedia-tion of heavy metals by using bacterial mixtures. Ecological Engineering, 89, 64–69. https://doi.org/10.1016/j.ecoleng.2016.01.023Test; Kang, C. H., Oh, S. J., Shin, Y., Han, S. H., Nam, I. H., & So, J. S. (2015). Bioremediation of lead by ureolytic bacteria isolated from soil at abandoned metal mi-nes in South Korea. Ecological Engineering, 74, 402–407. https://doi.org/10.1016/j.ecoleng.2014.10.009Test.; Li, M., Cheng, X., & Guo, H. (2013). Heavy metal remo-val by biomineralization of urease producing bacte-ria isolated from soil. International Biodeterioration & Biodegradation, 76, 81–85. https://doi.org/10.1016/j.ibiod.2012.06.016Test; Majumder, S., Gupta, S., Raghuvanshi, S., Gupta, S., & Majumder, S. (2014). Removal of Dissolved Metals by Bioremediation. In S. K. Sharma (Ed.), Heavy Metals in Water: Presence, Removal and Safety (pp. 44–56). Cambridge: The Royal Society of Che-mistry. Retrieved from https://books.google.com.co/books?hl=es&lr=&id=BF_YBAAAQBAJ&oi=fnd&pg=PA44&dq=bioremediation+wastewater+advantage&ots=Bw0F43Ydyo&sig=QwwGxbp45CNzQ4AwUdYleoOpZvM#v=onepage&q=bioremediationwastewa-teradvantage&f=falseTest.; Mancera Rodríguez, N. J., & Álvarez León, R. (2006). Cu-rrent State of Knowledge of the Concentration of Mercury and Other Heavy Metals in Fresh Water Fish in Colombia. Acta Biológica Colombiana, 11(1), 21. https://doi.org/doa.org/toc/1900-1649/11/0Test.; Mani, D., & Kumar, C. (2014). Biotechnological advan-ces in bioremediation of heavy metals contami-nated ecosystems: An overview with special refe-rence to phytoremediation. International Journal of Environmental Science and Technology, 11(3), 843–872. https://doi.org/10.1007/s13762-013-0299-8Test; Morales Fonseca, D., Ruiz Tovar, K., Martínez Salgado, M. M., Soto Guzmán, A. B., Falcony Guajardo, C., Rodríguez Vázquez, R., & Pedroza-Rodríguez, A. M. (2010). Desarrollo de un bioadsorbente laminar con Phanerochaete chrysosporiumhipertolerante al cadmio, al níquel y al plomo para el tratamiento de aguas. Revista Iberoamericana de Micologia, 27(3), 111–118. https://doi.org/10.1016/j.riam.2010.02.002Test.; Muñoz, A. J., Ruiz, E., Abriouel, H., Gálvez, A., Ezzouhri, L., Lairini, K., & Espínola, F. (2012). Heavy metal tole-rance of microorganisms isolated from wastewaters: Identification and evaluation of its potential for bio-sorption. Chemical Engineering Journal, 210, 325–332. https://doi.org/10.1016/j.cej.2012.09.007Test.; Naik, M. M., & Dubey, S. K. (2011). Lead-enhanced side-rophore production and alteration in cell morpho-logy in a Pb-resistant Pseudomonas aeruginosastrain 4EA. Current Microbiology, 62(2), 409–414. https://doi.org/10.1007/s00284-010-9722-2Test.; Naik, M. M., & Dubey, S. K. (2013). Lead resistant bacte-ria: Lead resistance mechanisms, their applications in lead bioremediation and biomonitoring. Ecotoxi-cology and Environmental Safety, 98, 1–7. https://doi.org/10.1016/j.ecoenv.2013.09.039Test.; Naik, M. M., Pandey, A., & Dubey, S. K. (2012). Pseudo-monas aeruginosa strain WI-1 from Mandovi es-tuary possesses metallothionein to alleviate lead toxicity and promotes plant growth. Ecotoxicology and Environmental Safety, 79, 129–133. https://doi.org/10.1016/j.ecoenv.2011.12.015Test.; OMS. (2014). Centro de prensa: Intoxicación por plomo y salud. Retrieved October 14, 2016, from http://www.who.int/mediacentre/factsheets/fs379/esTest/; Oves, M., Saghir, M., & Qari, H. A. (2017). Ensifer adhae-rens for heavy metal bioaccumulation, biosorption , and phosphate solubilization under metal stress condition. Journal of the Taiwan Institute of Chemi-cal Engineers, 80, 540–552. https://doi.org/10.1016/j.jtice.2017.08.026Test.; Xu, X., Liao, W., Lin, Y., Dai, Y., Shi, Z., & Huo, X. (2018). Blood concentrations of lead, cadmium, mercury and their association with biomarkers of DNA oxi-dative damage in preschool children living in an e-waste recycling area. Environmental Geochemistry and Health, 40(4), 1481–1494. https://doi.org/10.1007/s10653-017-9997-3Test.; https://revistas.unal.edu.co/index.php/biotecnologia/article/view/65146Test

  9. 9
    دورية أكاديمية
  10. 10
    دورية أكاديمية