دورية أكاديمية

Spectroscopic analysis and XRD of terrestrial volcanic outcrops on the Tenerife Island as possible Martian analogue ; Estudio espectroscópico y DRX de afloramientos terrestres volcánicos en la isla de Tenerife como posibles análogos de la geología marciana

التفاصيل البيبلوغرافية
العنوان: Spectroscopic analysis and XRD of terrestrial volcanic outcrops on the Tenerife Island as possible Martian analogue ; Estudio espectroscópico y DRX de afloramientos terrestres volcánicos en la isla de Tenerife como posibles análogos de la geología marciana
المؤلفون: Lalla, E. A., López-Reyes, G., Sansano, A., Sanz-Arranz, A., Schmanke, D., Klingelhöfer, G., Medina-García, J., Martínez-Frías, J., Rull-Pérez, F.
المصدر: Estudios Geológicos; Vol. 71 No. 2 (2015); e035 ; Estudios Geológicos; Vol. 71 Núm. 2 (2015); e035 ; 1988-3250 ; 0367-0449 ; 10.3989/egeol.15712
بيانات النشر: Consejo Superior de Investigaciones Científicas
سنة النشر: 2015
المجموعة: Estudios Geológicos (E-Journal)
مصطلحات موضوعية: Volcanology, Raman Spectroscopy, Mössbauer Spectroscopy, X Ray Diffraction, Mars, Tenerife, Vulcanología, Espectroscopia Raman, Espectroscopia Mössbauer, Difracción de Rayos X, Marte
الوصف: Several volcanic outcrops from Tenerife Island (Las Cañadas Caldera, historical volcanism and Gu.imar-Malpaís outcrop) has been selected as a potential terrestrial analog for Mars, regarding the Martian mineralogy and its volcanic characteristic. Diverse alteration processes, including weathering and hydrothermal alteration have been detected in these volcanics environments, which could be considered as part of a model for the primitive volcanic activity of Mars. The selected materials have been measured by micro-Raman spectroscopy, XRD and Mössbauer spectroscopy. The results show the primary mineralogy comprises on olivine, pyroxene and feldspar. Also, a wide variety of alterational materials, including oxides, clay minerals and carbonates have been detected. The results have proven to be a starting point to develop research focused to the development of science instrumentation for planetary exploration in volcanic environments. The instrumentation used was primarily through twin prototypes applied in space exploration such as XRD (on board at the NASA-MSL-Curiosity mission), Mössbauer spectroscopy (on board at the NASA-MER mission) and the future Raman instrument on ESA mission -ExoMars. In addition, the detected mineralogy is consistent with results reported on Mars. The Raman spectral analisys methods, characterization and identification, have been applied, where the analysis of the Raman profiles are extremely useful to clarify the geochemical origin of the mineral species. On the other hand, the results obtained by Raman have been confirmed by Mössbauer spectroscopy and X-ray diffraction. ; Se ha llevado a cabo una selección de varios afloramientos volcánicos en la Isla de Tenerife (La Caldera de las Cañadas, vulcanismo histórico y la zona del Malpaís de Gu.imar) como posibles análogos terrestres de Marte, considerando los procesos volcánicos ocurridos durante algunas de las etapas geológicas del planeta rojo. En la selección de las áreas de estudio se han tenido en cuenta la diversidad de procesos de alteración, que incluyen fenómenos como meteorización y alteración hidrotermal. Estos procesos terrestres podrían servir como modelo de la actividad volcánica primitiva en Marte. Los materiales seleccionados se han analizado mediante espectroscopia micro-Raman, difracción de rayos X (DRX) y espectroscopia Mössbauer. Los resultados revelan que la mineralogía de los afloramientos está constituida por una matriz de olivinos, piroxenos y feldespatos. Además, se ha detectado una gran variedad de especies minerales correspondientes a procesos de alteración como óxidos, arcillas y carbonatos. Los resultados obtenidos han demostrado ser un punto de partida para desarrollar investigaciones en estos entornos volcánicos especialmente enfocados al desarrollo de la ciencia de instrumentación para exploración planetaria. La instrumentación utilizada en la investigación ha sido a través de prototipos gemelos empleados en la exploración espacial, como DRX (actualmente en la misión NASA-MSL-Curiosity), espectroscopia Mössbauer (a bordo de la misión NASA-MER) y el futuro instrumento Raman de la misión ESA-ExoMars. Además, la mineralogía detectada coincide con los resultados reportados en Marte. Los métodos de análisis Raman, tanto de caracterización e identificación, mediante el estudio de patrones espectrales se han aplicado exitosamente, donde el análisis de los perfiles Raman son de extrema utilidad para aclarar el origen de las especies minerales. La espectroscopia Mössbauer y la difracción de rayos X han confirmado los resultados Raman.
نوع الوثيقة: article in journal/newspaper
وصف الملف: text/html; application/pdf; text/xml
اللغة: Spanish; Castilian
العلاقة: http://estudiosgeol.revistas.csic.es/index.php/estudiosgeol/article/view/929/1033Test; http://estudiosgeol.revistas.csic.es/index.php/estudiosgeol/article/view/929/1034Test; http://estudiosgeol.revistas.csic.es/index.php/estudiosgeol/article/view/929/1035Test; Agee, C.B.; Wilson, N.V.; McCubbin, F.M.; Ziegler, K.; Polyak, V.J.; Sharp, Z.D.; Asmerom, Y.; Nunn, M.H.; Shaheen, R.; Thiemens, M.H.; Steele, A.; Fogel, M.L.; Bowden, R.; Glamoclija, M.; Zhang, Z. & Elardo, S.M. (2013). Unique Meteorite from Early Amazonian Mars: Water-Rich Basaltic Breccia Northwest Africa 7034. Science, 339 (6121): 780–785.; Anguita, F.A. & Hernán, F. (1975). A propagating fracture model versus a hot spot origin for the Canary Islands. Earth and Planetary Science Letters, 27 (1): 11–19.; Anguita, F. & Hernán, F. (2000). The Canary Islands origin; a unifying model. Journal of Volcanology and Geothermal Research, 103: 1–26.; Apopei, A.I. & Buzgar, N. (2010). The Raman study of amphiboles. Analele s•tiint•ifice ale Universita.t.ii "Al. i. cuza" Ias•i, Geologie, 56 (1): 57–83.; Ara-a, V. (1979). Litología y estructura del Edificio Ca-adas, Tenerife (Islas Canarias). Estudios geológicos, 27: 95–135.; Ara-a, V. & Ortiz, A. (1986). La volcanología Actual: Una revisión. Anales de Física, 82: 1–14.; Barnes, D.; Battistelli, E.; Bertrand, R.; Butera, F.; Chatila, R.; Del Biancio, A.; Draper, C.; Ellery, A.; Gelmi, R.; Ingrand, F.; Koeck, C.; Lacroix, S.; Lamon, P.; Lee, C.; Magnani, P.; Patel, N.; Pompei, C.; Re, E.; Richter, L.; Rowe, M.; Siegwart, R.; Slade, R.; Smith, M.F.; Terrien, G.; Wall, R.; Ward, R.; Waugh, L. & Woods, M. (2006). The ExoMars rover and Pasteur payload Phase A study: an approach to experimental astrobiology. International Journal of Astrobiology, 5 (3): 221–241.; Bish, D.L.; Carey, J.W.; Vaniman, D.T. & Chipera, S.J. (2003). Stability of hydrous minerals on the Martian surface. Icarus, 164: 96–103.; Bish, D.L.; Blake, D.; Sarrazin, P.; Treiman, A.H.; Hoehler, T.; Hausrath, E.M., Midtkandal, I. & Steele, A. (2007). Field XRD/XRF mineral analysis by the MSL CheMin instrument. 38th Lunar and Planetary Science Conference, Abstract, 1163.; Bish, D.L.; Blake, D.F.; Vaniman, D.T.; Chipera, S.J.; Morris, R.V.; Ming, D.W.; Treiman, A.H.; Sarrazin, P.; Morrison, S.M.; Downs, R.T.; Achilles, C.N.; Yen, A.S. Bristow, T.F.; Crisp, J.A.; Morookian, J.M.; Farmer, J.D.; Rampe, E.B.; Stolper, E.M.; Spanovich, N. & MSL Science Team (2013). X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater. Science, 341 (6153): 1238932.; Bridges, J.C.; Catling, D.C.; Saxton, J.M.; Swindle, T.D.; Lyon, I.C. & Grady, M.M. (2001). Alteration assemblages in Martian meteorites: implications for near-surface processes. Space Science Review, 96: 365–392.; Bustillo, M.A. & Martínez-Fri´as, J. (2003). Green Opals in Hydrothermalized basalts (Tenerife Island, Spain): Alteration and aging of silica pseudoglass. Journal of non-crystalline solids, 323: 27–33.; Carr, M.H. & Greeley, R. (1980). Volcanic features of Hawaii: A basis for comparison with Mars. NASA SP, 403. 211 p.; Carr, M.H. (2007). The Surface of Mars. Cambridge University Press, Cambridge, 322 p. http://dx.doi.org/10.1017/cbo9780511536007Test; Carracedo, J. (1975). Estudio paleomagnetico de la isla de Tenerife (islas Canarias). Tesis Doctoral, Universidad Complutense, 265 p.; Carracedo, J. (1999). Growth, structure, instability and collapse of Canarian volcanoes and comparisons with Hawaiian volcanoes. Journal of Volcanology and Geothermal Research, 94 (1–4): 1–19.; Chevrier, V. (2007). Mineralogy and evolution of the Surface of Mars: A review. Planetary and Space Science, 55 (3): 289–314.; Chopelas, A. (1999). Estimates of mantle relevant Clapeyron slopes in the MgSiO3 system from high-pressure spectroscopic data. American Mineralogist, 84 (3): 233–244.; Christensen, P.R.; Bandfield, J.L.; Bell III, J.F.; Gorelick, N.; Hamilton, V.E.; Ivanov, A.; Jakosky, B.M.; Kieffer, H.H.; Lane, M.D.; Malin, M.C.; Mehall, G.L.; McConnochie, T.; McEwen, A.S.; McSween, H.Y.; Moersch, J.E.; Nealson, K.H.; Rice, J.W.; Richardson, M.I.; Ruff, S.W.; Smith, M.D.; Titus, T.N. & Wyatt, W. (2003). Morphology and composition of the surface of Mars: Mars Odyssey THEMIS results. Science, 300 (5628): 2056–2061.; Dong Zu, E.; Qing Li, S.; Zou, Y.; Gang Zhao, X.; Dan Sun, Y.; Fei Lin, Y. & Li, H. (2011). Study of Natural and Synthetic Quartz by Raman Spectra. Key Engineering Materials, 492: 341–344.; Donoghue, E. & Troll, V.R. (2008). Low temperature hydrothermal alteration of intra-caldera tuffs, Miocene Tejeda. Journal of Volcanology and Geothermal Reseach, 176 (4): 551–564.; Ellery, A.; Kolb, C.; Lammer, H.; Parnell, J.; Edwards, H.; Richter, L.; Patel, M.; Romstedt, J.; Dickensheets, D.; Steele, A. & Cockell, C. (2003). Astrobiological instrumentation for Mars – the only way is down. International Journal of Astrobiology, 1 (4): 365–380.; Fleischer, I. (2010). Diversity of Lithologic Components at Meridiani Planum, Mars: Insights from Mo.ssbauer Spectroscopic Investigations. Tesis Doctoral Johannes Gutenberg-Universität an Mainz.; Freeman, J.J.; Wang, A.; Kuebler, K.E.; Jolliff, B.L. & Haskin, L.A. (2008). Characterization of natural feldspars by Raman spectroscopy for future planetary exploration. The Canadian Mineralogist, 46 (6): 1477–1500.; Frost, R.L. & Kloprogge, J.T. (2001). Towards a single crystal Raman spectrum of kaolinite at 77 K. Spectrochimica Acta Part A, 57 (1): 163–175.; García-Hernández, J.E.; Notario Del Pino, J.S.; González Martín, M.M.; Hernán Reguera, F. & Rodríguez Losada, J.A. (1993). Zeolites in pyroclastic deposits in southeastern Tenerife (Canary Islands). Clays and Clay Minerals, 41 (5): 521–526.; Haley, L.V.; Wylie, I.W. & Koningstein, J.A. (1982). An investigation of the lattice and interlayer water vibrational spectral regions of muscovite and vermiculite using Raman microscopy. Journal of Raman Spectroscopy, 13 (2): 203–205.; Hofmeister, A.M.; Cynn, H.; Burnley, P.C. & Meade, C. (1999). Vibrational spectra of dense, hydrous magnesium silicates at high pressure: Importance of the hydrogen bond angle. American Mineralogist, 84: 454–464.; Horgan, B. (2013). Planetary science: Evolved magma on Mars. Nature Geoscience, 6: 991–992.; Houghton, B.; Rymer, H.; Stix, J. & McNutt, S. (1999). Encyclopedia of Volcanoes. Academic Press, 1417 p.; Huang, E; Chen, C.H.; Huang, T.; Lin, E.H. & Xu, JI-AN. (2000). Raman spectroscopic characteristics of Mg-Fe-Ca pyroxenes. American Mineralogist, 85 (3–4): 473–479.; Jubb, A.M. & Allen, H.C. (2010). Vibrational Spectroscopic characterization of the Hematite, Maghemite and magnetite thin films produced by Vapor deposition. Applied Materials & Interfaces, 2 (10): 2804–2812.; Klingelho.fer, G.; Imkeller, U.; Kankeleit, E. & Stahl, B. (1992). Remarks on depth selective CEMS Backscattering measurements. Hyperfine Interactions, 71: 1445–1448.; Klingelho.fer, G.; Morris, R.V.; Bernhardt, B.; Rodionov, D.; de Souza, P.A.; Squyres, S.W.; Foh, J.; Kankeleit, E.; Bonnes, U.; Gellert, R.; Schro.der, C.; Linkin, S.; Evlanov, E.; Zubkov, B. & Prilutski, O. (2003). Athena - MIMOS II Mo.ssbauer spectrometer investigation. Journal of Geophysical Research: Planets, 108 (E12): 8067.; Klingelhöfer, G.; Blumers, M.; Bernhardt, B.; Lechner, P.; Gironés-Lopez, J.; Maul, J.; Soltau, H.; Stru.der, L. & Henkel, H. (2010). The improved miniaturised Mössbauer spectrometer MIMOS IIA with elemental analysis capability and increased sensitivity. 41st Lunar and Planetary Science Conference, Abstract, 2423.; Kloprogge, J.T.; Hickey, L. & Frost, R.L. (2002). Synthesis and spectroscopic characterisation of deuterated hydrotalcite. Journal of Materials Science Letters, 21 (8): 603–605.; Krisshnamurti, D. (1962). The Raman Spectrum of rutile. Proceedings of the Indian Academy of Sciences, 55 (5): 290–299.; Kuebler, K.E.; Jolliff, B.L.; Wang, A. & Haskin, L.A. (2006). Extracting olivine (Fo–Fa) compositions from Raman spectral peak positions. Geochimica et Cosmochimica Acta, 70 (24): 6201–6222.; Lalla, E.; Sansano, A.; Sanz, A.; Alonso, P.; Medina, J.; Martínez-Frías, J. & Rull, F. (2010). Espectroscopia Raman de Basaltos Correspondientes al Volca´n de las Arenas, Tenerife. Macla, 13: 129–130.; Lalla, E.; Sansano, A.; Sanz, A.; Navarro, R.; López-Reyes, G.; Venegas, G.; Rodríguez, J.A.; Medina, J.; Martínez-Frías, J; Rull, F. (2011). Raman spectroscopy of Pillow Lavas from the Anaga Zone – Tenerife, Canary Island. Macla, 15: 119–120.; Lalla, E. (2014). Tenerife como análogo de Marte: Caracterización multi-analítica (Raman, DRX, ATR- FTIR, SEM y Mössbauer) de muestras de interés planetario y Astrobiológico. Tesis Doctoral, Universidad de Valladolid. 214 p. http://uvadoc.uva.es/handle/10324/4572Test; Martí, J.; Hurlimann, M.A. & Gudmundsson, G.J. (1997). Stratigraphy, structure and geochronology of the Las Can.adas caldera (Tenerife, Canary Islands). Geological Magazine, 131 (6): 715–727.; Martí, J. & Gudmundsson, G.J. (2000). The Can.adas caldera (Tenerife, Canary Islands): An ovverlapping collapse caldera generated by a magma-chamber migration. Journal of vulcanology and geothermal research, 103: 161–173.; Mckeown, D.A.; Bell, M.I. & Etz, E.S. (1999). Vibrational Analysis of the Dioctahedral Mica: 2M1 Muscovite. American Mineralogist, 84: 1041–1048.; McSween, H.Y.; Taylor, G.J. & Wyatt, M.B. (2009). Elemental composition of the Martian crust. Science, 324 (5928): 736–739.; Mittlefehldt, D.W. (1994). ALH84001, a cumulate orthopyroxenite member of the Martian meteorite. Meteoritics, 29 (2): 214–221.; Mouginis-Mark, P. & Robinson, M.S. (1992). Evolution of the Olympus Mons Caldera, Mars. Bulletin of Volcanology, 54 (5): 347–360.; Mouri, T. & Enami, M. (2008). Raman spectroscopic study of olivine-group minerals. Journal of Mineralogical and Petrological Science, 103: 100–104. http://dx.doi.org/10.2465/jmps.071015Test; Mustard, J.F.; Murchie, S.L.; Pelkey, S.M.; Ehlmann, B.L.; Milliken, R.E.; Grant, J.A.; Bibring, J.P.; Poulet, F.; Bishop, J.; Noe Dobrea, E.; Roach, L.; Seelos, F.; Arvidson, R.E.; Wiseman, S.; Green, R.; Hash, C.; Humm, D.; Malaret, E.; McGovern, J.A.; Seelos, K.; Clancy, T.; Clark, R.; Marais, D.D.; Izenberg, N.; Knudson, A.; Langevin, Y.; Martin, T.; McGuire, P.; Morris, R.; Robinson, M.; Roush, T.; Smith, M.; Swayze, G.; Taylor, H.; Titus, T. & Wolff, M. (2008). Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument. Nature, 454: 305–309.; Okada, T.; Narita, T.; Nagai, T. & Yamanaka, T. (2008). Comparative Raman spectroscopic study on ilmenite-type MgSiO3 (akimotoite), MgGeO3, and MgTiO3 (geikielite) at high temperatures and high pressures. American Mineralogist, 93 (1): 39–47.; Osinski, G.R.; Léveillé, R.; Berinstain, A.; Lebeuf, M. & Bamsey, M. (2006). Terrestrial Analogues to Mars and the Moon: Canada's Role. Geoscience Canada, 33 (4): 175–188.; Risuen.o-Di´az, E. (2005). Reserva Natural especial del Malpai´s de Guímar: Informe del Plan director. Consejería de medio ambiente y Ordenación Territorial, Gobierno de Canarias, 55 p. Rodríguez-Losada, J.A.; Martínez-Frías, J.; Bustillo; M.A.; Delgado, A.; Herna´ndez-Pacheco, A. & De la Fuente Krauss, J.V. (2000). The hydrothermally altered ankaramite basalts of Punta Poyata (Tenerife, Canary Islands). Journal of Volcanology and Geothermal Research, 103: 367–376.; Rodríguez-Badiola, E. & Carracedo, J.C. (2008). El volcán Teide. Tomo I, Geología y volcanología del Teide y las dorsales. Rocas Volcánicas del Teide. Excmo. Cabildo de Santa Cruz de Tenerife, Consejería de Medio Ambiente, 145 p.; Romero, C; Quirantes, F. & Martínez de Pisón, E. (1986). Los Volcanes, guía física de Espa-a 1. Alianza Editorial. 254 p.; Rull, F. & Martínez-Fri´as, J. (2003). Identification of Calcite grains in the Vaca Muerta mesosiderite by Raman Spectroscopy. Journal of Raman Spectroscopy, 34 (5): 367–370.; Rull, F. & Martínez-Frías, J. (2006). Raman spectroscopy goes to mars. Spectroscopy Europe, 18 (1): 18–21. http://hdl.handle.net/10261/36075Test; Rull, F.; Martínez-Fri´as, J. & Rodríguez-Losada, J.A. (2007). Micro-Raman spectroscopic study of El Gasco pumice, western Spain. Journal of Raman Spectroscopy, 38 (2): 239–244.; Rull, F.; Maurice, S.; Díaz, E.; Tato, C.; Pacros, A. & RLS Team (2011). The Raman Laser Spectrometer (RLS) on the ExoMars 2018 Rover Mission. 42nd Lunar and Planetary Science Conference, Abstract, 1608.; Schmidt, M.E.; Farrand, W.H.; Johnson, J.R.; Schro.der, C.; Hurowitz, J.A.; McCoy, T.J.; Ruff, S.W.; Arvidson, R.E.; Des Marais, D.J.; Lewis, K.W.; Ming, D.W.; Squyres, S.W. & de Souza, P.A. (2009). Spectral, mineralogical, and geochemical variations across Home Plate, Gusev Crater, and Mars indicate high and low temperature alteration. Earth and Planetary Science Letters, 281 (3–4): 258–266.; Sekiya, T.; Ohta, S.; Kamei, S.; Hanakawa, M. & Kurita, S. (2001). Raman spectroscopy and phase transition of anatase TiO2 under high pressure. Journal of Physics and Chemistry Solids, 62 (4): 717–721.; Sharma, S.K.; Lucey, P.G.; Ghosh, M.; Hubble, H.W. & Horton, K.A. (2003) Stand-off Raman spectroscopic detection of minerals on planetary surfaces. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 59 (10): 2391–2407. http://dx.doi.org/10.1016/S1386-1425Test(03)00080-5; Stalport, F.; Glavin, D.P.; Eigenbrode, J.L.; Bish, D.; Blake, D.; Coll, P.; Szopa, C.; Buch, A.; McAdam, A.; Dworkin, J.P. & Mahaffy, P.R. (2012). The influence on mineralogy on recovering organic acids from Mars analogue materials using the "one-pot" derivatization experiment on the Sample Analysis at Mars (SAM) instrument suite. Planetary and Space Science, 67 (1): 1–13.; Stevens, J.G; Khasanov, A.M.; Miller-Bill, J.W.; Pollak, H. & Zhe, Li. (2005). Mössbauer Mineral Handbook. University of North Carolina at Asheville, North Carolina, 636 p.; Stolper, E.M.; Baker, M.B.; Newcombe, M.E.; Schmidt, M.E.; Treiman, A.H.; Cousin, A.; Dyar, M.D.; Fisk, M.R.; Gellert, R.; King, P.L.; Leshin, L.; Maurice, S.; McLennan, S.M.; Minitti, M.E.; Perrett, G.; Rowland, S.; Sautter, V.; Wiens, R.C. & MSL Science Team (2013). The Petrochemistry of Jake_M: A Martian Mugearite. Science 27, 341 (6153): 1239463.; Thirlwall, M.F.; Singer, B.S. & Marriner, G.F. (2000). 39Ar–40Ar ages and geochemistry of the basaltic shield stage of Tenerife, Canary Islands, Spain. Journal of Volcanology and Geothermal Research, 103 (1–4): 247–297.; Vago, J. (2006). ExoMars: Searching for life on the Red Planet. ESA Bulletin, 126: 16–23.; Wang, A., Haskin, L.A., Lane, A.L., Wdowiak, T.J., Squyres, S.W., Wilson, R.J., Hovland, L.E., Manatt, K.S., Raouf, N. & Smith, C.D. (2003). Development of the Mars microbeam Raman spectrometer (MMRS). Journal of Geophysical. Research: Planets, 108 (E1): 5005.; West, M.D.; Clarke, J.D.A.; Thomas, M.; Pain, C.F. & Walter, M.R. (2010). The geology of Australian Mars analogue sites. Planetary and Space Science, 58 (4): 447–458.; Wang, A.; Jolliff, B.L.; Haskin, L.A.; Kuebler, K.E. & Viskupic, K.M. (2001). Characterization and comparison of structural and compositional features of planetary quadrilateral pyroxenes by Raman spectroscopy. American Mineralogist, 86 (7–8): 790–806.; Wray, J.J.; Hansen, S.T.; Dufek, J.; Swayze, G.A.; Murchie, S.L.; Seelos, F.P.; Skok, J.R.; Irwin III, R.P. & Ghiorso, M.Z. (2013). Prolonged magmatic activity on Mars inferred from the detection of felsic rocks. Nature Geoscience 6, 1013–1017. http://dx.doi.org/10.1038/ngeo1994Test; Zattina, M.; Bersani, D. & Carter, A. (2007). Raman microspectroscopy: A non-destructive tool for routine calibration of apatite crystallographic structure for fission-track analyses. Chemical Geology, 240 (3–4): 197–204.; Zoltai, T. & Scout, J.H. (1984). Mineralogy: Concepts and Principles. Burgess Publishing Co., Mineapolis. 505 p.; Zotov, N. & Ebbsjo, I. (1999). Calculation of Raman spectra and vibrational properties of silicate glasses: Comparison between Na2Si4O9 and SiO2 glasses. Physical Review B, 60 (9): 6383–6397.; http://estudiosgeol.revistas.csic.es/index.php/estudiosgeol/article/view/929Test
DOI: 10.3989/egeol.41927.354
الإتاحة: https://doi.org/10.3989/egeol.41927.354Test
https://doi.org/10.3989/egeol.15712Test
https://doi.org/10.1017/cbo9780511536007Test
http://estudiosgeol.revistas.csic.es/index.php/estudiosgeol/article/view/929Test
حقوق: Derechos de autor 2015 Consejo Superior de Investigaciones Científicas (CSIC) ; https://creativecommons.org/licenses/by/4.0Test
رقم الانضمام: edsbas.9EFA6DA4
قاعدة البيانات: BASE