يعرض 1 - 2 نتائج من 2 نتيجة بحث عن '"GHOST IMAGING"', وقت الاستعلام: 0.76s تنقيح النتائج
  1. 1

    المساهمون: Vargas Chaparro, Edgar Miguel, Nuñez Portela, Mayerlin, Valencia Gonzalez, Alejandra Catalina

    المصدر: Repositorio UN
    Universidad Nacional de Colombia
    instacron:Universidad Nacional de Colombia

    وصف الملف: 1 recurso en linea (76 paginas); application/pdf

  2. 2
    رسالة جامعية

    المساهمون: Vargas Chaparro, Edgar Miguel, Nuñez Portela, Mayerlin, Valencia Gonzalez, Alejandra Catalina

    وصف الملف: 1 recurso en linea (76 paginas); application/pdf

    العلاقة: [1] I. L. C. Michael A. Nielsen, Quantum Computation and Quantum Information. Cambridge University Press, 2010.; [2] Y. Shih, "The physics of ghost imaging," in Advances in Lasers and Electro Optics, InTech, 2010.; [3] T. Spiller, Quantum information processing: cryptography, computation, and teleportation," Proceedings of the IEEE, vol. 84, no. 12, pp. 1719-1746, 1996.; [4] R. H. Brown and R. Q. Twiss, "Correlation between photons in two coherent beams of light," Nature, vol. 177, no. 4497, pp. 0027-29, 1956.; [5] G. Scarcelli, V. Berardi, and Y. Shih, "Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?," Physical Review Letters, vol. 96, no. 6, p. 063602, 2006.; [6] E. M. Purcell, "The question of correlation between photons in coherent light rays," Nature, vol. 178, no. 4548, pp. 1449-1450, 1956.; [7] R. H. Brown and D. Scarl, "The intensity interferometer, its application to astronomy," Physics Today, vol. 28, no. 9, pp. 54-55, 1975.; [8] Y. Shih, "Quantum imaging," IEEE Journal of Selected Topics in Quantum Electronics, vol. 13, no. 4, pp. 1016-1030, 2007.; [9] R. Meyers, K. S. Deacon, and Y. Shih, "Ghost-imaging experiment by measuring re- ected photons," Physical Review A, vol. 77, no. 4, p. 041801, 2008.; [10] R. E. Meyers, K. S. Deacon, and Y. Shih, "Turbulence-free ghost imaging," Applied Physics Letters, vol. 98, no. 11, p. 111115, 2011.; [11] T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, "Photon-e cient quantum key distribution using time-energy entanglement with highdimensional encoding," New Journal of Physics, vol. 17, no. 2, p. 022002, 2015.; [12] J. Yang, X.-H. Bao, H. Zhang, S. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, "Experimental quantum teleportation and multiphoton entanglement via interfering narrowband photon sources," Physical Review A, vol. 80, no. 4, p. 042321, 2009.; [13] P. S. Michelberger, T. F. M. Champion, M. R. Sprague, K. T. Kaczmarek, M. Barbieri, X. M. Jin, D. G. England, W. S. Kolthammer, D. J. Saunders, J. Nunn, and I. A. Walmsley, "Interfacing GHz-bandwidth heralded single photons with a warm vapour raman memory," New Journal of Physics, vol. 17, no. 4, p. 043006, 2015.; [14] G. M. A.Valencia, "La luz: color y mucho m as," Hipótesis, no. 18, pp. 23-31, 2015.; [15] A. Lipson, S. G. Lipson, and H. Lipson, Optical Physics. Cambridge University Press, 2009.; [16] B. D. Guenther, Modern Optics. Oxford University Press, 2015.; [17] E. Hecht, Optics. Boston: Pearson Education, Inc, 2017.; [18] R. J. Glauber, "Nobel lecture: One hundred years of light quanta," Reviews of Modern Physics, vol. 78, no. 4, pp. 1267-1278, 2006.; [19] M. Fox, Quantum Optics An Introduccion. Oxford University Press, 2006.; [20] F. T. Arecchi, "Measurement of the statistical distribution of gaussian and laser sources," Physical Review Letters, vol. 15, no. 24, pp. 912-916, 1965.; [21] L. E. Estes, L. M. Narducci, and R. A. Tuft, "Scattering of light from a rotating ground glass," Journal of the Optical Society of America, vol. 61, no. 10, p. 1301, 1971.; [22] W. Martienssen and E. Spiller, "Coherence and uctuations in light beams," American Journal of Physics, vol. 32, no. 12, pp. 919-926, 1964.; [23] A. Gatti, D. Magatti, and F. Ferri, "Three-dimensional coherence of light speckles: Theory," Physical Review A, vol. 78, no. 6, p. 063806, 2008.; [24] T. A. Kuusela, "Measurement of the second-order coherence of pseudothermal light," American Journal of Physics, vol. 85, no. 4, pp. 289-294, 2017.; [25] P. K. C. Gerry, Introductory Quantum Optics. Cambridge University Press, 2005.; [26] P. W. P. Koczyk and C. Radzewicz, "Photon counting statistics%7Cundergraduate experiment," American Journal of Physics, vol. 64, no. 3, pp. 240-245, 1996.; [27] H.-A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics. Wiley, 2019.; [28] A. Zavatta, M. Bellini, P. L. Ramazza, F. Marin, and F. T. Arecchi, "Time-domain analysis of quantum states of light: noise characterization and homodyne tomography," Journal of the Optical Society of America B, vol. 19, no. 5, p. 1189, 2002.; [29] G. Breitenbach, S. Schiller, and J. Mlynek, "Measurement of the quantum states of squeezed light," Nature, vol. 387, no. 6632, pp. 471-475, 1997.; [30] D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, "Measurement of the wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum," Physical Review Letters, vol. 70, no. 9, pp. 1244-1247, 1993.; [31] I. Khan, D. Elser, T. Dirmeier, C. Marquardt, and G. Leuchs, "Quantum communication with coherent states of light," Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 375, no. 2099, p. 20160235, 2017.; [32] T. Jennewein and B. Higgins, "The quantum space race," Physics World, vol. 26, no. 03, pp. 52-56, 2013.; [33] F. Laudenbach, C. Pacher, C.-H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P.Walther, and H. Hübel, "Continuous-variable quantum key distribution with gaussian modulation-the theory of practical implementations," Advanced Quantum Technologies, vol. 1, no. 1, p. 1800011, 2018.; [34] R. Bedington, J. M. Arrazola, and A. Ling, "Progress in satellite quantum key distribution," Nature Partner Journals Quantum Information, vol. 3, no. 1, p. 30, 2017.; [35] M. Beck, "Comparing measurements of g^(2)(0) performed with di erent coincidence detection techniques," Journal of the Optical Society of America B, vol. 24, no. 12, p. 2972, 2007.; [36] Y. Shih, An Introduction to Quantum Optics Photon and Biphoton Physics. CRC Press, 2011.; [37] D. Branning, S. Bhandari, and M. Beck, "Low-cost coincidence-counting electronics for undergraduate quantum optics," American Journal of Physics, vol. 77, no. 7, pp. 667-670, 2009.; [38] R. Joost and R. Salomon, "CDL, a precise, low-cost coincidence detector latch," Electronics, vol. 4, no. 4, pp. 1018-1032, 2015.; [39] B. K. Park, Y.-S. Kim, O. Kwon, S.-W. Han, and S. Moon, "High-performance reconfigurable coincidence counting unit based on a field programmable gate array," Applied Optics, vol. 54, no. 15, p. 4727, 2015.; [40] B. J. Pearson and D. P. Jackson, "A hands-on introduction to single photons and quantum mechanics for undergraduates," American Journal of Physics, vol. 78, no. 5, pp. 471-484, 2010.; [41] C.-H. Huang, Y.-H. Wen, and Y.-W. Liu, "Measuring the second order correlation function and the coherence time using random phase modulation," Optics Express, vol. 24, no. 4, p. 4278, 2016.; [42] G. Scarcelli, A. Valencia, and Y. Shih, "Experimental study of the momentum correlation of a pseudothermal field in the photon-counting regime," Physical Review A, vol. 70, no. 5, p. 051802, 2004.; [43] B. Bai, Y. Zhou, R. Liu, H. Zheng, Y. Wang, F. Li, and Z. Xu, "Hanbury brown-twiss efect without two-photon interference in photon counting regime," Scientific Reports, vol. 7, no. 1, p. 2145, 2017.; [44] R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, "Quantum and classical coincidence imaging," Physical Review Letters, vol. 92, no. 3, p. 033601, 2004.; [45] A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, "Ghost imaging with thermal light: Comparing entanglement and ClassicalCorrelation," Physical Review Letters, vol. 93, no. 9, p. 093602, 2004.; [46] A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, "Correlated imaging, quantum and classical," Physical Review A, vol. 70, no. 1, p. 013802, 2004.; [47] A. Valencia, G. Scarcelli, M. DAngelo, and Y. Shih, "Two-photon imaging with thermal light," Physical Review Letters, vol. 94, no. 6, p. 063601, 2005.; [48] F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, "Highresolution ghost image and ghost diffraction experiments with thermal light," Physical Review Letters, vol. 94, no. 18, p. 183602, 2005.; [49] F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, "Differential ghost imaging," Physical Review Letters, vol. 104, no. 25, p. 253603, 2010.; [50] Y. Cai and S.-Y. Zhu, "Ghost interference with partially coherent radiation," Optics Letters, vol. 29, no. 23, p. 2716, 2004.; [51] Y. Cai and S.-Y. Zhu, "Ghost imaging with incoherent and partially coherent light radiation," Physical Review E, vol. 71, no. 5, p. 056607, 2005.; [52] M. DAngelo, A. Valencia, M. H. Rubin, and Y. Shih, "Resolution of quantum and classical ghost imaging," Physical Review A, vol. 72, no. 1, p. 013810, 2005.; [53] M. Bache, D. Magatti, F. Ferri, A. Gatti, E. Brambilla, and L. A. Lugiato, "Coherent imaging of a pure phase object with classical incoherent light," Physical Review A, vol. 73, no. 5, p. 053802, 2006.; [54] F. Ferri, D. Magatti, V. G. Sala, and A. Gatti, "Longitudinal coherence in thermal ghost imaging," Applied Physics Letters, vol. 92, no. 26, p. 261109, 2008.; [55] I. Vidal, D. P. Caetano, E. J. S. Fonseca, and J. M. Hickmann, "Effects of pseudothermal light sources transverse size and coherence width in ghost-interference experiments," Optics Letters, vol. 34, no. 9, p. 1450, 2009.; [56] N. S. Bisht, E. K. Sharma, and H. C. Kandpal, "The in uence of source and object characteristics on coincidence imaging," Journal of Optics, vol. 12, no. 4, p. 045701, 2010.; [57] B. I. Erkmen, "Computational ghost imaging for remote sensing," Journal of the Optical Society of America A, vol. 29, no. 5, p. 782, 2012.; [58] W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, "Three-dimensional ghost imaging lidar via sparsity constraint," Scientific Reports, vol. 6, no. 1, p. 26133, 2016.; [59] P. Clemente, V. Durán, V. Torres-Company, E. Tajahuerce, and J. Lancis, "Optical encryption based on computational ghost imaging," Optics Letters, vol. 35, no. 14, p. 2391, 2010.; [60] S. Li, X.-R. Yao, W.-K. Yu, L.-A. Wu, and G.-J. Zhai, "High-speed secure key distribution over an optical network based on computational correlation imaging," Optics Letters, vol. 38, no. 12, p. 2144, 2013.; [61] G. A. Howland and J. Howell, "Compressive sensing for imaging spatial entanglement," SPIE Newsroom, 2013.; [62] D. Liu, L. Li, H. Chen, Y. Kang, T. Zhang, W. Zhao, W. Dong, and K. Shi, "Complementary normalized compressive ghost imaging with entangled photons," IEEE Photonics Journal, vol. 10, no. 2, pp. 1-7, 2018.; [63] Y. He, G. Wang, G. Dong, S. Zhu, H. Chen, A. Zhang, and Z. Xu, "Ghost imaging based on deep learning," Scientific Reports, vol. 8, no. 1, p. 6469, 2018.; https://repositorio.unal.edu.co/handle/unal/79392Test; Universidad Nacional de Colombia; Repositorio Institucional UN; https://repositorio.unal.edu.coTest/