يعرض 1 - 5 نتائج من 5 نتيجة بحث عن '"INTEGRAL representations"', وقت الاستعلام: 0.70s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: Revista Colombiana de Matemáticas; Vol. 53 Núm. 1 (2019); 57-72 ; Revista Colombiana de Matemáticas; Vol. 53 No. 1 (2019); 57-72 ; 2357-4100 ; 0034-7426

    وصف الملف: application/pdf

    العلاقة: https://revistas.unal.edu.co/index.php/recolma/article/view/81042/71562Test; C. Bandle and H. Brunner, Blowup in diffusion equations: a survey, J. Comput. Appl. Math. 97 (1998), 3-22.; J. Bebernes and D. Eberly, Mathematical problems from combustion theory, Springer-Verlag, 1989.; M. Birkner, J. A. López-Mimbela, and A. Walkonbinger, Comparison results and steady states for the fujita equation with fractional laplacian, Annales de L'Institute Henri Poncare-Analyse non Linéare 22 (2005), 83-97.; K. Bogdan, T. Grzywny, and M. Ryznar, Dirichlet heat kernel for unimodal lévy processes, Stochastic Process. Appl. 124 (2014), 3612-3650.; M. Bogoya, Sobre la explosión de una ecuación de difusión no local con término de reacción, Boletín de Matemáticas 24 (2017), no. 2, 117-130.; E. B. Davies and B. Simon, Ultracontractivity and the heat kernel for schrödinger operators and dirichlet laplacians, J. Funct. Anal. 59 (1984), 335-395.; K. Deng and H. A. Levine, The role of critical exponents in blow-up theorems: the sequel, J. Math. Anal. Appl. 243 (2000), 45-126.; M. Fila, H. Ninomiya, and J. L. Vázquez, Dirichlet boundary conditions can prevent blow-up in reaction-diffusion equations and systems, Discr. Cont. Dyn. Systems 14 (2006), 63-74.; A. Friedman and B. McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana. Univ. Math. J. 34 (1985), 425-447.; Y. Fujishima, Global existence and blow-up of solutions for the heat equation with exponential nonlinearity, J. Differential Equations 264 (2018), 6809-6842.; H. Fujita, On the blowing up of solutions of the cauchy problem for ut = du + u1 + a, J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966), 109-124.; H. Fujita, On some nonexistence and nonuniqueness theorems for nonlinear parabolic equations, Nonlinear Functional Analysis (Proc. Sympos. Pure Math., Vol. XVIII, Part 1, Chicago, IL, 1968), Amer. Math. Soc., Providence, R. I. (1970), 105-113.; P. Groisman, J. D. Ross, and H. Zaag, On the dependence of the blowup time with respect to the initial data in a semilinear parabolic problem, Commun. Partial Differ. Equations 28 (2003), 737-744.; T. Grzywny, Intrinsic ultracontractivity for lévy processes, Probab. Math. Statist. 28 (2008), 91-106.; M. Guedda and M. Kirane, Critically for some evolution equations, Differential Equations 37 (2001), 540-550.; Jr. J. A. Mann and W. A. Woyczynski, Growing fractal interfaces in the presence of self-similar hopping surface diffusion, Phys. A. 291 (2001), 159-183.; S. Kaplan, On the growth of solutions of quasilinear parabolic equations, Commun. Pure Appl. Math. 16 (1963), 305-333.; E. T. Kolkovska, J. A. López-Mimbela, and A. Pérez, Blow-up and life span bounds for a reaction-diffusion equation with a time-dependent generator, Elec. J. Diff. Equations 2008 (2008), 1-18.; T. Kulczycki and M. Ryznar, Gradient estimates of harmonic functions and transition densities for lévy processes, Trans. Amer. Math, Soc. 368 (2016), 281-318.; J. A. López-Mimbela and A. Pérez, Finite time blow up and stability of a semilinear equation with a time dependent lévy generator, Stoch. Models 22 (2006), 735-752.; Global and nonglobal solutions of a system of nonautonomous semilinear equations with ultracontractive lévy generators, J. Math. Anal. Appl. 423 (2015), 720-733.; J. A. López-Mimbela and A. Torres, Intrinsic ultracontractivity and blowup of a semilinear dirichlet boundary value problem, Aportaciones Mat., Modelos Estocásticos, Sociedad Matemática Mexicana 14 (1998), 283-290.; V. Marino, F. Pacella, and B. Sciunzi, Blow up of solutions of semilinear heat equations in general domains, Commun. Contemp. Math. 17 (2015), no. 2.; L. E. Payne and G. A. Philippin, Blow-up phenomena in parabolic problems with time dependent coeficients under dirichlet boundary conditions, Proc. Amer. Math. Soc. 141 (2013), 2309-2318.; L. E. Payne and P. W. Schaefer, Lower bound for blow-up time in parabolic problems under dirichlet conditions, J. Math. Anal. Appl. 328 (2007), 1196-1205.; A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, 1983.; A. Pérez and J. Villa, A note on blow-up of a nonlinear integral equation, Bull. Belg. Math. Soc. Simon Stevin 17 (2010), 891-897.; M. Pérez-Llanos and J. D. Rossi, Blow-up for a non-local diffusion problem with neumann boundary conditions and a reaction term, Nonlinear Analysis 70 (2009), 1629-1640.; A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, and A. P. Mikhailov, Blow-up in quasilinear parabolic equations, The Gruyter Expositions in Mathematics, 19; Walter de Gruyter & Co., 1995.; K.-I. Sato, Lévy processes and infinitely divisible distributions, Cambridge Stud. Adv. Math, vol. 68, Cambridge University Press, 1999.; M. F. Shlesinger, G. M. Zaslavsky, and U. Frisch, Lévy flights and related topics in physics, Lecture Notes in Physics 450; Springer-Verlag, 1995.; S. Sugitani, On nonexistence of global solutions for some nonlinear integral equations, Osaka J. Math. 12 (1975), 45-51.; V. Varlamov, Long-time asymptotics for the nonlinear heat equation with a fractional laplacian in a ball, Studia Math. 142 (2000), 71-99.; J. Villa-Morales, An osgood condition for a semilinear reaction-diffusion equation with time-dependent generator, Arab J. Math. Sci. 22 (2016), 86-95.; X. Wang, On the cauchy problem for reaction-diffusion equations, Trans. Amer. Math. Soc. 337 (1993), 549-590.; F. B. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation, Israel J. Math. 38 (1981), 29-40.; https://revistas.unal.edu.co/index.php/recolma/article/view/81042Test

  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية