يعرض 1 - 10 نتائج من 862 نتيجة بحث عن '"the immune system"', وقت الاستعلام: 0.73s تنقيح النتائج
  1. 1
    رسالة جامعية

    المؤلفون: Corral Pujol, Marta

    المساهمون: University/Department: Universitat de Lleida. Departament de Medicina Experimental

    مرشدي الرسالة: Verdaguer Autonell, Joan

    المصدر: TDX (Tesis Doctorals en Xarxa)

    الوقت: 616.4

    وصف الملف: application/pdf

  2. 2
    رسالة جامعية
  3. 3
    رسالة جامعية

    المؤلفون: Julià Manresa, Marc

    المساهمون: University/Department: Universitat de Barcelona. Departament de Medicina

    مرشدي الرسالة: Mascaró Galy, José Manuel, Lozano Soto, Francisco

    المصدر: TDX (Tesis Doctorals en Xarxa)

    الوقت: 616.5

    وصف الملف: application/pdf

  4. 4
    رسالة جامعية
  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية

    المصدر: Saluta; No. 9 (2024): SALUTA January - June 2024; 65-76 ; Saluta; Núm. 9 (2024): SALUTA Enero - Junio 2024; 65-76 ; 2644-4003 ; 2519-0342 ; 10.37594/saluta.v1i9

    وصف الملف: application/pdf; application/epub+zip

    العلاقة: https://revistas.umecit.edu.pa/index.php/saluta/article/view/1312/2201Test; https://revistas.umecit.edu.pa/index.php/saluta/article/view/1312/2202Test; Hanzlett L, Wu M Defensinsin innateimmunity. Cell Tissue Res. 2011; 343(1): 175-88.; Bhattacharyya S, Ghosh SK , Shokeen B, Eapan B, Lux R, Kiselar j et al. FDA-I, A Fusobacterium nucleatum cell Wall-associated diacylated lipoprotein that mediates human beta defensin. 2016; 84(5):1446-1456.; Matos M, Elodie A, Garrido M. Efecto del Valsartán sobre los niveles de citocinas y quimiocinas salivales en la enfermedad periodontal experimental. Revista Facultad de Farmacia Vol.81 Nos1 y 2. Universidad Central de Venezuela. 2018.; Vargas A, Yañez B, Monteagudo C. Periodontologia e Implantología. Editorial Panamericana. 2ª. Edición. México. 2022.; Delves PJ. Sistema del complemento. Manual MSD versión para profesionales.2021.; Monet D, Álvarez J, Gross V. Componente C3 del sistema de complementos y su importancia biológica. Cuba.2023.; OMS,OPS,BIREME (ed.). «Apoptosis». Descriptores en Ciencias de la Salud. Biblioteca Virtual en Salud.; Reece, J. B., Urry, L. A., Cain, M. L., Wasserman, S. A., Minorsky, P. V. y Jackson, R. B. (2011). Apoptosis in the soil worm Caenorhabditis elegans (Apoptosis en la lombriz de tierra Caenorhabditis elegans). En Campbell biology (10a ed., p. 228). San Francisco, CA: Pearson.; Farin, H. F., Lüdtke, T. H-W., Schmidt, M. K., Placzko, S., Schuster-Gossler, K., Petry, M, Christoffels, V. M. y Kispert, A. (2013). Tbx2 terminates Shh/Fgf signaling in the developing mouse limb bud by direct repression of Gremlin1 (Tbx2 finaliza la señalización de Shh/Fgf en el desarrollo de la yema del miembro por represión directa de Gremlin 1. PLoS Genet., 9(4), e1003467.; Martinez, Javier. Papel de las Células, Citoquinas, Factor de necrosis Tumoral (TNF), RANK y RANKL en la Enfermedad Periodontal. Revisión Bibliográfica. Revista Europea Odontoestomatologia.2008; Sainz Carrillo. Papel de la IL-6 y TNF-α en la enfermedad periodontal. Avances en Periodoncia vol 18 n2. 2006; Birkedal Hausen H. Roles of cytokines and inflammatory mediators in tissue destruction. J Periodontal Res. 1993;28 (6 Pt2): 500-510.; Bascones A, González Moles MA. Mecanismos inmunológicos de las enfermedades periodontales y periimplantarias. Av PeriodonImplantol. 2003;15(3):121-138.; Kinane DF. Causation and pathogenesis of periodontal disease.Periodontol 2000. 2001;25:8-20.; https://revistas.umecit.edu.pa/index.php/saluta/article/view/1312Test

  9. 9
    دورية أكاديمية

    المصدر: Revista Cubana de Investigaciones Biomédicas; Vol. 43 (2024): Publicación continua ; 1561-3011 ; 0864-0300

    وصف الملف: application/pdf

    العلاقة: https://revibiomedica.sld.cu/index.php/ibi/article/view/696/1440Test; Masic U, Yeomans MR. Behaviour, appetite and obesity. Monosodium glutamate delivered in a protein-rich soup improves subsequent energy compensation. JNS. 2014;3(15):1-9. DOI: https://doi.org/10.1017/jns.2014.15Test 2. Nonye H. Update on food safety of monosodium l-glutamate (MSG). Pathophysiology. 2017;24(4):243-9. DOI: https://doi.org/10.1016/j.pathophys.2017.08.001Test 3. Zhou Y, Danbolt NC. Glutamate as a neurotransmitter in the healthy brain. J Neural Transm. 2014;121(8):799–817. DOI: https://doi.org/10.1007/s00702-014-1180-8Test 4. Yulyaningsih E, Rudenko IA, Valdearcos M, Dahlén E, Vagena E, Chan A, et al. Acute lesioning and rapid repair of hypothalamic neurons outside the blood-brain barrier. Cell Rep. 2017;19(11):2257-71. DOI: https://doi.org/10.1016%2Fj.celrep.2017.05.060Test 5. Suárez G, Perera A, Clapés S, Fernández T, Egaña E. Estandarización de un modelo para inducir obesidad en ratas. Medisur. 2013 [acceso 21/01/2018];11(5). Disponible en: http://medisur.sld.cu/index.php/medisur/article/view/2486Test 6. Pérez OG, Vega IG. La Inmunología en el humano sano para estudiantes de Ciencias Médicas. La Habana: Editorial de Ciencias Médicas; 2016. 7. Bai W, Yuan-Guo Z. Homeostasis of the intraparenchymal-blood glutamate concentration gradient: maintenance, imbalance, and regulation. Mol Neurosci. 2017;10:400. DOI: https://doi.org/10.3389%2Ffnmol.2017.00400Test 8. Manyevitch R, Protas M, Scarpiello S, Deliso M, Bass B, Nanajian A, et al. Evaluation of metabolic and synaptic dysfunction hypotheses of Alzheimer’s disease (AD): a meta-analysis of CSF Markers. Curr Alzheimer Res. 2018;15(2):164-81. DOI: https://doi.org/10.2174%2F1567205014666170921122458Test 9. Hawkins RA, Viña JR. How glutamate is managed by the blood-brain barrier. Biol. 2016;5(4):37. DOI: https://doi.org/10.3390%2Fbiology5040037Test 10. Gudiño G, Ureña ME, Rivera MC, Feria AI, Beas C. Excitotoxicity triggered by neonatal monosodium glutamate treatment and blood-brain barrier function. Arch Med Res. 2014;45(8):653-9. DOI: https://doi.org/10.1016/j.arcmed.2014.11.014Test 11. Obayashi Y, Nagamura Y. Does monosodium glutamate really cause headache? A systematic review of human studies. J Headache Pain. 2016;17:54. DOI: https://doi.org/10.1186/s10194-016-0639-4Test 12. Roth CL. Hypothalamic obesity in craniopharyngioma patients: disturbed energy homeostasis related to extent of hypothalamic damage and its implication for obesity intervention. J Clin Med. 2015;4(9):1774-97. DOI: https://doi.org/10.3390/jcm4091774Test 13. Miranda RA, Agostinho AR, Trevenzoli IH, Barella LF, Franco CC, Trombini AB, et al. Insulin oversecretion in MSG-obese rats is related to alterations in cholinergic muscarinic receptor subtypes in pancreatic islets. Cell Physiol Biochem. 2014;33(4):1075-86. DOI: https://doi.org/10.1159/000358677Test 14. Albrahim T, Binobead MA. Roles of moringa oleifera leaf extract in improving the impact of high dietary intake of monosodium glutamate-induced liver toxicity, oxidative stress, genotoxicity, DNA damage, and PCNA alterations in male rats. Oxid Med Cell Longev. 2018;2018:4501097. DOI: https://doi.org/10.1155/2018/4501097Test 15. Ogbuagu OE, Nweke IN, Unekwe PC. Organ toxicity of monosodium glutamate in adult albino Wistar rats. J Med Investig Pract. 2015 [acceso 12/01/2018];10(1):1-7. Disponible en: https://www.ajol.info/index.php/jomip/article/view/213769Test 16. Korayem HE, Abdo M, Naim MM, Yones SE, Hosny S. Potential therapeutic effect of hematopoietic stem cells on cerebellar ataxia in adult female rats subjected to cerebellar damage by monosodium glutamate. J Neurol Neurophysiol. 2014 [acceso 12/01/2018];5(6):240. Disponible en: https://www.iomcworld.org/open-access/potential-therapeutic-effect-of-hematopoietic-stem-cells-on-cerebellar-ataxia-in-adult-female-rats-subjected-to-cerebell-46116.htmlTest 17. Hamza RZ, Al-Salmi FA, El-Shenawy NS. Evaluation of the effects of the green nanoparticles zinc oxide on monosodium glutamate-induced toxicity in the brain of rats. PeerJ. 2019;7:e7460. DOI: https://doi.org/10.7717%2Fpeerj.7460Test 18. Zhang Y, He X, Meng X, Wu X, Tong H, Zhang X, et al. Regulation of glutamate transporter trafficking by Nedd4-2 in a Parkinson’s disease model. Cell Death Dis. 2017;8:e2574. DOI: https://doi.org/10.1038/cddis.2016.454Test 19. Rajda C, Pukoli D, Bende Z, Majláth Z, Vécsei L. Excitotoxins, mitochondrial and redox disturbances in multiple sclerosis. Int J Mol Sci. 2017;18(2):353. DOI: https://doi.org/10.3390/ijms18020353Test 20. Lin TY, Huang WJ, Wu CC, Lu CW, Wang SJ. Acacetin Inhibits glutamate release and prevents kainic acid-induced neurotoxicity in rats. PLoS ONE. 2014;9(2):e88644. DOI: https://doi.org/10.1371/journal.pone.0088644Test 21. Shah SA, Lee HY, Bressan RA, Yun DJ, Kim MO. Novel osmotin attenuates glutamate-induced synaptic dysfunction and neurodegeneration via the JNK/PI3K/Akt pathway in postnatal rat brain. Cell Death Dis. 2014;5:e1026. DOI: https://doi.org/10.1038/cddis.2013.538Test 22. Lutgen V, Narasipura SD, Sharma A, Min S, Al-Harthi L. β-Catenin signaling positively regulates glutamate uptake and metabolism in astrocytes. J Neuroinflam. 2016;13(1):242. DOI: https://doi.org/10.1186/s12974-016-0691-7Test 23. Onaolapo AY, Odetunde I, Akintola AS, Ogundeji MO, Ajao A, Abelawo AY, et al. Dietary composition modulates impact of food-added monosodium glutamate on behaviour, metabolic status and cerebral cortical morphology in mice. Biomed Pharmacother. 2019;109:417-28. DOI: https://doi.org/10.1016/j.biopha.2018.10.172Test 24. Elbassuoni EA, Ragy MM, Ahmed SM. Evidence of the protective effect of l-arginine and vitamin D against monosodium glutamate-induced liver and kidney dysfunction in rats. Biomed Pharmacother. 2018;108:799-808. DOI: https://doi.org/10.1016/j.biopha.2018.09.093Test 25. Hernandez RJ, Mahmoud AM, Konigsberg M, Lopez NE. Obesity: pathophysiology, monosodium glutamate-induced model and anti-obesity medicinal plants. Biomed Pharmacother. 2019;111:503-16. DOI: https://doi.org/10.1016/j.biopha.2018.12.108Test 26. Morais J, Aparecida R, Barella LF, Palma K, Silva V, Fabricio GS, et al. Maternal diet supplementation with n-6/n-3 essential fatty acids in a 1.2 : 1.0 ratio attenuates metabolic dysfunction in MSG-induced obese mice. Int J Endocrinol. 2013;2016:9242319. DOI: https://doi.org/10.1155/2016/9242319Test 27. Kianifard D. Protective effects of morus alba (M.alba) extract on the alteration of testicular tissue and spermatogenesis in adult rats treated with monosodium glutamate. Med Sci. 2015;4(1):1959-65. DOI: http://dx.doi.org/10.5455/medscience.2014.03.8191Test 28. Hernández RJ, Alarcón FJ, Escobar MC, Almanza JC, Merino H, Konigsberg M, et al. Biochemical alterations during the obese-aging process in female and male monosodium glutamate (MSG)-treated mice. Int J Mol Sci. 2015;15(7):11473-94. DOI: https://doi.org/10.3390/ijms150711473Test 29. Simões R, Alves RO, de Lima JL, Castro C, Martins L, de Tarso P, et al. Reproductive alterations in hyperinsulinemic but normoandrogenic MSG obese female rats. J Endocrinol. 2016;229(2):61-72. DOI: https://doi.org/10.1530/joe-15-0453Test 30 Sharma A. Monosodium glutamate-induced oxidative kidney damage and possible mechanisms: a mini-review. J Biomed Sci. 2015;22:93. DOI: https://doi.org/10.1186/s12929-015-0192-5Test 31. Sharma A, Prasongwattana V, Cha’on U, Selmi C, Hipkaeo W, Boonnate P, et al. Monosodium glutamate (MSG) consumption is associated with urolithiasis and urinary tract obstruction in rats. PLoS One. 2013;8(9):e75546. DOI: https://doi.org/10.1371/journal.pone.0075546Test 32. Al Gawwam G, Sharquie IK. Serum glutamate is a predictor for the diagnosis of multiple sclerosis. Scient World J. 2017;2017:9320802. DOI: https://doi.org/10.1155%2F2017%2F9320802Test 33. Blaylock RL. Mecanismos inmunoexcitatorios en la proliferación de gliomas, invasión y metástasis ocasionales. Surg Neurol Int. 2013;4:15-25. DOI: https://doi.org/10.4103%2F2152-7806.106577Test 34. Ruth MR, Field CJ. The immune modifying effects of amino acids on gut-associated lymphoid tissue. J Anim Sci Biotechnol. 2013;4(1):27-30. DOI: https://doi.org/10.1186%2F2049-1891-4-27Test 35. Padrón AA, Martínez A. Estrés, psiconeuroendocrinoinmunología y enfermedades reumatológicas. Actualización del tema. Rev Cub Reumatol. 2018 [acceso 07/12/2018];20(3):57-60. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=6802811Test 36. González M, Padrón AA. Factores etiopatogénicos de las enfermedades autoinmunes en el siglo XXI. Rev Cub Invest Bioméd. 2021 [acceso 12/05/2021];40(1):e842. Disponible en: https://pesquisa.bvsalud.org/portal/resource/pt/biblio-1289454Test 37. González M, Padrón AA. Causality: autoimmunity and cáncer. Rev Cub Invest Bioméd. 2019 [acceso 11/02/2020];38(1). Disponible en: http://www.revibiomedica.sld.cu/index.php/ibi/article/view/170/pdfTest 38. Padrón AA, Dorta AJ. Activación del complemento por la vía de las lectinas: rol en las enfermedades reumáticas. Rev Cub Reumatol. 2017 [acceso 21/01/2019];19(supl 1):231-4. Disponible en: https://pesquisa.bvsalud.org/portal/resource/pt/biblio-1093763Test 39. Pedraz B, Sammer G. Importancia del glutamato en las funciones neuroendocrinológicas en la esclerosis múltiple relacionadas con la fatiga. Rev Neurol. 2018;67(10):387-93. DOI: http://dx.doi.org/10.33588/rn.6710.2018110Test 40. Bermejo AJ, Cervera JM. Lighting up dark areas of COVID-19. Ann Case Report. 2020;14(2):394-9. DOI: http://doi.org/10.29011/2574-7754.100394Test; https://revibiomedica.sld.cu/index.php/ibi/article/view/696Test

  10. 10
    دورية أكاديمية