يعرض 1 - 10 نتائج من 14 نتيجة بحث عن '"indoor navigation"', وقت الاستعلام: 0.89s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    مؤتمر
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية

    المصدر: Kepes; Vol. 16 No. 19 (2019): Enero - Junio; 389 - 426 ; Kepes; Vol. 16 Núm. 19 (2019): Enero - Junio; 389 - 426 ; 2462-8115 ; 1794-7111

    وصف الملف: application/pdf

    العلاقة: Ahmetovic, D. et al. (2016). NavCog: A navigational cognitive assistant for the blind. En 18th International Conference on Human-Computer Interaction with Mobile Devices and Services, ACM, Florence, Italy.; Ahmetovic, D. et al. (2017). Achieving practical and accurate indoor navigation for people with visual impairments. En 14th Web for All Conference on The Future of Accessible Work, ACM, Western Australia, Australia.; Basso, S. et al. (2015). A smartphone-based indoor localization system for visually impaired people. En International Symposium on Medical Measurements and Applications (MeMeA) Proceedings, Turin, Italy.; Bellotti, F. et al. (2006). Guiding visually impaired people in the exhibition. Mobile Guide, 6, 1-6.; Bhowmick, A. and Hazarika, S.M. (2017). An insight into assistive technology for the visually impaired and blind people: State-of-the-art and future trends. Journal on Multimodal User Interfaces, 11 (2), 149-172.; Buyurgan, S. (2009). The Expectations of the Visually Impaired University Students from Museums. Educational Sciences: Theory and Practice, 9 (3), 1191-1204.; Brown, T. (2009). Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation. New York, USA: Harper Collins.; Campbell, M. et al. (2014). Where’s my bus stop?: Supporting independence of blind transit riders with StopInfo. En 16th International ACM SIGACCESS Conference on Computers & Accessibility, ACM, New York, USA.; Chumkamon, S., Tuvaphanthaphiphat, P. and Keeratiwintakorn, P. (2008). A blind navigation system using RFID for indoor environments. En 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Krabi, Thailand.; Csapo, A. et al. (2015). A survey of assistive technologies and applications for blind users on mobile platforms: A review and foundation for research. Journal Multimodal User Interfaces, 9, 275-286.; Fallah, N. et al. (2012). The user as a sensor: Navigating users with visual impairments in indoor spaces using tactile landmarks. En CHI Conference on Human Factors in Computing Systems, ACM, Texas, USA.; Filipe, V. et al. (2012). Blind navigation support system based on Microsoft Kinect. Procedia Computer Science, 14, 94-101.; Flores, G. et al. (2015). Vibrotactile guidance for wayfinding of blind walkers. IEEE Transactions on Haptics, 8 (3), 306-317.; Ganz, A. et al. (2014). PERCEPT-II: Smartphone based Indoor Navigation System for the Blind. En 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, USA.; Handa, K., Dairoku, H. and Toriyama, Y. (2010). Investigation of priority needs in terms of museum service accessibility for visually impaired visitors. British Journal of Visual Impairment, 28 (3), 221-234.; Hurtado, M.D. y Soto, F.J. (2008). La igualdad de oportunidades en el mundo digital. Murcia, España: Consejería de Educación, Ciencia e Investigación.; Jain, D. (2014). Path-guided indoor navigation for the visually impaired using minimal building retrofitting. En SIGACCESS conference on Computers & Accessibility, ACM, New York, USA.; Jiménez, C., Seibel, C. y Soler, S. (2012). Museos para todos. La traducción e interpretación para entornos multimodales como herramienta de accesibilidad universal. MonTI. Monografías de Traducción e Interpretación, 4, 349-383.; Kleeman, L. (1992). Optimal estimation of position and heading for mobile robots using ultrasonic beacons and dead-reckoning. En Proceedings 1992 IEEE International Conference on Robotics and Automation, Nice, France.; Leavy, B. (2010). Design thinking–a new mental model of value innovation. Strategy & Leadership, 38 (3), 5-14.; Panëels, S.A. et al. (2013). The walking straight mobile application: Helping the visually impaired avoid veering. Recuperado de https:// smartech.gatech.edu/bitstream/handle/1853/51516/03_S1-2_Paneels.pdf?sequence=1&isAllowed=y.; Parnes, S.J. (1992). Sourcebook for creative problem solving. Buffalo, USA: Creative Education Foundation.; Perdomo, J. (2009). Una mirada a las prácticas de inclusión y de exclusión en los museos. Códice, 20, 16-21; Nakajima, M. and Haruyama, S. (2013). New indoor navigation system for visually impaired people using visible light communication. EURASIP Journal on Wireless Communications and Networking, 37. Recuperado de https://jwcneurasipjournals.springeropen.com/articles/10.1186/1687-1499-2013-37Test.; Nakamura, K., Aono, Y. and Tadokoro, Y. (1997). A walking navigation system for the blind. Systems and Computers in Japan, 28 (13), 36-45.; Soler, S. y Chica, A. (2014). Museos para todos, evaluación de una guía audiodescriptiva para personas con discapacidad visual en el museo de ciencias. Revista Española de Discapacidad, 2 (2), 145-167.; Shoval, S., Borenstein, J. and Koren, Y. (1998). Auditory guidance with the navbelt-a computerized travel aid for the blind. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 28 (3),459-467.; Ulrich, K. and Eppinger, S. (2015). Product design and development. New York, USA: McGraw-Hill Higher Education.; Xie, B. et al. (2016). LIPS: A light intensity based positioning system for indoor environments. ACM. Transactions on Sensor Networks, 12 (4), 28-42.; Wylant, B. (2008). Design thinking and the experience of innovation. Design Issues, 24 (2), 3-14.; https://revistasojs.ucaldas.edu.co/index.php/kepes/article/view/2642/2439Test; https://revistasojs.ucaldas.edu.co/index.php/kepes/article/view/2642Test

  5. 5
    دورية أكاديمية

    وصف الملف: application/pdf

    العلاقة: 426; 19; 389; 16; Kepes; Ahmetovic, D. et al. (2016). NavCog: A navigational cognitive assistant for the blind. En 18th International Conference on Human-Computer Interaction with Mobile Devices and Services, ACM, Florence, Italy.; Ahmetovic, D. et al. (2017). Achieving practical and accurate indoor navigation for people with visual impairments. En 14th Web for All Conference on The Future of Accessible Work, ACM, Western Australia, Australia.; Basso, S. et al. (2015). A smartphone-based indoor localization system for visually impaired people. En International Symposium on Medical Measurements and Applications (MeMeA) Proceedings, Turin, Italy.; Bellotti, F. et al. (2006). Guiding visually impaired people in the exhibition. Mobile Guide, 6, 1-6.; Bhowmick, A. and Hazarika, S.M. (2017). An insight into assistive technology for the visually impaired and blind people: State-of-the-art and future trends. Journal on Multimodal User Interfaces, 11 (2), 149-172.; Buyurgan, S. (2009). The Expectations of the Visually Impaired University Students from Museums. Educational Sciences: Theory and Practice, 9 (3), 1191-1204.; Brown, T. (2009). Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation. New York, USA: Harper Collins.; Campbell, M. et al. (2014). Where’s my bus stop?: Supporting independence of blind transit riders with StopInfo. En 16th International ACM SIGACCESS Conference on Computers & Accessibility, ACM, New York, USA.; Chumkamon, S., Tuvaphanthaphiphat, P. and Keeratiwintakorn, P. (2008). A blind navigation system using RFID for indoor environments. En 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Krabi, Thailand.; Csapo, A. et al. (2015). A survey of assistive technologies and applications for blind users on mobile platforms: A review and foundation for research. Journal Multimodal User Interfaces, 9, 275-286.; Fallah, N. et al. (2012). The user as a sensor: Navigating users with visual impairments in indoor spaces using tactile landmarks. En CHI Conference on Human Factors in Computing Systems, ACM, Texas, USA.; Filipe, V. et al. (2012). Blind navigation support system based on Microsoft Kinect. Procedia Computer Science, 14, 94-101.; Flores, G. et al. (2015). Vibrotactile guidance for wayfinding of blind walkers. IEEE Transactions on Haptics, 8 (3), 306-317.; Ganz, A. et al. (2014). PERCEPT-II: Smartphone based Indoor Navigation System for the Blind. En 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, USA.; Handa, K., Dairoku, H. and Toriyama, Y. (2010). Investigation of priority needs in terms of museum service accessibility for visually impaired visitors. British Journal of Visual Impairment, 28 (3), 221-234.; Hurtado, M.D. y Soto, F.J. (2008). La igualdad de oportunidades en el mundo digital. Murcia, España: Consejería de Educación, Ciencia e Investigación.; Jain, D. (2014). Path-guided indoor navigation for the visually impaired using minimal building retrofitting. En SIGACCESS conference on Computers & Accessibility, ACM, New York, USA.; Jiménez, C., Seibel, C. y Soler, S. (2012). Museos para todos. La traducción e interpretación para entornos multimodales como herramienta de accesibilidad universal. MonTI. Monografías de Traducción e Interpretación, 4, 349-383.; Kleeman, L. (1992). Optimal estimation of position and heading for mobile robots using ultrasonic beacons and dead-reckoning. En Proceedings 1992 IEEE International Conference on Robotics and Automation, Nice, France.; Leavy, B. (2010). Design thinking–a new mental model of value innovation. Strategy & Leadership, 38 (3), 5-14.; Panëels, S.A. et al. (2013). The walking straight mobile application: Helping the visually impaired avoid veering. Recuperado de https:// smartech.gatech.edu/bitstream/handle/1853/51516/03_S1-2_Paneels.pdf?sequence=1&isAllowed=y.; Parnes, S.J. (1992). Sourcebook for creative problem solving. Buffalo, USA: Creative Education Foundation.; Perdomo, J. (2009). Una mirada a las prácticas de inclusión y de exclusión en los museos. Códice, 20, 16-21; Nakajima, M. and Haruyama, S. (2013). New indoor navigation system for visually impaired people using visible light communication. EURASIP Journal on Wireless Communications and Networking, 37. Recuperado de https://jwcneurasipjournals.springeropen.com/articles/10.1186/1687-1499-2013-37Test.; Nakamura, K., Aono, Y. and Tadokoro, Y. (1997). A walking navigation system for the blind. Systems and Computers in Japan, 28 (13), 36-45.; Soler, S. y Chica, A. (2014). Museos para todos, evaluación de una guía audiodescriptiva para personas con discapacidad visual en el museo de ciencias. Revista Española de Discapacidad, 2 (2), 145-167.; Shoval, S., Borenstein, J. and Koren, Y. (1998). Auditory guidance with the navbelt-a computerized travel aid for the blind. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 28 (3),459-467.; Ulrich, K. and Eppinger, S. (2015). Product design and development. New York, USA: McGraw-Hill Higher Education.; Xie, B. et al. (2016). LIPS: A light intensity based positioning system for indoor environments. ACM. Transactions on Sensor Networks, 12 (4), 28-42.; Wylant, B. (2008). Design thinking and the experience of innovation. Design Issues, 24 (2), 3-14.; Núm. 19 , Año 2019 : Enero - Junio; https://revistasojs.ucaldas.edu.co/index.php/kepes/article/download/2642/2439Test; https://doi.org/10.17151/kepes.2019.16.19.16Test; https://repositorio.ucaldas.edu.co/handle/ucaldas/15524Test

  6. 6
  7. 7

    المؤلفون: Iker Azurmendi Marquínez

    المساهمون: Zulueta Guerrero, Ekaitz, Máster Universitario en Ingeniería de Control, Automatización y Robótica, Kontrol Ingeniaritza, Automatizazioa eta Robotika Masterra, Kontrol Ingeniaritza, Automatizazioa eta Robotika Unibertsitate Masterra

    المصدر: Addi. Archivo Digital para la Docencia y la Investigación
    instname

    وصف الملف: application/pdf

  8. 8
    رسالة جامعية

    المساهمون: León Sánchez, Camilo Alexander, Lizarazo Salcedo, Ivan Alberto

    وصف الملف: xix, 98 páginas; application/pdf

    العلاقة: RedCol; LaReferencia; Afyouni, I., Ray, C., and Claramunt, C. (2012). Spatial models for context-aware indoor navigation systems: A survey. Journal of Spatial Information Science, 4(4):85–123.; Al-Madani, B., Orujov, F., Maskeli¯unas, R., Damaševicius, R., and Venckauskas, A. (2019). Fuzzy logic type-2 based wireless indoor localization system for navigation of visually impaired people in buildings. Sensors (Switzerland).; Alattas, A., van Oosterom, P., Zlatanova, S., Hoeneveld, D., and Verbree, E. (2020). LADMIndoorGML for exploring user movements in evacuation exercise. Land Use Policy, 98:104219.; Alattas, A., Zlatanova, S., Oosterom, P. V., Chatzinikolaou, E., Lemmen, C., and Li, K. J. (2017). Supporting indoor navigation using access rights to spaces based on combined use of IndoorGML and LADM models. ISPRS International Journal of Geo-Information.; ALCALDÍA MAYOR DE BOGOTÁ D.C. (2014). Bogota - Orthophoto. https://serviciosgis.catastrobogota.gov.co/arcgis/rest/services/imagenes/Ortho2014/MapServerTest. Accessed: 2019-12-15.; ALCALDÍA MAYOR DE BOGOTÁ D.C. (2019). Catastro - Construccion. https://serviciosgis.catastrobogota.gov.co/arcgis/rest/services/catastro/construccion/MapServerTest. Accessed: 2019-12-15.; Bajaj, R., Ranaweera, S., and Agrawal, D. (2002). GPS: location-tracking technology. Computer, 35(4):92–94.; Bisio, I., Lavagetto, F., Marchese, M., and Sciarrone, A. (2016). Smart probabilistic fingerprinting for WiFi-based indoor positioning with mobile devices. Pervasive and Mobile Computing, 31:107–123.; Buyukdemircioglu, M. and Kocaman, S. (2020). Reconstruction and Efficient Visualization of Heterogeneous 3D City Models. Remote Sensing, 12(13):2128.; CesiumJS (2021). 3D geospatial visualization for the web.; Chan, K. Y., Engelke, U., and Abhayasinghe, N. (2017). An edge detection framework conjoining with IMU data for assisting indoor navigation of visually impaired persons. Expert Systems with Applications, 67:272–284.; Chen, R. C., Huang, S. W., Lin, Y. C., and Zhao, Q. F. (2015). An indoor location system based on neural network and genetic algorithm. International Journal of Sensor Networks, 19(3-4):204–216.; Coleman, D. (2014). Bluetooth Low Energy (BLE) Central plugin for Apache Cordova.; Coret Gorgonio, F. J., Pérez Bou, J., and Alcantud Marín, F. (2015). Sistemas de orientación en el interior edificios de concurrencia pública. Prototipo ISMO. In V Congreso Internacional de Turismo para Todos + VI Congreso Internacional de Diseño, Redes de Investigación y Tecnología para todos DRT4ALL, 2015, pages 313–339.; Danis, F. and Cemgil, A. (2017). Model-based localization and tracking using bluetooth low-energy beacons. Sensors, 17:2484.; DBeaver (2022). About %7C dbeaver community.; Diakité, A. A., Zlatanova, S., and Li, K.-J. (2017). ABOUT THE SUBDIVISION OF INDOOR SPACES IN INDOORGML. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-4/W5(4W5):41–48.; Díaz-Vilariño, L., Boguslawski, P., Khoshelham, K., and Lorenzo, H. (2019). Obstacle-aware indoor pathfinding using point clouds. ISPRS International Journal of Geo-Information.; Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik.; Docker (2021). About Docker Engine %7C Docker Documentation.; Fadli, F., Kutty, N., Wang, Z., Zlatanova, S., Mahdjoubi, L., Boguslawski, P., and Zverovich, V. (2018). Extending indoor open street mapping environments to navigable 3D citygml building models: Emergency response assessment. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives.; Golestanian, M., Siva, J., and Poellabauer, C. (2017). Radio Frequency-Based Indoor Localization in Ad-Hoc Networks, pages 115–136. InTech.; Gomes, A., Pinto, A., Soares, C., Torres, J. M., Sobral, P., and Moreira, R. S. (2018a). Indoor location using bluetooth low energy beacons. Advances in Intelligent Systems and Computing, 746:565–580.; Gomes, J. P., Sousa, J. P., Cunha, C. R., and Morais, E. P. (2018b). An indoor navigation architecture using variable data sources for blind and visually impaired persons. Iberian Conference on Information Systems and Technologies, CISTI, 2018-June:1–5.; Google (2022). Ayuda de google adsense %7C usar chrome devtools para solucionar problemas con el servicio de anuncios.; Gröger, G., Kolbe, T., Nagel, C., and Häfele, K.-H. (2012). OGC City Geography Markup Language (CityGML) En-coding Standard. Ogc.; Gröger, G. and Plümer, L. (2012). CityGML - Interoperable semantic 3D city models. ISPRS Journal of Photogrammetry and Remote Sensing, 71:12–33.; Hamieh, A., Ben Makhlouf, A., Louhichi, B., and Deneux, D. (2020). A BIM-based method to plan indoor paths. Automation in Construction, 113:103120.; Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics.; Hatcher, A. (2002). Algebraic Topology. Cambridge University Press.; Hernández, N., Alonso, J. M., and Ocaña, M. (2017). Fuzzy classifier ensembles for hierarchical WiFi-based semantic indoor localization. Expert Systems with Applications, 90:394–404.; Huh, J.-H. and Seo, K. (2017). An indoor location-based control system using Bluetooth beacons for IoT systems. Sensors 2017, Vol. 17, Page 2917, 17:2917.; Ideca (2020). La IDE de Bogotá %7C La IDE de Bogotá. https://www.ideca.gov.co/sobre-ideca/la-idede-bogotaTest. Accessed: 2020-03-14.; Isikdag, U., Zlatanova, S., and Underwood, J. (2013). A BIM-Oriented Model for supporting indoor navigation requirements. Computers, Environment and Urban Systems, 41:112–123.; ISO (2018). ISO 16739-1:2018 Preview Industry Foundation Classes (IFC) for data sharing in the construction and facility management industries – Part 1: Data schema. Technical report, International Organization for Standardization, Geneva, Switzerland.; Jamali, A., Abdul Rahman, A., Boguslawski, P., Kumar, P., and Gold, C. M. (2017). An automated 3D modeling of topological indoor navigation network. GeoJournal, 82(1):157–170.; Jung, H. and Lee, J. (2015). INDOOR SUBSPACING TO IMPLEMENT INDOORGML FOR INDOOR NAVIGATION. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-2/W4(2W4):25–27.; Kang, H. K. and Li, K. J. (2017). A standard indoor spatial data model - OGC IndoorGML and implementation approaches. ISPRS International Journal of Geo-Information, 6(4):116.; Kim, J. S., Yoo, S. J., and Li, K. J. (2014). Integrating IndoorGML and CityGML for indoor space. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 8470 LNCS, pages 184–196. Springer Verlag.; Kolbe, T. H., Gröger, G., and Plümer, L. (2008). CityGML – 3D City Models and their Potential for Emergency Response, pages 257–274. Taylor & Francis.; Kontarinis, A., Zeitouni, K., Marinica, C., Vodislav, D., and Kotzinos, D. (2019). Towards a semantic indoor trajectory model. In CEUR Workshop Proceedings.; Kunhoth, J., Karkar, A. G., Al-Maadeed, S., and Al-Ali, A. (2020). Indoor positioning and wayfinding systems: a survey.; Laoudias, C., Moreira, A., Kim, S., Lee, S., Wirola, L., and Fischione, C. (2018). A survey of enabling technologies for network localization, tracking, and navigation.; Li, K. J. (2008). Indoor space: A new notion of space. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).; Li, K.-J., Conti, G., Konstantinidis, E., Zlatanova, S., and Bamidis, P. (2019). OGC IndoorGML: A Standard Approach for Indoor Maps, pages 187–207. Elsevier.; Mahida, P. T., Shahrestani, S., and Cheung, H. (2017). Localization techniques in indoor navigation system for visually impaired people. In 2017 17th International Symposium on Communications and Information Technologies (ISCIT), volume 2018-January, pages 1–6. IEEE.; Martinez-Sala, A. S., Losilla, F., Sánchez-Aarnoutse, J. C., and García-Haro, J. (2015). Design, implementation and evaluation of an indoor navigation system for visually impaired people. Sensors (Switzerland).; Miao, M., Spindler, M., and Weber, G. (2011). Requirements of indoor navigation system from blind users. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 7058 LNCS, pages 673–679. Springer, Berlin, Heidelberg.; Minew (2021). E2 Max Beacon - Minew.; Montilla, Y. M. and León-Sánchez, C. (2020). 3d modelling of a building oriented to indoor navigation system for users with different mobility conditions. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, VI-4/W2-2020:103–109.; Murata, M., Ahmetovic, D., Sato, D., Takagi, H., Kitani, K. M., and Asakawa, C. (2019). Smartphonebased localization for blind navigation in building-scale indoor environments. Pervasive and Mobile Computing, 57:14–32.; Naghdi, S. and O’Keefe, K. (2019). Trilateration with ble rssi accounting for pathloss due to human obstacles. pages 1–8. IEEE.; Nakajima, M. and Haruyama, S. (2013). New indoor navigation system for visually impaired people using visible light communication. Eurasip Journal on Wireless Communications and Networking, 2013(1):1–10.; Nelson, J. and Chavez, S. (2017). PostgREST Documentation — PostgREST 7.0.1 documentation.; Nginx (2021). nginx.; OGC (2012). OGC City Geography Markup Language (CityGML) Encoding Standard. Open Geospatial Consortium. Version: 2.0.0.; OGC (2014). OGCR IndoorGML. Open Geospatial Consortium. Version: 1.0.0.; OGC (2021). OGC City Geography Markup Language (CityGML) 3.0 Conceptual Model Users Guide. Open Geospatial Consortium. Version: 3.0.0.; Orujov, F., Maskeli¯unas, R., Damaševicius, R., Wei, W., and Li, Y. (2018). Smartphone based intelligent indoor positioning using fuzzy logic. Future Generation Computer Systems.; Park, S., Yu, K., and Kim, J. (2020). Data Model for IndoorGML Extension to Support Indoor Navigation of People with Mobility Disabilities. ISPRS International Journal of Geo-Information, 9(2):66.; Pérez-Navarro, A., Torres-Sospedra, J., Montoliu, R., Conesa, J., Berkvens, R., Caso, G., Costa, C., Dorigatti, N., Hernández, N., Knauth, S., Lohan, E. S., Machaj, J., Moreira, A., and Wilk, P. (2018). Challenges of Fingerprinting in Indoor Positioning and Navigation. In Geographical and Fingerprinting Data to Create Systems for Indoor Positioning and Indoor/Outdoor Navigation, pages 1–20. Academic Press.; pgRouting (2013). Camino más corto de Dijkstra.; Poulose, A. and Han, D. S. (2019). Indoor localization using pdr with wi-fi weighted path loss algorithm. ICTC 2019 - 10th International Conference on ICT Convergence: ICT Convergence Leading the Autonomous Future, pages 689–693.; Safe (2020). Safe Software %7C FME %7C Data Integration Platform. https://www.safe.comTest. Accessed: 2020-05-10.; Satan, A. and Toth, Z. (2018). Development of bluetooth based indoor positioning application. In 2018 IEEE International Conference on Future IoT Technologies, Future IoT 2018, volume 2018-January, pages 1–6. Institute of Electrical and Electronics Engineers Inc.; Serrão, M., Rodrigues, J. M., Rodrigues, J. I., and Du Buf, J. M. (2012). Indoor localization and navigation for blind persons using visual landmarks and a GIS. In Procedia Computer Science.; Simões, W. C., Machado, G. S., Sales, A. M., de Lucena, M. M., Jazdi, N., and de Lucena, V. F. (2020). A review of technologies and techniques for indoor navigation systems for the visually impaired.; Srivastava, S., Maheshwari, N., and Rajan, K. S. (2018). TOWARDS GENERATING SEMANTICALLY-RICH INDOORGML DATA FROM ARCHITECTURAL PLANS. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4(4):591–595.; Takayama, T., Umezawa, T., Komuro, N., and Osawa, N. (2018). An indoor positioning method based on regression models with compound location fingerprints. In Proceedings of 5th IEEE Conference on Ubiquitous Positioning, Indoor Navigation and Location-Based Services, UPINLBS 2018.; The Apache Software Foundation (2016). Architectural overview of Cordova platform - Apache Cordova.; Timpf, S., Volta, G. S., Pollock, D. W., and Egenhofer, M. J. (1992). A conceptual model of wayfinding using multiple levels of abstraction. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).; Tsirmpas, C., Rompas, A., Fokou, O., and Koutsouris, D. (2015). An indoor navigation system for visually impaired and elderly people based on Radio Frequency Identification (RFID). Information Sciences.; Wirola, L., Laine, T. A., and Syrjärinne, J. (2010). Mass-market requirements for indoor positioning and indoor navigation. In 2010 International Conference on Indoor Positioning and Indoor Navigation, IPIN 2010 - Conference Proceedings.; Wong, M. O. and Lee, S. (2019). A Technical Review on Developing BIM-Oriented Indoor Route Planning. In Computing in Civil Engineering 2019: Visualization, Information Modeling, and Simulation - Selected Papers from the ASCE International Conference on Computing in Civil Engineering 2019.; Yan, J., Diakité, A. A., Zlatanova, S., and Aleksandrov, M. (2019). Top-bounded spaces formed by the built environment for navigation systems. ISPRS International Journal of Geo-Information.; Yang, B., Guo, L., Guo, R., Zhao, M., and Zhao, T. (2020). A novel trilateration algorithm for rssi-based indoor localization. IEEE Sensors Journal, 20:8164–8172.; Yang, C. and Shao, H. R. (2015). WiFi-based indoor positioning. IEEE Communications Magazine.; Zafari, F., Gkelias, A., and Leung, K. K. (2019). A Survey of Indoor Localization Systems and Technologies. IEEE Communications Surveys and Tutorials.; Zhou, Y., Chen, H., Huang, Y., Luo, Y., Zhang, Y., and Xie, X. (2018). An indoor route planning method with environment awareness. In IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, volume 2018-July, pages 2906–2909. IEEE.; Zhou, Y., Pang, Y., Chen, F., and Zhang, Y. (2020). Three-dimensional indoor fire evacuation routing. ISPRS International Journal of Geo-Information.; Zhu, N., Zhao, H., Feng, W., and Wang, Z. (2015). A novel particle filter approach for indoor positioning by fusing WiFi and inertial sensors. Chinese Journal of Aeronautics.; Zhuang, Y., Syed, Z., Li, Y., and El-Sheimy, N. (2016). Evaluation of Two WiFi Positioning Systems Based on Autonomous Crowdsourcing of Handheld Devices for Indoor Navigation. IEEE Transactions on Mobile Computing.; Zou, H., Wang, H., Xie, L., and Jia, Q.-S. (2013a). An rfid indoor positioning system by using weighted path loss and extreme learning machine. In 2013 IEEE 1st International Conference on Cyber-Physical Systems, Networks, and Applications (CPSNA), pages 66–71. IEEE.; Zou, H., Xie, L., Jia, Q.-S., and Wang, H. (2013b). An integrative weighted path loss and extreme learning machine approach to rfid based indoor positioning. In International Conference on Indoor Positioning and Indoor Navigation, pages 1–5. IEEE.; https://repositorio.unal.edu.co/handle/unal/82649Test; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.coTest/

  9. 9
    مؤتمر
  10. 10