يعرض 1 - 10 نتائج من 41 نتيجة بحث عن '"Catalytic oxidation"', وقت الاستعلام: 1.63s تنقيح النتائج
  1. 1
    رسالة جامعية
  2. 2
    دورية أكاديمية

    المساهمون: Guerrero Fajardo, Carlos Alberto, López Nieto, José Manuel, Aprovechamiento Energético de Recursos Naturales

    وصف الملف: application/pdf

    العلاقة: D. Burtron, “Development of the Science of Catalysis,” in Handbook of Heterogeneous Catalysis, Wiley, 2008, pp. 17–38.; G. Somorjai, “Surfaces - An introduction,” in Introduction to Surface Chemistry and Catalysis, 1st ed., Wiley, 1994, pp. 1–36.; U. Nieken and O. Watzenberger, “Periodic operation of the Deacon process,” Chem. Eng. Sci., vol. 54, no. 13–14, pp. 2619–2626, Jul. 1999.; M.-Á. Gómez-García, I. Dobrosz-Gómez, E. GilPavas, and J. Rynkowski, “Simulation of an industrial adiabatic multi-bed catalytic reactor for sulfur dioxide oxidation using the Maxwell–Stefan model,” Chem. Eng. J., vol. 282, pp. 101–107, Dec. 2015.; Y. H. Hu and E. Ruckenstein, “Catalytic Conversion of Methane to Synthesis Gas by Partial Oxidation and CO2 Reforming,” Adv. Catal., vol. 48, pp. 297–345, Jan. 2004.; V. Sadykov et al., “Oxide catalysts for ammonia oxidation in nitric acid production: properties and perspectives,” Appl. Catal. A Gen., vol. 204, no. 1, pp. 59–87, Nov. 2000.; A. Lattes, “De l’hydrogénation catalytique à la théorie chimique de la catalyse : Paul Sabatier, chimiste de génie, apôtre de la décentralisation,” Comptes Rendus l’Académie des Sci. - Ser. IIC - Chem., vol. 3, no. 9, pp. 705–709, Sep. 2000.; R. Zimdahl, “Nitrogen,” Six Chem. That Chang. Agric., pp. 55–72, Jan. 2015.; J. M. López Nieto and B. Solsona, Gas phase heterogeneous partial oxidation reactions. 2018.; R. K. Grasselli, “Fundamental principles of selective heterogeneous oxidation catalysis,” Top. Catal., vol. 21, no. 1–3, pp. 79–88, 2002.; P. Mars and D. W. Van Krevelen, “Oxidations carried out by means of vanadium oxide catalysts,” Chem. Eng. Sci., vol. 3, pp. 41–59, 1954.; B. M. Reddy, “Redox Properties of Metal Oxides,” in Chemistry and Applications, J. L. G. Fierro, Ed. CRC Press Taylor & Francis, 2005.; B. K. Hodnett, Heterogeneous Catalytic Oxidation. London, United Kingdom: John Wiley & Sons Inc., 2000.; A. J. Medford et al., “From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis q,” vol. 328, pp. 36–42, 2015.; S. P. S. Andrew, “Theory and practice of the formulation of heterogeneous catalysts,” Chem. Eng. Sci., vol. 36, no. 9, pp. 1431–1445, 1981.; C. Perego and P. Villa, “Catalyst preparation methods,” Catal. Today, vol. 34, pp. 281–305, 1997.; B. Heinrichs, S. Lambert, N. Job, and J. P. Pirard, “Sol-Gel Synthesis of Supported Metals,” in Catalyst Preparation Science and Engineering, Taylor& Francis Group, 2007, pp. 163–208.; N. R. Hunter, H. D. Gesser, L. A. Morton, and P. S. Yarlagadda, “Methanol Formation at High Pressure by the Catalyzed Oxidation of Natural Gas and by the Sensitized Oxidation of Methane,” Appl. Catal., vol. 57, pp. 45–54, 1990.; S. Teichner and G. Gardes, “Methods for the Manufacture of Composite Catalysts Containing a Composition of a Transition Metal on a Support,” 3963646, 1976.; M. Astier et al., “Preparation and Catalytic Properties of Supported Metal or Metal-Oxide on Inorganic Oxide Aerogels,” Stud. Surf. Sci. Catal., vol. 1, no. 3, pp. 315–330, 1976.; S. Kistler, “Coherent Expanded-Aerogels,” J. Phys. Chem., vol. 36, no. 1, pp. 52–64, 1931.; A. Kaiser, C. Gorsmann, and C. Schubert, “Influence of the Metal Complexation on Size and Composition of Cu/Ni Nano-Particles Prepared by Sol-Gel Processing,” J. Sol-Gel Sci. Technol., vol. 8, no. 1–3, pp. 795–799, 1997.; B. Heinrichs, F. Noville, and J. P. Pirard, “Pd/SiO2-cogelled aerogel catalysts and impregnated aerogel and xerogel catalysts: Synthesis and characterization,” J. Catal., vol. 170, no. 2, pp. 366–376, 1997.; S. Lambert, C. Cellier, P. Grange, J. P. Pirard, and B. Heinrichs, “Synthesis of Pd/SiO2, Ag/SiO2, and Cu/SiO 2 cogelled xerogel catalysts: Study of metal dispersion and catalytic activity,” J. Catal., vol. 221, no. 2, pp. 335–346, 2004.; C. J. Brinker and G. Scherer, Sol-Gel Science The Physics and Chemistry of Sol–Gel Processing. Elsevier, 1990.; D. Ward and E. Ko, “Preparing Catalytic Materials by the Sol-Gel Method,” Ind. Eng. Chem. Res., vol. 34, no. 2, pp. 421–433, 1995.; M. Schneider and A. Baiker, “Titania-based aerogels,” Catal. Today, vol. 35, pp. 339–365, 1997.; C. J. Brinker, “Hydrolysis and condensation of silicates: Effects on structure,” J. Non. Cryst. Solids, vol. 100, no. 1–3, pp. 31–50, 1988.; A. J. Lecloux and J. P. Pirard, “High-temperature catalysts through sol – gel synthesis,” J. Non. Cryst. Solids, vol. 225, pp. 146–152, 1998.; D. Dutoit, M. Scheneider, and A. Baiker, “Titania-Silica Mixed Oxides: I. Influence of Sol-Gel and Drying Conditions on Structural Properties,” J. Catal., vol. 153, no. 1, pp. 165–176, 1995.; W. G. Cortés Ortiz, A. Baena Novoa, and C. A. Guerrero Fajardo, “Structuring-agent role in physical and chemical properties of Mo/SiO2 catalysts by sol-gel method,” J. Sol-Gel Sci. Technol., vol. 89, no. 2, pp. 416–425, 2019.; J. Geus, “Production of Supported Catalysts by Impregnation and (Viscous) Drying,” in Catalyst Preparation Science and Engineering, 2007, pp. 341–370.; B. Weisz, “Sorption-Diffusion in Heterogeneous Systems Part 1,” Trans. Faraday Soc., vol. 63, pp. 1801–1806, 1967.; P. B. Weisz, “Sorption-Diffusion in Heterogeneous Systems Part 2,” Trans. Faraday Soc., vol. 63, pp. 1807–1814, 1967.; P. B. Weisz, “Sorption-Diffusion in Heterogeneous Systems Part 3,” Trans. Faraday Soc., vol. 63, pp. 1815–1823, 1967.; S. Lee and R. Aris, “The Distribution of Active ingredients in Supported Catalysts Prepared by Impregnation,” Catal. Rev. Sci. Eng., vol. 27, no. 2, pp. 207–340, 1985.; E. Gaigneaux, D. De Vos, P. Jacobs, and J. Martens, Scientific Bases for the Preparation of Heterogeneous Catalysts. Elsevier science, 2002.; J. Richardson and J. Harker, “Crystallisation,” in Coulson and Richardson’s Chemical Engineering, 5th ed., Elsevier science, 2002, pp. 827–897.; G. Bergeret and P. Gallezot, “Determination of the atomic structure of solid catalysts by X-ray diffraction,” in Catalyst Characterization Physical Techniques for Solid Materials, 1st ed., B. Imelik and J. Vedrine, Eds. New York: Springer, 1994, pp. 417–442.; Y. Waseda, E. Matsubara, and K. Shinoda, X-Ray Diffraction Crystallography. New York: Springer, 2011.; W. F. Smith and J. Hashemi, Fundamentos de la Ciencia e Ingeniería de Materiales, 4th ed. McGraw Hill, 2006.; G. Coudurier and F. Lefebvre, “Infrared Spectroscopy,” in Catalyst Characterization Physical Techniques for Solid Materials, B. Imelik and J. C. Vedrine, Eds. New York: Springer, 1994, pp. 11–43.; E. Garbowsky and G. Coudurier, “Raman Spectroscopy,” in Catalyst Characterization Physical Techniques for Solid Materials, B. Imelik and J. C. Vedrine, Eds. New York: Springer, 1994, pp. 45–60.; D. C. Boffito et al., “Spectroscopy,” in Experimental Methods and Instrumentation for Chemical Engineers, Second Edi., G. . Patience, Ed. Amsterdan: Elsevier B.V., 2018, pp. 339–383.; E. Garbowsky and H. Praliaud, “Electronic spectroscopy,” in Catalyst Characterization Physical Techniques for Solid Materials, B. Imelik and J. C. Vedrine, Eds. Amsterdan: Springer, 1994, pp. 61–90.; M. Fadoni and L. Lucarelli, “Temperature programmed desorption, reduction, oxidation and flow chemisorption for the characterisation of heterogeneous catalysts. Theoretical aspects, instrumentation and applications,” in Studies in Surface Science and Catalysis, vol. 120, A. Dabrowski, Ed. Elsevier, 1999, pp. 177–225.; K. S. W. Sing, “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity,” Pure Appl. Chem., vol. 54, no. 11, pp. 2201–2218, 1982.; ASTM, Standard Practice for Calculation of Pore Size Distributions of Catalysts and Catalyst Carriers from Nitrogen Desorption Isotherms. United States, 2012, pp. 1–6.; J. R. H. Ross, Heterogeneous Catalysis Fundamentals and Applications, 1st ed. Amsterdan: Elsevier, 2012.; A. Yoshida, Y. Kaburagi, and Y. Hishiyama, “Scanning Electron Microscopy,” in Materials Science and Engineering of Carbon, Tsinghua University Press Limited, 2016, pp. 71–93.; T. Kogure, “Electron Microscopy,” in Handbook of Clay Science, 2nd ed., vol. 5, Elsevier Ltd., 2013, pp. 275–317.; M. Aziz and A. F. Ismail, “X-Ray Photoelectron Spectroscopy,” in Membrane Characterization, Elsevier B.V., 2017, pp. 81–93.; S. T. Yong, C. W. Ooi, S. P. Chai, and X. S. Wu, “Review of methanol reforming-Cu-based catalysts, surface reaction mechanisms, and reaction schemes,” Int. J. Hydrogen Energy, vol. 38, no. 22, pp. 9541–9552, 2013.; A. Riaz, G. Zahedi, and J. Klemes, “A review of cleaner production methods for the manufacture of methanol,” J. Clean. Prod., vol. 57, pp. 19–37, 2013.; M. J. da Silva, “Synthesis of methanol from methane: Challenges and advances on the multi-step (syngas) and one-step routes (DMTM ),” Fuel Process. Technol., vol. 145, pp. 42–61, 2016.; P. G. Cifre and O. Badr, “Renewable hydrogen utilisation for the production of methanol,” vol. 48, pp. 519–527, 2007.; A. Alizadeh, N. Mostoufi, and F. Jalali-Farahani, “Multiobjective Dynamic Optimization of an Industrial Steam Reformer with Genetic Algorithms,” Int. J. Chem. React. Eng., vol. 5, no. 1, 2007.; A. P. E. York, T. C. Xiao, M. L. H. Green, and J. B. Claridge, “Methane oxyforming for synthesis gas production,” Catal. Rev. - Sci. Eng., vol. 49, no. 4, pp. 511–560, 2007.; H. al-Qahtani, “Effect of ageing on a steam reforming catalyst,” Chem. Eng. J., vol. 66, no. 1, pp. 51–56, Jan. 1997.; J.-P. Lange, “Methanol synthesis: a short review of technology improvements,” Catal. Today, vol. 64, no. 1–2, pp. 3–8, Jan. 2001.; P. J. . Tijm, F. . Waller, and D. . Brown, “Methanol technology developments for the new millennium,” Appl. Catal. A Gen., vol. 221, no. 1–2, pp. 275–282, Nov. 2001.; S. S. Öztürk, Y. T. Shah, and W.-D. Deckwer, “Comparison of gas and liquid phase methanol synthesis processes,” Chem. Eng. J., vol. 37, no. 3, pp. 177–192, Mar. 1988.; R. Malhotra, Fossyl Energy: Selected Entries from the Encyclopedia of Sustainability Science and Technology. Oxford UK: Springer, 2012.; R. Raudaskoski, E. Turpeinen, R. Lenkkeri, E. Pongrácz, and R. L. Keiski, “Catalytic activation of CO2: Use of secondary CO2 for the production of synthesis gas and for methanol synthesis over copper-based zirconia-containing catalysts,” Catal. Today, vol. 144, no. 3–4, pp. 318–323, Jun. 2009.; F. Manenti, S. Cieri, and M. Restelli, “Considerations on the steady-state modeling of methanol synthesis fixed-bed reactor,” Chem. Eng. Sci., vol. 66, no. 2, pp. 152–162, Jan. 2011.; G. Zahedi, A. Jahanmiri, and M. R. Rahimpor, “A Neural Network Approach for Prediction of the CuO-ZnO-Al2O3 Catalyst Deactivation,” Int. J. Chem. React. Eng., vol. 3, no. 1, 2005.; D. Delgado et al., “Influence of Phase Composition of Bulk Tungsten Vanadium Oxides on the Aerobic Transformation of Methanol and Glycerol,” Eur. J. Inorg. Chem., vol. 2018, no. 10, pp. 1204–1211, 2018.; J. M. Tatibouët, “Methanol oxidation as a catalytic surface probe,” Appl. Catal. A Gen., vol. 148, no. 2, pp. 213–252, 1997.; H. Hu and I. E. Wachs, “Catalytic properties of supported molybdenum oxide catalysts: In situ Raman and methanol oxidation studies,” J. Phys. Chem., vol. 99, no. 27, pp. 10911–10922, 1995.; Y. C. Liu, G. L. Griffin, S. S. Chan, and I. E. Wachs, “Photo-oxidation of methanol using MoO3TiO2: Catalyst structure and reaction selectivity,” J. Catal., vol. 94, no. 1, pp. 108–119, Jul. 1985.; J. S. Chung, R. Miranda, and C. O. Bennett, “Mechanism of partial oxidation of methanol over MoO3,” J. Catal., vol. 114, no. 2, pp. 398–410, Dec. 1988.; M. Ai, “Catalytic activity for the oxidation of methanol and the acid-base properties of metal oxides,” J. Catal., vol. 54, no. 3, pp. 426–435, Oct. 1978.; N. Pernicone, F. Lazzerin, G. Liberti, and G. Lanzavecchia, “On the mechanism of CH3OH oxidation to CH2O over MoO3-Fe2(MoO4)3 catalyst,” J. Catal., vol. 14, no. 4, pp. 293–302, Aug. 1969.; G. Busca, A. S. Elmi, and P. Forzatti, “Mechanism of selective methanol oxidation over vanadium oxide-titanium oxide catalysts: A FT-IR and flow reactor study,” J. Phys. Chem., vol. 91, no. 20, pp. 5263–5269, 1987.; G. Busca, “On the mechanism of methanol oxidation over vanadia-based catalysts: a FT-IR study of the adsorption of methanol, formaldehyde and formic acid on vanad,” J. Mol. Catal., vol. 50, no. 2, pp. 241–249, Mar. 1989.; A. S. Elmi, E. Tronconi, C. Cristiani, J. P. Gomez Martin, P. Forzatti, and G. Busca, “Mechanism and Active Sites for Methanol Oxidation to Methyl Formate over Coprecipitated Vanadium-Titanium Oxide Catalysts,” Ind. Eng. Chem. Res., vol. 28, no. 4, pp. 387–393, 1989.; G. Busca, “Infrared studies of the reactive adsorption of organic molecules over metal oxides and of the mechanisms of their heterogeneously-catalyzed oxidation,” Catal. Today, vol. 27, no. 3–4, pp. 457–496, Feb. 1996.; L. Kong et al., “Green and rapid synthesis of iron molybdate catalyst by mechanochemistry and their catalytic performance for the oxidation of methanol to formaldehyde,” Chem. Eng. J., vol. 364, pp. 390–400, May 2019.; H. Adkins and W. R. Peterson, “The oxidation of methanol with air over iron, molybdenum, and iron-molybdenum oxides,” J. Am. Chem. Soc., vol. 53, no. 4, pp. 1512–1520, 1931.; B. R. Yeo et al., “The surface of iron molybdate catalysts used for the selective oxidation of methanol,” Surf. Sci., vol. 648, pp. 163–169, 2016.; T. C. R. Rocha et al., “The silver-oxygen system in catalysis: New insights by near ambient pressure X-ray photoelectron spectroscopy,” Phys. Chem. Chem. Phys., vol. 14, no. 13, pp. 4554–4564, 2012.; B. M. Reddy, “Redox Properties of Metal Oxides,” in Metal Oxides Chemistry and Applications, J. L. G. Fierro, Ed. New York, EE.UU: Taylor & Francis Group, 2006, pp. 215–236.; G. Deo and I. E. Wachs, “Reactivity of Supported Vanadium Oxide Catalysts: The Partial Oxidation of Methanol,” J. Catal., vol. 146, no. 2, pp. 323–334, Apr. 1994.; D. Monti, A. Reller, and A. Baiker, “Methanol oxidation on K2SO4-promoted vanadium pentoxide: Activity, reducibility, and structure of catalysts,” J. Catal., vol. 93, no. 2, pp. 360–367, 1985.; D. Gasser, “Methanol oxidation on vanadium oxide catalyst prepared by in situ activation of amorphous vanadium pentoxide precursor,” J. Catal., vol. 113, no. 2, pp. 325–333, 1988.; L. Briand, L. Gambaro, and H. Thomas, “Promotion effects of titanium on partial oxidation of methanol over vanadium pentoxide catalysts,” J. Catal., vol. 161, no. 2, pp. 839–860, 1996.; C. T. Wang, M. T. Chen, and D. L. Lai, “Surface characterization and reactivity of vanadium-tin oxide nanoparticles,” Appl. Surf. Sci., vol. 257, no. 11, pp. 5109–5114, 2011.; D. P. Depuccio, L. Ruíz, E. Rodríguez, P. Botella, J. M. López Nieto, and C. C. Landry, “Investigating the Influence of Au Nanoparticles on Porous SiO2- WO3 and WO3 Methanol Transformation Catalysts,” J. Phys. Chem., vol. 120, pp. 27954–27963, 2016.; G. C. Behera and K. Parida, “Selective gas phase oxidation of methanol to formaldehyde over aluminum promoted vanadium phosphate,” Chem. Eng. J., vol. 180, pp. 270–276, 2012.; R. M. Navarro, M. A. Peña, and J. L. G. Fierro, “Methane Oxidation on Metal Oxides,” in Metal Oxides Chemistry and Applications, J. L. G. Fierro, Ed. New York, EE.UU: Taylor& Francis Group, 2006, pp. 463–482.; W. Taifan and J. Baltrusaitis, “CH4 conversion to value added products: Potential, limitations and extensions of a single step heterogeneous catalysis,” Appl. Catal. B Environ., vol. 198, 2016.; V. R. Choudhary, A. S. Mamman, and S. D. Sansare, “Selective Oxidation of Methane to CO and H, over Ni/MgO at Low Temperatures,” Angew. Chemie, no. 9, pp. 1189–1190, 1992.; A. Ashcroft, A. Cheetham, and M. Green, “Partial oxidation of methane to synthesis gas using carbon dioxide,” Nature, vol. 352, pp. 225–226, 1991.; J. S. Lee and S. T. Oyama, “Catalysis Reviews : Science and Engineering Oxidative Coupling of Methane to Higher Hydrocarbons,” Catal. Rev. Sci. Eng., vol. 30, no. 2, pp. 249–280, 1988.; R. Aiello, J. E. Fiscus, H.-C. zur Loye, and M. D. Amiridis, “Hydrogen production via the direct cracking of methane over Ni/SiO2: catalyst deactivation and regeneration,” Appl. Catal. A Gen., vol. 192, no. 2, pp. 227–234, Feb. 2000.; T. Choudhary, C. Sivadinarayana, C. Chusuei, A. Klinghoffer, and D. Goodman, “Hydrogen Production via Catalytic Decomposition of Methane,” J. Catal., vol. 199, no. 1, pp. 9–18, Apr. 2001.; M. M. Koranne, D. W. Goodman, and G. W. Zajac, “Direct conversion of methane to higher hydrocarbons via an oxygen free, low-temperature route,” Catal. Letters, vol. 30, no. 1–4, pp. 219–234, 1995.; R. Burch, D. J. Crittle, and M. J. Hayes, “C–H bond activation in hydrocarbon oxidation on heterogeneous catalysts,” Catal. Today, vol. 47, no. 1–4, pp. 229–234, Jan. 1999.; R. Burch and M. J. Hayes, “C-H bond activation in hydrocarbon oxidation on solid catalysts,” J. Mol. Catal. A Chem., vol. 100, no. 1–3, pp. 13–33, Nov. 1995.; K. Campbell, E. Morales, and J. Lunsford, “Gas-Phase Coupling of Methyl Radicals during the,” J. Am. Chem. Soc., vol. 109, no. 25, pp. 7900–7901, 1987.; P. Forzatti and G. Groppi, “Catalytic combustion for the production of energy,” Catal. Today, vol. 54, no. 1, pp. 165–180, Nov. 1999.; H. D. Gesser and N. R. Hunter, “A review of C-1 conversion chemistry,” Catal. Today, vol. 42, no. 3, pp. 183–189, 1998.; Y. Wang and K. Otsuka, “Catalytic Oxidation of Methane to Methanol with H2-O2 Gas Mixture at Atmospheric Pressure,” J. Catal., vol. 155, no. 2, pp. 256–267, Sep. 1995.; D. Klvana, J. Chaouki, C. Guy, and J. Kirchnerová, “Catalytic combustion: New catalysts for new technologies,” Combust. Sci. Technol., vol. 121, no. 1–6, pp. 51–65, 1996.; R. J. Farrauto and R. M. Heck, “Environmental catalysis into the 21st century,” Catal. Today, vol. 55, no. 1–2, pp. 179–187, Jan. 2000.; S. Abelló and D. Montané, “Exploring iron-based multifunctional catalysts for fischer-tropsch synthesis: A review,” ChemSusChem, vol. 4, no. 11, pp. 1538–1556, 2011.; J. Hargreaves, G. Hutchings, and R. Joyner, “Control of product selectivity in the partial oxidation of methane.,” Nature, vol. 348, pp. 428–429, 1990.; R. Herman, Q. Sun, C. Shi, and K. Klier, “Development of active oxide catalysts for the direct oxidation of methane to formaldehyde,” Catal. Today, vol. 37, pp. 1–14, 1997.; Y. I. Pyatnitskii, “Contemporary methods for the direct catalytic conversion of methane.,” Theor. Exp. Chem., vol. 39, no. 4, pp. 201–218, 2003.; K. Fujimoto, F. H. Ribeiro, M. Avalos-Borja, and E. Iglesia, “Structure and Reactivity of PdOx / ZrO2 Catalysts for Methane Oxidation at Low Temperatures,” J. Catal., vol. 179, pp. 431–442, 1998.; J. Lange, “Economics of alkane conversion,” in Sustainable Strategies for the Upgrading of Natural Gas: Fundamentals, Challenges, and Opportunities, E. Derouane, V. Parmon, F. Lemos, and F. Ramoa, Eds. Dordrecht: Springer, 2005, pp. 51–83.; S. H. Taylor, J. S. J. Hargreaves, G. J. Hutchings, R. W. Joyner, and C. W. Lembacher, “The partial oxidation of methane to methanol: An approach to catalyst design,” Catal. Today, vol. 42, no. 3, pp. 217–224, Jul. 1998.; C. Hammond et al., “Direct Catalytic Conversion of Methane to Methanol in an Aqueous Medium by using Copper-Promoted Fe-ZSM-5,” Angew. Chemie, vol. 51, no. 21, pp. 5129–5133, 2012.; O. Benlounes, S. Mansouri, C. Rabia, and S. Hocine, “Direct oxidation of methane to oxygenates over heteropolyanions,” J. Nat. Gas Chem., vol. 17, no. 3, pp. 309–312, Sep. 2008.; C. Michel and E. J. Baerends, “What Singles out the FeO2+ Moiety? A Density-Functional Theory Study of the Methane-to-Methanol Reaction Catalyzed by the First Row Transition-Metal Oxide Dications MO (H2O)p2+,M=V - Cu,” Inorg. Chem., vol. 48, no. 8, pp. 3628–3638, 2009.; N. R. Foster, “Direct catalytic oxidation of methane to methanol — A review,” Appl. Catal., vol. 19, no. 1, pp. 1–11, Jan. 1985.; G. S. Walker, J. A. Lapszewicz, and G. A. Foulds, “Partial oxidation of methane to methanol - comparison of heterogeneous catalyst and homogeneous gas phase reactions,” Catal. Today, vol. 21, no. 94, pp. 519–526, 1994.; R. Raja and P. Ratnasamy, “Direct conversion of methane to methanol,” Appl. Catal. a-General, vol. 158, pp. L7–L15, 1997.; S. H. Taylor, J. S. J. Hargreaves, G. J. Hutchings, R. W. Joyner, and C. W. Lembacher, “The partial oxidation of methane to methanol: An approach to catalyst design,” Catal. Today, vol. 42, pp. 217–224, 1998.; Y. Hu, M. Anpo, and C. Wei, “Effect of the local structures of V-oxides in MCM-41 on the photocatalytic properties for the partial oxidation of methane to methanol,” J. Photochem. Photobiol. A Chem., vol. 264, pp. 48–55, 2013.; S. Mansouri, O. Benlounes, C. Rabia, R. Thouvenot, M. M. Bettahar, and S. Hocine, “Partial oxidation of methane over modified Keggin-type polyoxotungstates,” J. Mol. Catal. A Chem., vol. 379, pp. 255–262, 2013.; M. V. Parfenov, E. V. Starokon, L. V. Pirutko, and G. I. Panov, “Quasicatalytic and catalytic oxidation of methane to methanol by nitrous oxide over FeZSM-5 zeolite,” J. Catal., vol. 318, pp. 14–21, 2014.; A. Parmaliana and F. Arena, “Working Mechanism of Oxide Catalysts in the Partial Oxidation of Methane to Formaldehyde. I. Catalytic Behaviour of SiO2, MoO3/SiO2, V2O5/SiO2, TiO2, and V2O5/TiO2Systems,” J. Catal., vol. 167, no. 1, pp. 57–65, Apr. 1997.; C. A. Guerrero Fajardo, “Oxidación selectiva de metano hasta formaldehído.,” Universidad Nacional de Colombia y Laboratoire Des Matériaux, Surfaces Et Procédés Pour La Catalyse, 2008.; C. A. Guerrero Fajardo, Y. N’Guyen, C. Courson, and A.-C. Roger, “Fe/SiO2 catalysts for the selective oxidation of methane to formaldehyde,” Ing. e Investig., vol. 26, no. 2, pp. 37–44, 2006.; J. D. Del Río, G. A. Durán, Á. Londoño Orjuela, F. J. Sánchez, and C. A. Guerrero Fajardo, “Partial oxidation of methane to formaldehyde on MoO3, Fe2O3 and ferromolybdenum catalysts,” Ing. e Investig., vol. 27, no. 1, pp. 19–24, 2007.; C. A. Guerrero-Fajardo, D. Niznansky, Y. N’Guyen, C. Courson, and A.-C. Roger, “Methane selective oxidation to formaldehyde with Fe-catalysts supported on silica or incorporated into the support,” Catal. Commun., vol. 9, no. 5, pp. 864–869, 2008.; C. Guerrero and J. Sánchez, “Síntesis de catalizadores de Fe-Mo soportados sobre sílice para la oxidación selectiva de metano hasta formaldehído,” Ing. e Investig., vol. 29, no. 1, pp. 53–59, 2009.; C. Alberto, G. Fajardo, F. José, S. Castellanos, A. Roger, and C. Courson, “Síntesis sol-gel de catalizadores de hierro soportados sobre sílice y titania para la oxidación selectiva de metano hasta formaldehído Sol-gel synthesis of iron catalysers supported on silica and titanium for selectively oxidising methane to formaldehyde,” vol. 28, no. 1, pp. 72–80, 2008.; R. Sanchis et al., “Porous clays heterostructures as supports of iron oxide for environmental catalysis,” Chem. Eng. J., vol. 334, no. November 2017, pp. 1159–1168, 2018.; S. Benomar, A. Massó, B. Solsona, R. Issaadi, and J. López Nieto, “Vanadium Supported on Alumina and/or Zirconia Catalysts for the Selective Transformation of Ethane and Methanol,” Catalysts, vol. 8, no. 4, 2018.; C. V. Loricera, M. C. Alvarez-Galvan, R. Guil-Lopez, A. A. Ismail, S. A. Al-Sayari, and J. L. G. Fierro, “Structure and Reactivity of sol–gel V/SiO2 Catalysts for the Direct Conversion of Methane to Formaldehyde,” Top. Catal., vol. 60, no. 15–16, pp. 1129–1139, 2017.; J. M. López Nieto and B. Solsona, “Gas phase heterogeneous partial oxidation reactions,” in Metal Oxides in Heterogeneous Catalysis, J. C. Vedrine, Ed. Amsterdan}: Elsevier, 2018, pp. 211–286.; F. Ivars and J. M. López Nieto, “Light Alkanes Oxidation: Targets Reached and Current Challenges,” in Handbook of Advanced Methods and Processes in Oxidation Catalysis, 2014, pp. 767–834.; M. Bowker, M. House, A. Alshehri, C. Brookes, E. K. Gibson, and P. P. Wells, “Selectivity determinants for dual function catalysts: applied to methanol selective oxidation on iron molybdate,” Catal. Struct. React., vol. 1, no. 2, pp. 95–100, 2015.; F. Adam and A. Iqbal, “Silica supported amorphous molybdenum catalysts prepared via sol-gel method and its catalytic activity,” Microporous Mesoporous Mater., vol. 141, no. 1–3, pp. 119–127, 2011.; A. F. Wright and M. S. Lehmann, “The structure of quartz at 25 and 590°C determined by neutron diffraction,” J. Solid State Chem., vol. 36, no. 3, pp. 371–380, Mar. 1981.; A. Alayat, D. . Mcllroy, and A. McDonald, “Effect of synthesis and activation methods on the catalytic properties of silica nanospring (NS)-supported iron catalyst for Fischer-Tropsch synthesis,” Fuel Process. Technol., vol. 169, pp. 132–141, Jan. 2018.; S. Liu, K. Yao, L.-H. Fu, and M.-G. Ma, “Selective synthesis of Fe 3 O 4 , γ-Fe 2 O 3 , and α-Fe 2 O 3 using cellulose-based composites as precursors,” RSC Adv., vol. 6, no. 3, pp. 2135–2140, 2016.; X. Zhang, Y. Niu, X. Meng, Y. Li, and J. Zhao, “Structural evolution and characteristics of the phase transformations between α-Fe2O3, Fe3O4 and γ-Fe2O3 nanoparticles under reducing and oxidizing atmospheres,” CrystEngComm, vol. 15, no. 40, p. 8166, 2013.; G. S. Parkinson, “Iron oxide surfaces,” Surf. Sci. Rep., vol. 71, no. 1, pp. 272–365, Mar. 2016.; G. M. Pajonk, “Aerogel Synthesis,” in Catalyst Preparation Science and Engineering, J. Regalbuto, Ed. Boca Raton: Taylor & Francis Group, 2007, pp. 31–44.; V. K. Vyas et al., “Assessment of nickel oxide substituted bioactive glass-ceramic on in vitro bioactivity and mechanical properties,” Boletín la Soc. Española Cerámica y Vidr., vol. 55, no. 6, pp. 228–238, Nov. 2016.; Y. Wang, S. Huang, S. Kang, C. Zhang, and X. Li, “Low-cost route for synthesis of mesoporous silica materials with high silanol groups and their application for Cu(II) removal,” Mater. Chem. Phys., vol. 132, no. 2–3, pp. 1053–1059, 2012.; K. Khalil and S. Makhlouf, “High surface area thermally stabilized porous iron oxide/silica nanocomposites via a formamide modified sol–gel process,” Appl. Surf. Sci., vol. 254, no. 13, pp. 3767–3773, Apr. 2008.; C. J. Brinker and G. Scherer, “Structural Evolution during Consolidation,” in Sol-Gel Science, San Diego: Academic Press, 1990, pp. 514–615.; M. Pudukudy and Z. Yaakob, “Methane decomposition over Ni, Co and Fe based monometallic catalysts,” Chem. Eng. J., vol. 262, pp. 1009–1021, 2015.; Z. Zhan and H. C. Zeng, “A catalyst-free approach for sol–gel synthesis of highly mixed ZrO2–SiO2 oxides,” J. Non. Cryst. Solids, vol. 243, pp. 26–38, 1999.; R. Neumann and M. Levin-Elad, “Metal Oxide (TiO2, MoO3, WO3) Substituted Silicate Xerogels as Catalysts for the Oxidation of Hydrocarbons with Hydrogen Peroxide,” J. Catal., vol. 166, no. 2, pp. 206–217, Mar. 1997.; R. Ahlawat, N. Rani, and B. Goswami, “Synthesis and characterizations of Eu2O3 nanocrystallites and its effect on optical investigations of Eu3+, Eu2+: SiO2 nanopowder,” J. Alloys Compd., vol. 743, pp. 126–135, 2018.; T. Mahmood, S. U. Din, A. Naeem, S. Mustafa, M. WAseem, and M. Hamayun, “Adsorption of arsenate from aqueous solution on binary mixed oxide of iron and silicon,” Chem. Eng. J., vol. 192, pp. 90–98, Jun. 2012.; A. H. Fakeeha, A. A. Ibrahim, W. U. Khan, K. Seshan, R. L. Al Otaibi, and A. S. Al-Fatesh, “Hydrogen production via catalytic methane decomposition over alumina supported iron catalyst,” Arab. J. Chem., vol. 11, no. 3, pp. 405–414, 2015.; B. Gu et al., “Polyaniline-supported iron catalyst for selective synthesis of lower olefins from syngas,” J. Energy Chem., vol. 26, no. 4, pp. 608–615, 2017.; T. Tański, W. Matysiak, Ł. Krzemiński, P. Jarka, and K. Gołombek, “Optical properties of thin fibrous PVP/SiO 2 composite mats prepared via the sol-gel and electrospinning methods,” Appl. Surf. Sci., vol. 424, pp. 184–189, 2017.; C. J. Brinker and G. W. Scherer, “Surface Chemistry and Chemical Modification,” in Sol-Gel Science, United states: Academic Press Inc., 1990, pp. 616–672.; T. Herranz, S. Rojas, F. J. Pérez-Alonso, M. Ojeda, P. Terreros, and J. L. G. Fierro, “Carbon oxide hydrogenation over silica-supported iron-based catalysts: Influence of the preparation route,” Appl. Catal. A Gen., vol. 308, pp. 19–30, Jul. 2006.; T. Tsoncheva et al., “Formation of catalytic active sites in iron modified activated carbons from agriculture residues,” Microporous Mesoporous Mater., vol. 217, pp. 87–95, 2015.; “Enhanced adsorption of acetylsalicylic acid over hydrothermally synthesized iron oxide-mesoporous silica MCM-41 composites,” J. Taiwan Inst. Chem. Eng., vol. 65, pp. 591–598, Aug. 2016.; S. Buttha, S. Youngme, J. Wittayakun, and S. Loiha, “Formation of iron active species on HZSM-5 catalysts by varying iron precursors for phenol hydroxylation,” Mol. Catal., vol. 461, no. June, pp. 26–33, 2018.; J. Pérez-Ramírez, “Active iron sites associated with the reaction mechanism of N2 O conversions over steam-activated FeMFI zeolites,” J. Catal., vol. 227, no. 2, pp. 512–522, 2004.; M. S. Kumar, M. Schwidder, W. Grünert, and A. Brückner, “On the nature of different iron sites and their catalytic role in Fe-ZSM-5 DeNOx catalysts: New insights by a combined EPR and UV/VIS spectroscopic approach,” J. Catal., vol. 227, no. 2, pp. 384–397, 2004.; P. M. Cuesta Zapata, M. S. Nazzarro, M. L. Parentis, E. E. Gonzo, and N. A. Bonini, “Effect of hydrothermal treatment on Cr-SiO2mesoporous materials,” Chem. Eng. Sci., vol. 101, pp. 374–381, 2013.; K. S. W. Sing, “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Provisional),” Pure Appl. Chem., vol. 54, no. 11, 1982.; J. Feng, Y. Xiao, Y. Jiang, and J. Feng, “Synthesis, structure, and properties of silicon oxycarbide aerogels derived from tetraethylortosilicate/polydimethylsiloxane,” Ceram. Int., vol. 41, pp. 5281–5286, 2015.; J. B. Pang, K. Y. Qiu, and Y. Wei, “Preparation of mesoporous silica materials with non-surfactant hydroxy-carboxylic acid compounds as templates via sol ± gel process,” vol. 283, pp. 101–108, 2001.; K. Khoabane, E. M. Mokoena, and N. J. Coville, “Synthesis and study of ammonium oxalate sol-gel templated silica gels,” Microporous Mesoporous Mater., vol. 83, no. 1–3, pp. 67–75, 2005.; E. Paparazzo, XPS studies of Fe/Al2O3 and Fe82B18/Al2O3 small particle systems. Elsevier B.V., 2013.; A. P. Grosvenor, B. A. Kobe, M. C. Biesinger, and N. S. McIntyre, “Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds,” Surf. Interface Anal., vol. 36, no. 12, pp. 1564–1574, 2004.; G. . Bukhtiyarova, V. . Bukhtiyarov, N. . Sakaeva, V. . Kaichev, and B. . Zolotovskii, “XPS study of the silica-supported Fe-containing catalysts for deep or partial H2S oxidation,” J. Mol. Catal. A Chem., vol. 158, no. 1, pp. 251–255, Sep. 2000.; J. D. Desai, H. M. Pathan, S.-K. Min, K.-D. Jung, and O. S. Joo, “FT-IR, XPS and PEC characterization of spray deposited hematite thin films,” Appl. Surf. Sci., vol. 252, no. 5, pp. 1870–1875, Dec. 2005.; G. F. Moreira, E. R. Peçanha, M. B. M. Monte, L. S. Leal, and F. Stavale, “XPS study on the mechanism of starch-hematite surface chemical complexation,” Miner. Eng., vol. 110, no. April, pp. 96–103, 2017.; “Assessment of nickel oxide substituted bioactive glass-ceramic on in vitro bioactivity and mechanical properties,” Boletín la Soc. Española Cerámica y Vidr., vol. 55, no. 6, pp. 228–238, Nov. 2016.; N. Maheswari and G. Muralidharan, “Controlled synthesis of nanostructured molybdenum oxide electrodes for high performance supercapacitor devices,” Appl. S, vol. 416, pp. 461–469, 2017.; M. A. Bañares and J. L. G. Fierro, “Methane-Selective Oxidation of Silica-Supported Molybdenum ( VI ) Catalysts Structure and Catalytic Performance,” in Catalytic selective oxidation, no. Vi, Washington, DC: American Chemical Society, 1993, pp. 354–367.; C. C. Williams, J. G. Ekerdt, J. M. Jehng, F. D. Hardcastle, and I. E. Wachs, “A Raman and ultraviolet diffuse reflectance spectroscopic investigation of alumina-supported molybdenum oxide,” J. Phys. Chem., vol. 95, no. 22, pp. 8791–8797, 1991.; N. Kakuta and Y. Udagawa, “Molybdenum Oxide Structure on Silica-Supported Catalysts Studied by Raman Spectroscopy and Extended X-ray Absorption Fine Structure Spectroscopy,” J. Phys. Chem., vol. 92, no. 4, pp. 2583–2587, 1988.; C. Balachandran, J. F. Muñoz, and T. Arnold, “Characterization of alkali silica reaction gels using Raman spectroscopy,” Cem. Concr. Res., vol. 92, pp. 66–74, 2017.; A. A. Ibrahim, A. H. Fakeeha, A. S. Al-Fatesh, A. E. Abasaeed, and W. U. Khan, “Methane decomposition over iron catalyst for hydrogen production,” Int. J. Hydrogen Energy, vol. 40, no. 24, pp. 7593–7600, 2015.; L. Feng, X. Li, D. B. Dadyburjor, and E. L. Kugler, “A temperature-programmed-reduction study on alkali-promoted, carbon-supported molybdenum catalysts,” J. Catal., vol. 190, no. 1, pp. 1–13, 2000.; M. A. Banares, H. Hu, and I. E. Wachs, “Molybdena on silica catalysts: Role of preparation methods on the structure-selvtivity properties fo the oxidation of methanol,” J. Catal., vol. 150, pp. 407–420, 1994.; S. Rajagopal, H. . Marini, A. Marzari, and R. Miranda, “Silica-Alumina-Supported Acidic Molybdenum Catalysts - TPR and XRD Characterization,” J. Catal., vol. 147, pp. 417–428, 1994.; C.-B. Wang, R. G. Herman, C. Shi, Q. Sun, and J. E. Roberts, “V2O5-SiO2 xerogels for methane oxidation to oxygenates: preparation, characterization, and catalytic properties,” Appl. Catal. A Gen., vol. 247, no. 2, pp. 321–333, Jul. 2003.; C. V. Loricera, M. C. Alvarez-Galvan, R. Guil-Lopez, A. A. Ismail, S. A. Al-Sayari, and J. L. G. Fierro, “Structure and Reactivity of sol–gel V/SiO2Catalysts for the Direct Conversion of Methane to Formaldehyde,” Top. Catal., vol. 60, no. 15–16, pp. 1129–1139, 2017.; D. E. Keller, T. Visser, F. Soulimani, D. C. Koningsberger, and B. M. Weckhuysen, “Hydration effects on the molecular structure of silica-supported vanadium oxide catalysts: A combined IR, Raman, UV-vis and EXAFS study,” Vib. Spectrosc., vol. 43, no. 1, pp. 140–151, 2007.; J. He, Y. Li, D. An, Q. Zhang, and Y. Wang, “Selective oxidation of methane to formaldehyde by oxygen over silica-supported iron catalysts,” J. Nat. Gas Chem., vol. 18, no. 3, pp. 288–294, 2009.; C. G. Hill and J. H. Wilson III, “Raman spectroscopy of iron molybdate catalyst systems Part II . Preparation of supported catalysts,” J. Mol. Catal., vol. 67, pp. 57–77, 1991.; D. Jing and M. Skoglundh, “Controlling Selectivity in Direct Conversion of Methane into Formaldehyde/Methanol over Iron Molybdate via Periodic Operation Conditions,” Energy Fuels, vol. 26, pp. 1984–1987, 2012.; S. Lai et al., “Performance of Fe-ZSM-5 for selective catalytic reduction of NOx with NH3: Effect of the atmosphere during the preparation of catalysts,” J. Mol. Catal. A Chem., vol. 424, pp. 232–240, Dec. 2016.; Y. Miao, G. Lu, X. Liu, Y. Guo, Y. Wang, and Y. Guo, “The molybdenum species of MoO3/SiO2 and their catalytic activities for the epoxidation of propylene with cumene hydroperoxide,” J. Ind. Eng. Chem., vol. 16, no. 1, pp. 45–50, Jan. 2010.; A. Duan et al., “Characterization and activity of Mo supported catalysts for diesel deep hydrodesulphurization,” Catal. Today, vol. 119, no. 1–4, pp. 13–18, Jan. 2007.; L. Meng, X. Zhu, and E. J. M. Hensen, “Stable Fe/ZSM-5 Nanosheet Zeolite Catalysts for the Oxidation of Benzene to Phenol,” ACS Catal., vol. 7, no. 4, pp. 2709–2719, 2017.; M. F. Cardinal, M. Lovino, and D. L. Bernik, “Comparative study of the porosity induced by CTAB and Tween as silica templates,” Mater. Sci. Eng. C, vol. 27, no. 1, pp. 75–79, Jan. 2007.; J. Cecilia, M. Soriano, A. Natoli, E. Rodríguez-Castellón, and J. López Nieto, “Selective Oxidation of Hydrogen Sulfide to Sulfur Using Vanadium Oxide Supported on Porous Clay Heterostructures (PCHs) Formed by Pillars Silica, Silica-Zirconia or Silica-Titania,” Materials (Basel)., vol. 11, no. 9, p. 1562, 2018.; B. Solsona, T. Blasco, J. . Lopez Nieto, M. . Peña, F. Rey, and A. Vidal-Moya, “Vanadium Oxide Supported on Mesoporous MCM-41 as Selective Catalysts in the Oxidative Dehydrogenation of Alkanes,” J. Catal., vol. 203, pp. 443–452, 2001.; “Quartz Mineral Data.” [Online]. Available: http://webmineral.com/data/Quartz.shtml#.XOityIhKjIUTest. [Accessed: 24-May-2019].; “Hematite Mineral Data.” [Online]. Available: http://webmineral.com/data/Hematite.shtml#.XOisR4hKjIUTest. [Accessed: 24-May-2019].; “Molybdite Mineral Data.” [Online]. Available: http://webmineral.com/data/Molybdite.shtml#.XOitI4hKjIUTest. [Accessed: 24-May-2019].; “Shcherbinaite Mineral Data.” [Online]. Available: http://webmineral.com/data/Shcherbinaite.shtml#.XOitb4hKjIUTest. [Accessed: 24-May-2019].; D. A. Skoog, F. J. . Holler, and S. R. Crouch, Principios de análisis instrumental, Sexta. México: CENAGE Learning, 2008.; A. Bakhtyari and M. R. Rahimpour, “Methanol to Dimethyl Ether,” in Methanol, 1st ed., Elsevier B.V., 2018, pp. 281–312.; Z. Azizi, M. Rezaeimanesh, T. Tohidian, and M. R. Rahimpour, “Dimethyl ether: A review of technologies and production challenges,” Chem. Eng. Process. Process Intensif., vol. 82, pp. 150–172, Aug. 2014.; B. T. H. Adkins and P. D. Perkins, “The behavior of methanol over alumunum and zinc oxides,” J. Phys. Chem., vol. 32, no. 2, pp. 221–224, 1928.; C. D. Chang, “Hydrocarbons from methanol,” Catal. Rev. - Sci. Eng., vol. 25, no. 1, pp. 1–118, 1983.; T. Mole and J. A. Whiteside, “Conversion of methanol to ethylene over ZSM-5 zeolite in the presence of deuterated water,” J. Catal., vol. 75, no. 2, pp. 284–290, Jun. 1982.; J. Spivey, “Review: Dehydratation catalysts for the methanol/dimethyl ether reaction,” Chem. Eng. Commun., vol. 110, no. 1, pp. 123–142, 1991.; J. Bandiera and C. Naccache, “Kinetics of methanol dehydration on dealuminated H-mordenite: Model with acid and basic active centres,” Appl. Catal., vol. 69, no. 1, pp. 139–148, Jan. 1991.; L. Kubelková, J. Nováková, and K. Nedomová, “Reactivity of surface species on zeolites in methanol conversion,” J. Catal., vol. 124, no. 2, pp. 441–450, Aug. 1990.; S. R. Blaszkowski and R. A. Van Santent, “Density Functional Theory Calculations of the Activation of Methanol by a Brensted Zeolitic Proton,” J. Phys. Chem., vol. 99, pp. 11728–11738, 1995.; S. R. Blaszkowski and R. A. van Santen, “The Mechanism of Dimethyl Ether Formation from Methanol Catalyzed by Zeolitic Protons,” J. Am. Chem. Soc., vol. 188, no. 21, pp. 5152–5153, 1996.; F. Yaripour, F. Baghaei, I. Schmidt, and J. Perregaard, “Catalytic dehydration of methanol to dimethyl ether (DME) over solid-acid catalysts,” Catal. Commun., vol. 6, no. 2, pp. 147–152, Feb. 2005.; Y. Fu, T. Hong, J. Chen, A. Auroux, and J. Shen, “Surface acidity and the dehydration of methanol to dimethyl ether,” Thermochim. Acta, vol. 434, no. 1–2, pp. 22–26, Aug. 2005.; A. J. Nagy, G. Mestl, D. Herein, G. Weinberg, E. Kitzelmann, and R. Schlögl, “The correlation of subsurface oxygen diffusion with variations of silver morphology in the silver-oxygen system,” J. Catal., vol. 182, no. 2, pp. 417–429, 1999.; H. Schubert, U. Tegtmeyer, D. Herein, X. Bao, M. Muhler, and R. Schlögl, “On the relation between catalytic performance and microstructure of polycrystalline silver in the partial oxidation of methanol,” Catal. Letters, vol. 33, no. 3–4, pp. 305–319, 1995.; G. J. Millar and M. Collins, “Industrial Production of Formaldehyde using Polycrystalline Silver Catalyst,” Ind. Eng. Chem. Res., vol. 56, no. 33, pp. 9247–9265, 2017.; I. E. Wachs and R. J. Madix, “The Oxidation of Methanol on Ag (110) Catalyst,” Surf. Sci., vol. 76, pp. 531–558, 1978.; D. Delgado et al., “Tungsten-titanium mixed oxide bronzes: Synthesis, characterization and catalytic behavior in methanol transformation,” Appl. Catal. A Gen., May 2019.; M. Soriano, A. Chieregato, S. Zamora, F. Basile, F. Cavani, and J. M. López Nieto, “Promoted Hexagonal Tungsten Bronzes as Selective Catalysts in the Aerobic Transformation of Alcohols : Glycerol and Methanol,” Top. Catal., vol. 59, pp. 178–185, 2016.; I. A. Fisher and A. T. Bell, “A Mechanistic Study of Methanol Decomposition over Cu/SiO2, ZrO2/SiO2, and Cu/ZrO2/SiO2,” Journ, vol. 184, pp. 357–376, 1999.; M. Manzoli, A. Chiorino, and F. Boccuzzi, “Decomposition and combined reforming of methanol to hydrogen: A FTIR and QMS study on Cu and Au catalysts supported on ZnO and TiO2,” Appl. Catal. B Environ., vol. 57, no. 3, pp. 201–209, 2005.; G. Busca, J. Lamotte, J. ciaude Lavalley, and V. Lorenzelli, “FT-IR Study of the Adsorption and Transformation of Formaldehyde on Oxide Surfaces,” J. Am. Chem. Soc., vol. 109, no. 17, pp. 5197–5202, 1987.; G. A. M. Hussein, N. Sheppard, M. I. Zaki, and R. B. Fahim, “Infrared spectroscopic studies of the reactions of alcohols over group IVB metal oxide catalysts. Part 1. - Propan-2-ol over TiO2, ZrO2 and HfO2,” J. Chem. Soc. Faraday Trans., vol. 87, no. 16, pp. 2655–2659, 1991.; N. W. Cant, S. P. Tonner, D. L. Trimm, and M. S. Wainwright, “Isotopic labeling studies of the mechanism of dehydrogenation of methanol to methyl formate over copper-based catalysts,” J. Catal., vol. 91, no. 2, pp. 197–207, 1985.; R. Zhang, Y. Sun, and S. Peng, “In situ FTIR studies of methanol adsorption and dehydrogenation over Cu/SiO2 catalyst,” Fuel, vol. 81, no. 11–12, pp. 1619–1624, 2002.; A. A. Pechenkin, S. D. Badmaev, V. D. Belyaev, and V. A. Sobyanin, “Performance of bifunctional CuO-CeO2/γ-Al2O3 catalyst in dimethoxymethane steam reforming to hydrogen-rich gas for fuel cell feeding,” Appl. Catal. B Environ., vol. 166–167, pp. 535–543, 2015.; Y. Meng, T. Wang, S. Chen, Y. Zhao, X. Ma, and J. Gong, “Selective oxidation of methanol to dimethoxymethane on V2O5-MoO3 /γ-Al2O3 catalysts,” Appl. Catal. B Environ., vol. 160–161, no. 1, pp. 161–172, 2014.; H. Liu and E. Iglesia, “Selective One-Step Synthesis of Dimethoxymethane via Methanol or Dimethyl Ether Oxidation on H3+nVnMo 12-nPO40 Keggin Structures,” J. Phys. Chem. B, vol. 107, no. 39, pp. 10840–10847, 2003.; H. Zhao, S. Bennici, J. Shen, and A. Auroux, “Nature of surface sites of V2O5–TiO2/SO42- catalysts and reactivity in selective oxidation of methanol to dimethoxymethane,” J. Catal., vol. 272, no. 1, pp. 176–189, May 2010.; J. Y. Bo, S. Zhang, and K. H. Lim, “Steam reforming of formaldehyde on Cu(100) surface: A density functional study,” Catal. Letters, vol. 129, no. 3–4, pp. 444–448, 2009.; S. Braun, L. G. Appel, V. L. Camorim, and M. Schmal, “Thermal spreading of MoO3 onto silica supports,” J. Phys. Chem. B, vol. 104, no. 28, pp. 6584–6590, 2000.; J. Tatibouet, “A structure-sensitive oxidation reaction: Methanol on molybdenum trioxide catalysts,” J. Catal., vol. 72, no. 2, pp. 375–378, 2004.; T.-J. Yang and J. H. Lunsford, “Partial oxidation of methanol to formaldehyde over molybdenum oxide on silica,” J. Catal., vol. 103, no. 1, pp. 55–64, Jan. 1987.; M. Massa, R. Häggblad, S. Hansen, and A. Andersson, “Oxidation of methanol to formaldehyde on cation vacant Fe-V-Mo-oxide,” Appl. Catal. A Gen., vol. 408, no. 1–2, pp. 63–72, 2011.; B. M. Weckhuysen and D. E. Keller, “Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis,” Catal. Today, vol. 78, pp. 25–46, 2003.; I. E. Wachs, G. Deo, M. V. Juskelis, and B. M. Weckhuysen, “Methanol oxidation over supported vanadium oxide catalysts: New fundamental insights about oxidation reactions over metal oxide catalysts from transient and steady state kinetics,” Stud. Surf. Sci. Catal., vol. 109, pp. 305–314, Jan. 1997.; I. E. Wachs et al., “Selective Catalytic Reduction of NO with NH3 over Supported Vanadia Catalysts,” J. Catal., vol. 161, no. 1, pp. 211–221, Jun. 1996.; I. E. Wachs et al., “Fundamental Studies of Butane Oxidation over Model-Supported Vanadium Oxide Catalysts: Molecular Structure-Reactivity Relationships,” J. Catal., vol. 170, no. 1, pp. 75–88, Aug. 1997.; J. T. Grant, J. M. Venegas, W. P. McDermott, and I. Hermans, “Aerobic Oxidations of Light Alkanes over Solid Metal Oxide Catalysts,” Chem. Rev., vol. 118, no. 5, pp. 2769–2815, 2018.; M. J. Cheng and W. A. Goddard, “The critical role of phosphate in vanadium phosphate oxide for the catalytic activation and functionalization of n-butane to maleic anhydride,” J. Am. Chem. Soc., vol. 135, no. 12, pp. 4600–4603, 2013.; I. E. Wachs, J.-M. Jehng, G. Deo, B. M. Weckhuysen, V. V. Guliants, and J. B. Benziger, “In situ Raman spectroscopy studies of bulk and surface metal oxide phases during oxidation reactions,” Catal. Today, vol. 32, no. 1–4, pp. 47–55, Dec. 1996.; P. Schwach, X. Pan, and X. Bao, “Direct Conversion of Methane to Value-Added Chemicals over Heterogeneous Catalysts: Challenges and Prospects,” Chem. Rev., vol. 117, no. 13, pp. 8497–8520, 2017.; E. Kleimenov et al., “XPS investigations of VPO catalysts under reaction conditions,” Surf. Sci., vol. 575, no. 1–2, pp. 181–188, Jan. 2005.; D. Lesser, G. Mestl, and T. Turek, “Transient behavior of vanadyl pyrophosphate catalysts during the partial oxidation of n‑butane in industrial-sized, fixed bed reactors,” Appl. Catal. A Gen., vol. 510, pp. 1–10, Jan. 2016.; V. R. Choudhary and V. H. Rane, “Acidity/basicity of rare-earth oxides and their catalytic activity in oxidative coupling of methane to C2-hydrocarbons,” J. Catal., vol. 130, no. 2, pp. 411–422, Aug. 1991.; V. Arutyunov, “Direct Methane to Methanol : Historical and Kinetics Aspects,” in Methanol: Science and Engineering, Elsevier B.V., 2018, pp. 129–172.; M. Ravi, M. Ranocchiari, and J. A. van Bokhoven, “The Direct Catalytic Oxidation of Methane to Methanol—A Critical Assessment,” Angew. Chemie - Int. Ed., vol. 56, no. 52, pp. 16464–16483, 2017.; M. C. Alvarez-Galvan, N. Mota, M. Ojeda, S. Rojas, R. M. Navarro, and J. L. G. Fierro, “Direct methane conversion routes to chemicals and fuels,” Catal. Today, vol. 171, no. 1, pp. 15–23, Aug. 2011.; T. Blasco, P. Concepcion, J. M. Lopez Nieto, and J. Perez Pariente, “Preparation, Characterization, and Catalytic Properties of VAPO-5 for the Oxydehydrogenation of Propane,” J. Catal., vol. 152, no. 1, pp. 1–17, Mar. 1995.; M. Eichelbaum et al., “The electronic factor in alkane oxidation catalysis,” Angew. Chemie - Int. Ed., vol. 54, no. 10, pp. 2922–2926, 2015.; Z. Zhang, X. E. Verykios, and M. Baerns, “Effect of Electronic Properties of Catalysts for the Oxidative Coupling of Methane on Their Selectivity and Activity,” Catal. Rev., vol. 36, no. 3, pp. 507–556, 2007.; E. N. Voskresenskaya, A. G. Anshits, and V. Roguleva, “Oxidant activation over structural defects of oxide catalysts in oxidative methane coupling,” Catal. Rev., vol. 37, no. 1, pp. 101–143, 1995.; N. Dietl, M. Schlangen, and H. Schwarz, “Thermal hydrogen-atom transfer from methane: The role of radicals and spin states in oxo-cluster chemistry,” Angew. Chemie - Int. Ed., vol. 51, no. 23, pp. 5544–5555, 2012.; P. Käßner and M. Baerns, “Comparative characterization of basicity and acidity of metal oxide catalysts for the oxidative coupling of methane by different methods,” Appl. Catal. A Gen., vol. 139, no. 1–2, pp. 107–129, 1996.; R. Polnišer, M. Štolcová, M. Hronec, and M. Mikula, “Structure and reactivity of copper iron pyrophosphate catalysts for selective oxidation of methane to formaldehyde and methanol,” Appl. Catal. A Gen., vol. 400, pp. 122–130, 2011.; J. Xu et al., “Continuous selective oxidation of methane to methanol over Cu- and Fe-modified ZSM-5 catalysts in a flow reactor,” Catal. Today, vol. 270, pp. 93–100, 2016.; M. Brown and N. Parkyns, “Progress in the partial oxidation of methane to methanol and formaldehyde,” Catal. Today, vol. 8, pp. 305–335, 1991.; E. V. Starokon, M. V. Parfenov, S. S. Arzumanov, L. V. Pirutko, A. G. Stepanov, and G. I. Panov, “Oxidation of methane to methanol on the surface of FeZSM-5 zeolite,” J. Catal., vol. 300, pp. 47–54, 2013.; N. La Salvia, D. Delgado, L. Ruiz-Rodríguez, L. Nadji, A. Massó, and J. M. López Nieto, “V- and Nb-containing tungsten bronzes catalysts for the aerobic transformation of ethanol and glycerol. Bulk and supported materials,” Catal. Today, vol. 296, pp. 2–9, Nov. 2017.; K. Chen, S. Xie, A. T. Bell, and E. Iglesia, “Structure and properties of oxidative dehydrogenation catalysts based on MoO3/Al2O3,” J. Catal., vol. 198, no. 2, pp. 232–242, 2001.; Y. Lou, Q. Tang, H. Wang, B. Chia, Y. Wang, and Y. Yang, “Selective oxidation of methane to formaldehyde by oxygen over SBA-15-supported molybdenum oxides,” Appl. Catal. A Gen., vol. 350, no. 1, pp. 118–125, Nov. 2008.; Y. V. Plyuto, I. V. Babich, I. V. Plyuto, A. D. Van Langeveld, and J. A. Moulijn, “XPS studies of MoO3/Al2O3 and MoO3/SiO2 systems,” Appl. Surf. Sci., vol. 119, no. 1–2, pp. 11–18, Sep. 1997.; K.-W. Park, J. H. Jung, H.-J. Seo, and O.-Y. Kwon, “Mesoporous silica-pillared kenyaite and magadiite as catalytic support for partial oxidation of methane,” Microporous Mesoporous Mater., vol. 121, no. 1–3, pp. 219–225, May 2009.; F. G. E. Nogueira, J. H. Lopes, A. C. Silva, R. M. Lago, J. D. Fabris, and L. C. A. Oliveira, “Catalysts based on clay and iron oxide for oxidation of toluene,” Appl. Clay Sci., vol. 51, no. 3, pp. 385–389, Feb. 2011.; C. Brookes et al., “The Nature of the Molybdenum Surface in Iron Molybdate. the Active Phase in Selective Methanol Oxidation,” J. Phys. Chem. C, vol. 118, no. 45, pp. 26155–26161, 2014.; P. Mills and J. L. Sullivan, “A study of the core level electrons in iron and its three oxides by means of X-ray photoelectron spectroscopy,” J. Phys. D. Appl. Phys., vol. 16, no. 5, pp. 723–732, May 1983.; C. Brookes, M. Bowker, and P. P. Wells, “Catalysts for the selective oxidation of methanol,” Catalysts, vol. 6, no. 7, 2016.; K. Routray, W. Zhou, C. J. Kiely, W. Grünert, and I. E. Wachs, “Origin of the synergistic interaction between MoO3 and iron molybdate for the selective oxidation of methanol to formaldehyde,” J. Catal., vol. 275, no. 1, pp. 84–98, 2010.; K. Routray and I. Wachs, “Role of Excess MoO3 in Iron-Molybdate Methanol Oxidation Catalysts,” Am. Chem. Soc, p. 233, 2007.; J. He, Y. Li, A. Dongli, Q. Zhang, and Y. Wang, “Selective oxidation of methane to formaldehyde by oxygen over silica-supported iron catalysts,” J. Nat. Gas Chem., vol. 18, no. 3, pp. 288–294, Sep. 2009.; T. Kobayashi, N. Guilhaume, J. Miki, N. Kitamura, and M. Haruta, “Oxidation of methane to formaldehyde over FeSiO2 and SnW mixed oxides,” Catal. Today, vol. 32, no. 1–4, pp. 171–175, Dec. 1996.; F. Arena et al., “Structure and reactivity in the selective oxidation of methane to formaldehyde of low-loaded FeOx/SiO2 catalysts,” J. Catal., vol. 231, no. 2, pp. 365–380, Apr. 2005.; A. Parmaliana, F. Arena, V. Sokolovskii, F. Frusteri, and N. Giordano, “A comparative study of the partial oxidation of methane to formaldehyde on bulk and silica supported MoO3 and V2O5 catalysts,” Catal. Today, vol. 28, no. 4, pp. 363–371, Sep. 1996.; W. Yang, X. Wang, Q. Guo, Q. Zhang, and Y. Wang, “Superior catalytic performance of phosphorus-modified molybdenum oxide clusters encapsulated inside SBA-15 in the partial oxidation of methane,” New J. Chem., vol. 27, no. 9, pp. 1301–1303, 2003.; https://repositorio.unal.edu.co/handle/unal/77809Test

  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية

    المؤلفون: García Caro, William

    المساهمون: Carriazo Baños, José Gegorio, Laboratorio de Diseño y Reactividad de Estructuras Sólidas (Lab-DRES)

    وصف الملف: application/pdf

    العلاقة: Abbasi, Z., Haghighi, M., Fatehifar, E., & Saedy, S. (2011). Synthesis and physicochemical characterizations of nanostructured Pt/Al2O3–CeO2 catalysts for total oxidation of VOCs. Journal of Hazardous Materials, 186(2-3), 1445-1454. doi:10.1016/j.jhazmat.2010.12.034; Agula, B., Deng, Q.-F., Jia, M.-L., Liu, Y., Zhaorigetu, B., & & Yuan, Z.-Y. (2011). Catalytic oxidation of CO and toluene over nanostructured mesoporous NiO/Ce0.8Zr0.2O2 catalysts. Reaction Kinetics, Mechanisms and Catalysis, 103, 101. doi:10.1007/s11144-011-0296-1; Ambiente, A. E. (2009). Air Pollution. Air Pollution Emissions. Unión Europea. Copenhagen: Agencia Europea del Ambiente.; Atta, N., Galal, A., & El-Ads, E. (2016). Perovskite Nanomaterials – Synthesis, Characterization, and Applications. In L. Pan, & G. Zhu, Perovskite Materials, 107-151. Intechopen. doi:10.5772/61280; Avci, A., Trimm, D. L., & Önsan, I. (2001). Heterogeneous reactor modeling for simulation of catalytic oxidation and steam reforming of methane. Chemical Engineering Science, 56(2), 641-649. doi:10.1016/S0009-2509(00)00271-2; Balzer, R., Probst, L. F., Drago, V., Schreiner, W. H., & Fajardo, H. V. (2014). Catalytic oxidation of volatile organic compounds (n-hexane, benzene, toluene, o-xylene) promoted by cobalt catalysts supported on γ-Al2O3-CeO2. Brazilian Journal of Chemical Engineering, 31(3), 757-769. doi:10.1590/0104-6632.20140313s00002802.; Barakat, T., Idakiev, V., Cousin, R., Shao, G.-S., Yuan, Z.-Y., Tabakova, T., & Siffert, S. (Marzo). Total oxidation of toluene over noble metal based Ce, Fe and Ni doped titanium oxides. Applied Catalysis B: Environmental, 146, 138-146. doi:10.1016/j.apcatb.2013.05.064; Bayati, M. R., Molaei, R., Budai, J. D., Narayan, R. J., & Narayan, J. (2013). Role of substrate crystallographic characteristics on structure and properties of rutile TiO2 epilayers. Journal of Applied Physics, 114, 1-14. doi:10.1063/1.4816470; Bellard, C., Bertelsmeier, C., Leadley, P., & Thuiller, W. &. (2012). Impacts of climate change on the future of biodiversity. Ecology Letters, 15(4), 365-377. doi:10.1111/j.1461-0248.2011.01736.x; Bellat, J. P., Bezverkhyy, I., Weber, G., Royer, S., Averlant, R., Giraudon, J.-M., & Lmonier, J. F. (2015). Capture of formaldehyde by adsorption on nanoporous materials. Journal Hazardous Materials, 300, 711-717. doi:10.1016/j.jhazmat.2015.07.078; Bertinchamps, F., Attianese, A., Mestdagh, M. M., & Gaigneaux, E. M. (2006). Catalysts for chlorinated VOCs abatement: Multiple effects of water on the activity of VOx based catalysts for the combustion of chlorobenzene. Catalysis Today, 112(1-4), 165-168. doi:10.1016/j.cattod.2005.11.043; Bogacki, M., & Sygula, P. (2013). The impact of biogenic volatile organic compounds emission on photochemical processes ocurring in the troposphere. Geomatics and environmental engineering, 7(1), 37-46. doi:10.7494/geom.2013.7.1.37; Branderburg, R. (2017). Dielectric barrier discharges: progress on plasma sources and the understanding of regimes and single filaments. Plasma Sources Science and Technology, 26, 053001. doi:10.1088/1361-6595/aa6426; Cai, Y. Z., Hu, W., Zheng, C., Yang, Y., Chen, M., & Gao, X. (2018). Plasma-catalytic decomposition of ethyl acetate over LaMO3 (M=Mn, Fe, y Co) perovskite catalyst. Journal of Industrial and Engineering Chemistry, 70, 447-452. doi:10.1016/j.jiec.2018.11.007; Cao, X., Lv, X., Qiu, J., Hu, S., Liu, S., & Huang, X. (2012). Catalytic Oxidation of Toluene over CuyMnzOx/γ-Al2O3 Catalysts. Advanced Materials Research, 454, 7-10. doi:10.4028/www.scientific.net/AMR.454.7; Carrillo, A. M., & Carriazo, J. G. (2015). Cu and Co oxides supported on halloysite for the total oxidation of toluene. Applied Catalysis B: Environmental, 164, 443-452. doi:10.1016/j.apcatb.2014.09.027; Chae, J.-o., Moon, S.-i., Sun, H.-s., Kim, K.-y., Vassiev, V., & & Mikholap, E. M. (1999). A study of volatile organic compounds decomposition with the use of non-thermal plasma. KSME International Journal, 13, 647-655. doi:10.1007/BF03184575; Chen, X., Cai, S., Yu, E., Chen, J., & Jia, H. (2019). MnOx/Cr2O3 composites prepared by pyrolysis of Cr-MOF precursors containing in situ assembly of MnOx as high stable catalyst for toluene oxidation. Applied Surface Science, 475, 312-324. doi:10.1016/j.apsusc.2018.12.277; Cho, C.-H., & Ihm, S.-K. (2002). Development of New Vanadium-Based Oxide Catalysts for Decomposition of Chlorinated Aromatic Pollutants. Enviromental Science & Technology, 36(7), 1600-1606. doi:10.1021/es015687h; Ciccioli, P., Centritto, M., & Loreto, F. (01 de Abril de 2014). Biogenic volatile organic compound emissions from vegetation fires. Plant, Cell & Environment, 37(8), 1810-1825. doi:10.1111/pce.12336; Corpuz, A., & Richards, R. (2010). Chemistry of Rocksalt-Structured (111) metal oxides. In L. Erickson, R. Koodali, & R. Richards, Nanoscale Metarials in Chemistry: Environmental Applications, 273. Washington: American Chemical Society. doi:10.1021/bk-2010-1045.ch004; Cruz, I., Araujo, J., Freire, C., & Pereira, C. (2018). Multifunctional Ferrite Nanoparticles: From Current Trends Toward the Future. En A. El Gendy, J. M. Barandiaran, & R. Hadimani, Magnetic Nanostructured Materials, 59-116. Elsevier.; de Blas, Maite; Ibáñez, Pablo; García, José Antonio; Gómez, María Carmen; Navazo, Marino; Alonso, Lucio; Durana, Nieves; Iza, Jon; Gangoiti, Gotzon; Sáez de Cámara, Estíbaliz (2018). Summertime high resolution variability of atmospheric formaldehyde. Science of the Total Environment, 862 - 877. doi:https://doi.org/10.1016/j.scitotenv.2018.07.411Test; Deng, Y., Tang, W., Li, W., & Chen, Y. (2018). MnO2-nanowire@NiO-nanosheet core-shell hybrid nanostructure derived interfacial Effect for promoting catalytic oxidation activity. Catalysis Today, 308, 58-63. doi:10.1016/j.cattod.2017.07.007; Dobosz, J., & & Zawadzki, M. (2014). Total oxidation of lean propane over α-Fe2O3 using microwaves as an energy source. Reaction Kinetics, Mechanisms and Catalysis, 114, 157-172. doi:10.1007/s11144-014-0776-1; Dobre, T., Pârvulescu, O., Iavorschi, G., Stroescu, M., & Anicuta, S. (2014). volatile Organic Compounds Removal from gas streams by adsorption onto activated carbon. Industrial & Engineering Chemistry Research, 53(9), 3622-3628. doi:10.1021/ie402504u; Du, C., Gong, X. (2019). Decomposition of volatile organic compounds using corona discharge plasma technology. Journal of the Air & Waste Management Association, 69(8), 879-899. doi:10.1080/10962247.2019.1582441; Dupuis, A.-C., Haija, M. A., Richter, B., Kuhlenbeck, H., & Freund, H.-J. (2003). V2O3(0001) on Au(111) and W(110): growth, termination and electronic structure. Surface Science, 539(1-3), 99-112. doi:10.1016/S0039-6028(03)00752-0; Einaga, H., Yamamoto, S., Maeda, N., & Teraoka, Y. (2015). Structural analysis of manganese oxides supported on SiO2 for benzene oxidation with ozone. Catalysis Today, 242, 287-293. doi:10.1016/j.cattod.2014.05.018; El Assal, Zouhair; Ojala, Satu; Zbair, Mohamed; Echchtouki, Hafid; Nevanpera, Tuomas; Pitkäaho, Satu; Pirault-Roy, Laurence; Bensitel, Mohammed; Brahmi, Rachid; Keiski, Riita L. (2019). Catalytic abatement of dichlorometane over transition metal oxide catalysts: Thermodynamic modelling and experimental studies. Journal of Cleaner Production, 228, 814-823. doi:10.1016/j.jclepro.2019.04.073; Emis. (2020). Emis. Vlaanderen is milieubewust. Recuperado el 06 de Junio de 2020, de Regenerative thermal oxidation: https://emis.vito.be/nl/node/19481Test; Eskandarya, S., Maghsoodi, S., & Shahbazi Kootenaei, A. (2019). Evaluation of LaBO3 (B=Mn, Cr, Mn0.5Cr0.5) perovskites in catalytic oxidation of trichloroethylene. Advances in Environmental Technology, 5(1), 1-8. doi:10.22104/AET.2019.3559.1175; Esposito, S. (2019). "Traditional" Sol-Gel Chemistry as a Powerful Tool for the Preparation of Supported Metal and Metal Oxide Catalyst. Materials (basel), 12(4), 668. doi:10.3390/ma12040668.; Figueruelo Alejano, J., & Marino Dávila, M. (2004). Química física del ambiente y de los procesos medioambientales. Barcelona: Reverté.; Frikha, Kawthar; Limousy, Lionel; Bouaziz, Jamel; Chaari, Kamel; Josien, Ludovic; Nouali, Habiba; Michelin, Laure; Vidal, Loic; Hajjar-Garreau, Samar; Bennici, Simona (2019). Binary oxides prepared by microwave-assisted solution combustion: synthesis,characterization and catalytic activity. Materials, 12(6), 910-926. doi:10.3390/ma12060910; Fu, X., Liu, Y., Yao, W., & Wu, Z. (2016). One-step synthesis of bimetallic Pt-Pd/MCM-41 mesoporous. Catalysis Communications, 83(5), 22-26. doi:10.1016/j.catcom.2016.05.001; Fujimoto, T. M., Ponczek, M., Rochetto, U. L., & Landers, R. &. (2016). Photocatalytic oxidation of selected gas-phase VOCs using UV light, TiO2, and TiO2/Pd. Environmental Science and Pollution Research, 24(7), 6390-6396. doi:10.1007/s11356-016-6494-7; Ganchenkova, M., & Nieminen, R. M. (2015). Mechanical Properties of Silicon Microstructures. In M. Tilli, T. Motooka, V.-M. Airaksinen, S. Franssila, & M. Paulasto-Kröckel, Handbook of Silicon Based MEMS Materials and Technologies, 253-293. Elsevier.; Ganduglia-Pirovano, V., Hofmann, A., & Sauer, J. (2007). Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges. Surface Science Reports, 62(6), 219-270. doi:10.1016/j.surfrep.2007.03.002; Gannoun, C., Delaigle, R., Ghorbel, A., & Gaigneaux, E. M. (2019). V2O5/TiO2 and V2O5/TiO2-SO42- catalysts for the total oxidation of chlorobenzene: one-step sol gel preparation vs. two-step impregnation. Catalysis science & technology(9), 2344-2350. doi:10.1039/C9CY00099B; García, T., Solsona, B., & Taylor, S. (2014). The Catalytic Oxidation of Hydrocarbon Volatile. In D. Duprez, & F. Cavani, Handbook of Advanced Methods and Processes in Oxidation Catalysis. From Laboratory to Industry (Vol. 1, pp. 51-90). Bologne: Imperial College Press. doi:10.1142/9781848167513_0003; Garcia, T., Solsona, B., Cazorla-Amorós, D., Linares-Solano, Á., & Taylor, S. H. (2006). Total oxidation of volatile organic compounds by vanadium promoted palladium-titania catalyst: Comparison of aromatic and polyaromatic compounds. Applied Catalysis B: Environmental, 62(1-2), 66-76. doi:10.1016/j.apcatb.2005.06.016; Genano. (2019). Genano. Recuperado el 06 de Junio de 2020, de Technology options for VOC abatament: https://www.genano.com/es/voc/tecnolog%C3%ADaTest; Geng, W., Zhang, J., Yuan, D., & Sun, R. &. (2018). Application Study on Three-Bed Regenerative Thermal Oxidizers to Treat Volatile Organic Compounds. 2nd International Symposium on Resource Exploration and Environmental Science (p. 042137). IOP Conference Series: Earth and Environmental Science.; Gennequin, C., Lamallem, M., Cousin, R., Siffert, S., Aı¨ssi, F., & Aboukaı¨s, A. (2007). Catalytic oxidation of VOCs on Au/Ce-Ti-O. Catalysis Today, 122(3-4), 301-306. doi:10.1016/j.cattod.2007.03.009; Genty, E., Siffert, S., & Cousin, R. (2019). Investigation of reaction mechanism and kinetic modelling for the toluene. Catalysis Today, 333, 28-35. doi:10.1016/j.cattod.2018.03.018; Gharagozlou, M., & Bayati, R. (2014). Photocatalytic activity and formation of oxygen vacancies in cation doped anastase TiO2 nanoparticles. Ceramics International, 40(7), 10247-10253. doi:10.1016/j.ceramint.2014.02.114; Glazneva, T. S., & Kotsarenko, N. S. (2008). Surface acidity and basicity of oxide catalyst: from aqueous suspensions to in situ measurements. Kinetics and Catalysis, 49, 859-867. doi:10.1134/S0023158408060104; Greedan, J. E. (2017). Introduction to the Crystal Chemistry of Transition Metal Oxides. In J. Maier, Handbook of Solid State Chemistry, 161-220. Wiley. doi:10.1002/9783527691036.hsscvol1005; Guo, T., Yao, M.-S., & Lin, Y.-H. &.-W. (2015). A comprehensive review on synthesis methods for transition-metal oxide nanostructure. CrystEngComm, 17(19), 3551-3585. doi:10.1039/C5CE00034C; Hamid, H. H., Hazman, M. H., Nadzir, M. S., & Uning, R. (2019). Anthropogenic and biogenic volatile organic compounds and ozone formation potential in ambient air of Kuala Lumpur, Malaysia. Conf. Series: Earth and Environmental Science, 228-236.; Han, Q., Liu, X., Shi, W., Zhang, C., Li, E., & Zhu, T. (2019). Catalytic oxidation of ethyl acetate over Ru-Cu bimetallic catalysts: Further insights into reaction mechanism via in situ FTIR and DFT studies. Journal of Catalysis, 369, 482-492. doi:10.1016/j.jcat.2018.11.025; Heynderickx, P., Thybaut, J., Poelman, H., Poelman, D., & Marin, G. (2010). The total oxidation of propane over supported Cu and Ce oxides: A comparison of single and binary metal oxides. Journal of Catalysis, 272(1), 109-120. doi:10.1016/j.jcat.2010.03.006; Hsieh, C.-T., Chen, & Jin-Ming. (2002). Adsorption Energy Distribution Model for VOCs onto Activated Carbons. Journal of Colloid and Interface Science, 255(2), 248-253. doi:10.1006/jcis.2002.8668.; Huang, B., Lei, C., Wei, C., & Zeng, G. (2014b). Chlorinated volatile organic compounds (Cl-VOCs) in environment-sources, potential human health impacts and current remediation technologies. Environment International, 71, 118-138. doi:10.1016/j.envint.2014.06.013; Huang, Ganlin; Brook, Rosie; Crippa, Monica; Janssens-Maenhout, Greet; Schieberle, Christian; Dore, Chris; Guizzardi, Diego; Muntean, Marilena; Schaaf, Edwin; and Friedrich, Rainer (2017a). Speciation of anthropogenic emissions of non-methane volatile organic compounds: a global gridded data set for 1970–2012. Atmospheric Chemistry and Physics, 17, 7683-7701. doi:10.5194/acp-17-7683-2017; Huang, H., Xu, Y., Feng, Q., & Leung, D. Y. (2015c). Low temperature catalytic oxidation of volatile organic. Catalysis Science & Technology, 5(5), 2649-2669. doi:10.1039/C4CY01733A; Ibrahim, M., Labaki, M., Nuns, N., Giraudon, J.-M., & Lamonier, J.‐F. (2019). Cu-Mn Hydroxyapatite materials for toluene total oxidation. ChemCatChem, 12(2), 550-560. doi:10.1002/cctc.201901336; Janotti, A., & Van de Walle, C. G. (2009). Fundamentals of zinc oxide as a semiconductor. Reports on Progress in Physics, 72(12), 126501. doi:10.1088/0034-4885/72/12/126501; Ji, J., Xu, Y., Huang, H., He, M., Liu, S., & Liu, G. (2017). Mesoporous TiO2 under VUV irradiation: Enhanced photocatalytic oxidation for VOCs degradation at room temperature. Chemical Engineeering Journal, 327, 490-499. doi:10.1016/j.cej.2017.06.130; Jian, W., Wang, S.-P., Zhang, H.-X., & Bai, F.-Q. (2019). Disentangling the role of oxygen vacancies on the surface of Fe3O4 and γ-Fe2O3. Inorganic Chemistry Frontiers, 6(10), 245-289. doi:10.1039/C9QI00351G; Jiang, Q., Faraji, S., Slade, D. A., & Stagg-Williams, S. M. (2011a). A Review of Mixed Ionic and Electronic Conducting Ceramic Membranes as Oxygen Sources for High-Temperature Reactors. In S. T. Oyama, & S. M. Stagg-Williams, Inorganic Plymeric and Composite Membranes, 14, 253-273. Amsterdam: Elsevier. doi:10.1016/B978-0-444-53728-7.00011-2; Jiang, S., Handberg, E. S., Liu, F., Liao, Y., Wang, H., Li, Z., & Song, S. (2014b). Effect of doping the nitrogen into carbon nanotubes on the activity of NiO catalysts for the oxidation removal of toluene. Applied Catalysis B: Environmental, 160-161, 716-721. doi:10.1016/j.apcatb.2014.06.026; Jiao, Y., Chen, X., He, F., & Liu, S. (2019). Simple preparation of uniformly distributed mesoporous Cr/TiO2 microspheres for low-temperature catalytic combustion of chlorobenzene. Chemical Engineering Journal, 372, 107-117. doi:10.1016/j.cej.2019.04.118; Kabongo, G., Kawula, T., Thokozani, T., Nyongombe, G., Ozoemena, K., & Dhlamini, S. (2018). Microwave Irradiation Induces Oxygen Vacancy in Metal Oxides based materials and devices: A Review. Journal of Nanosciences: Current Research, 3(2), 1-13. doi:10.4172/2572-0813.1000125; Kalinin, S. V., & Spaldin, N. A. (2013). Functional Ion Defects in Transition Metal Oxides. Science, 341(6148), 858-859. doi:10.1126/science.1243098; Kang, S.-J. L. (2005). Sintering additives and Defect Chemistry. In S.-J. L. Kang, Sintering. Densification, Grain Growth and Microstructure, 173-179. Elsevier.; Kim, H.-H., & Ogata, A. (2011a). Nonthermal plasma activates catalyst: From current understanding and future prospects. The European Physical Journal Applied Physics, 55(1), 13806. doi:10.1051/epjap/2011100444; Kim, J., Lee, S.-H., Lee, J. H., & Hong, K.-H. (2014b). The Role of Intrinsic Defects in Methylammonium Lead Iodide. The Journal of Physical Chemistry Letters, 5(8), 1312-1317. doi:10.1021/jz500370k; Kondratowicz, T., Drozdek, M., Rokicińska, A., Natkański, P., Michalik, M., & Kuśtrowski, P. (2019). Novel CuO-containing catalysts based on ZrO2 hollow spheres for total oxidation of toluene. Microporous and Mesoporous Materials, 279, 446-455. doi:10.1016/j.micromeso.2019.01.031; Kwon, J.-W., Park, H.-W., Kim, W. J., & Kim, M.-G. &.-J. (2018). Exposure to volatile organic compounds and airway inflammation. Environmental Health, 17, 65-73. doi:10.1186/s12940-018-0410-1; Laothawornkitkul, J., Taylor, J. E., & Paul, N. D. (2009). Biogenic volatile organic compounds in the Earth system. New Phytologist, 246-276.; Lawrence, S. J. (2006). Description, Properties, and Degradation of Selected Volatile Organic Compounds Detected in Ground Water--A Review of Selected Literature. USGS. USGS. doi:10.3133/ofr20061338; Li, G. Z., Wang, Z., Huang, H., Peng, H., & Li, X. (2018a). Fabrication of mesoporous Co3O4 oxides by acid treatment and their catalytic performances for toluene oxidation. Applied Catalysis A: General, 550, 67-76. doi:10.1016/j.apcata.2017.11.003; Li, J., Zhang, H., Ying, D., Wang, Y., & Sun, T. &. (2019b). In Plasma Catalytic Oxidation of Toluene Using Monolith CuO Foam as a Catalyst in a Wedged High Voltage Electrode Dielectric Barrier Discharge Reactor: Influence of Reaction Parameters and Byproduct Control. International Journal of Environmental Research and Public Health, 16(5), 711. doi:10.3390/ijerph16050711.; Li, K., Chen, C., Zhang, H., Hu, X., Sun, T., & Jia, J. (2019c). Effects of phase structure of MnO2 and morphology of δ-MnO2 on toluene catalytic oxidation. Applied Surface Science, 496, 143662. doi:10.1016/j.apsusc.2019.143662; Li, W. B., Wang, J. X., & Gong, H. (2009d). Catalytic combustion of VOCs on non-noble metal catalysts. Catalysis Today, 148(1-2), 81-87. doi:10.1016/j.cattod.2009.03.007; Liao, W.-M., Zhao, P.-P., Cen, B.-H., Jia, A.-P., Lu, J.-Q., & Luo, M.-F. (2020). Co-Cr-O mixed oxides for low-temperature total oxidation of propane: structural effects, kinetics, and spectroscopic investigation. Chinese Journal of Catalysis, 41(3), 442-453. doi:10.1016/S1872-2067(19)63480-7; Lim, S. T., Kim, J. H., Lee, C. Y., Koo, S., Jerng, D.-W., & Wongwises, S. a. (2019). Mesoporous graphene adsorbents for the removal of toluene and xylene at various concentrations and its reusability. Scientific Reports, 9, 10922. doi:10.1038/s41598-019-47100-z; Liotta, L. F. (2010). Catalytic Oxidation of volatile organic compounds on supported noble metals. Applied Catalysis B: Environmental, 100(3-4), 403-412. doi:10.1016/j.apcatb.2010.08.023; Liotta, L. F., Ousmane, M., Di Carlo, G., Pantaleo, G., Deganello, G., & Boreave, A. &.-F. (2009). Catalytic Removal of Toluene over Co3O4–CeO2 Mixed Oxide Catalysts: Comparison with Pt/Al2O3. Catalysis Letter, 127, 270-276. doi:10.1007/s10562-008-9640-0; Litt, G., & Almquist, C. (2009). An investigation of CuO/Fe2O3 catalysts for the gas-phase oxidation of ethanol. Applied Catalysis B: Environmental, 90(1-2), 10-17. doi:10.1016/j.apcatb.2009.02.001; Liu, B., Li, W., & Song, W. a. (2018). Carbonate-mediated Mars–van Krevelen mechanism for CO oxidation on cobalt-doped ceria catalysts: facet-dependence and coordination-dependence. Physical Chemistry Chemical Physics, 20(23), 16045-16059. doi:10.1039/C8CP01694A; Liu, L., Sun, J., Ding, J., Zhang, Y., & Jia, J. &. (2019c). Catalytic Oxidation of VOCs over SmMnO3 Perovskites: Catalyst Synthesis, Change Mechanism of Active Species, and Degradation Path of Toluene. Inorganic Chemistry, 58(20), 14275-14283. doi:10.1021/acs.inorgchem.9b02518; Liu, P., Wei, G., He, H., Liang, X., Chen, H., Xi, Y., & Zhu, J. (2019a). The catalytic oxidation of formaldehyde over palygorskite-supported copper and manganese oxides: Catalytic deactivation and regeneration. Applied Surface Science, 464, 287-293. doi:10.1016/j.apsusc.2018.09.070; Liu, Q., Wang, L.-C., Chen, M., Cao, Y., He, H.-Y., & Fan, K.-N. (2019b). Dry citrate-precursor synthesized nanocrystalline cobalt oxide as highly active catalyst for the total oxidation of propane. Journal of Catalysis, 263(1), 104-113. doi:10.1016/j.jcat.2009.01.018; Liu, Y., Deng, J., Xie, S., Wang, Z., & Dai, H. (2016). Catalytic removal of volatile organic compounds using ordered porous transition metal oxide and supported noble metal catalysts. Chinese Journal of Catalysis, 37(8), 1193-1205. doi:10.1016/S1872-2067(16)62457-9; Liu, Y., Yan, L., Gao, W., Zhu, S.-R., Zhan, J., Cao, R., & Zhou, H. (2020). Samarium doping boosts catalytic oxidation of airborne benzene over todorokite-type MnO2. Applied Surface Science, 500, 144043. doi:10.1016/j.apsusc.2019.144043; Lu, J., Liu, J., Zhao, Y., He, D., Han, C., He, S., & Luo, Y. (2019). The identification of active chromium species to enhance catalytic behaviors of alumina-based catalysts for sulfur-containing VOC abatement. Journal of Hazardous Materials, 384, 121289. doi:10.1016/j.jhazmat.2019.121289; Lu, S., Li, K., Huang, F., Chen, C., & Sun, B. (2017a). Efficient MnOx-Co3O4-CeO2 catalysts for formaldehyde elimination. Applied Surface Science, 400, 277-282. doi:10.1016/j.apsusc.2016.12.207; Lu, S., Wang, F., Chen, C., Huang, F., & Li, K. (2017b). Catalytic oxidation of formaldehyde over CeO2-Co3O4 catalysts. Journal of Rare Earths, 35(9), 867-874. doi:10.1016/S1002-0721(17)60988-8; Ma, C., Mu, Z., He, C., Li, P., Li, J., & Hao, Z. (2011). Catalytic oxidation of benzene over nanostructured porous Co3O4-CeO2 composite catalysts. Journal of Environmental Sciences, 23(12), 2078-2086. doi:10.1016/S1001-0742(10)60674-2; Ma, X., Sun, Q., Feng, X., He, X., Guo, J., Sun, H., & Cao, H. (2013). Catalytic oxidation of 1,2-dichlorobenzene over CaCO3/-Fe2O3 nanocomposite catalysts. Applied Catalysis A: General, 450, 143-151. doi:10.1016/j.apcata.2012.10.019; Ma, X., Wen, J., Guo, H., & Ren, G. (2020). Facile templates fabrication of Fe-Mn mixed oxides with hollow microsphere structure for efficient and stable catalytic oxidation of 1,2-dichlorobenzene. Chemical Engineering Journal, 382, 122940. doi:10.1016/j.cej.2019.122940; Manta, C.-M., Banu, I., Bercaru, G., & Bozga, G. (2016). An experimental study of m-xylene combustion over a commercial Pt/alumina catalyst. vUPB Scientific Bulletin, series B: chemistry and materials science, 78(1), 111-120.; Marín Figueredo, M. J., Andana, T., Bensaid, S., Dosa, M., Fino, D., Russo, N., & Piumetti, M. (2020). Cerium-Copper-Manganese Oxides Synthesized via Solution Combustion Synthesis (SCS) for Total Oxidation of VOCs. Catalysis Letters, 150, 1-13. doi:10.1007/s10562-019-03094-x; McCluskey, M. D. (2018). Defects in ZnO. En J. Stehr, I. Buyanova, & W. Chen, Defects in Advanced Electronic Materials and Novel Low Dimensional Structures, 1-25. Elsevier.; McDonald, B., de Gouw, J., Gilman, J., Jathar, S., Cappa, C., & Jimenez, J. (2018). Volatile chemical products emerging as largest petrochemical source of urban organic emissions. Science, 760-764. doi:10.1126/science.aaq0524; Meng, L., & Zhao, H. (2020). Low-temperature complete removal of toluene over highly active nanoparticles CuO-TiO2 synthesized via flame spray pyrolysis. Applied Catalysis B: Environmenta, 264, 118427. doi:10.1016/j.apcatb.2019.118427; Mora-Briceño, P., Jiménez-García, G., Castillo-Araiza, C.-O., González-Rodríguez, H., Huirache-Acuña, R., & Maya-Yescas, R. (2018). Mars van Krevelen mechanism for the selective partial oxidation of ethane. International Journal of Chemical Reactor Engineering, 17(7), 1-13. doi:10.1515/ijcre-2018-0085; Morales-Torres, S., Pérez-Cadenas, A. F., Kapteijn, F., Carrasco-Marín, F., Maldonado-Hódar, F. J., & Moulijn, J. A. (2009). Palladium and platinum catalysts supported on carbon nanofiber coated monoliths for low-temperature combustion of BTX. Applied Catalysis B: Environmental, 89(3-4), 411-419. doi:10.1016/j.apcatb.2008.12.021; Morris Jr, J. W. (2013). Defects in crystals. En W. D. Callister Jr, & D. G. Rethwisch, Materials Science and Engineering: An Introduction, 76-107. Wiley.; Muñoz-Paez, A. (1994). Transition Metal Oxides: Geometric and Electronic Structures: Introducing Solid State Topics in Inorganic Chesmitry Courses. Journal Chemical Education, 71(5), 381-388. doi:10.1021/ed071p381; Nakajima, K., Noma, R., Kitano, M., & Hara, M. (2013). Titania as an Early Transition Metal Oxide with a High Density of Lewis Acid Sites Workable in Water. The Journal of Physical Chemistry C, 117(31), 16028-16033. doi:10.1021/jp404523r; Nilius, N., Sterrer, M., Heyde, M., & Freund, H.-J. (2015). Atomic Scale Characterization of Defects on Oxide Surfaces. En J. Jupille, & G. Thornton, Defects at Oxide Surfaces, 29-80. Springer. doi:10.1007/978-3-319-14367-5_2; Niu, H., Mo, Z., Shao, M., Lu, S., & Xie, S. (2016). Screening the emission sources of volatile organic compounds (VOCs) in China by multi-effects evaluation. Frontiers of Enviromental Science & Engineering, 10, 1-11. Springer. doi:10.1007/s11783-016-0828-z; NPI. (2009). Volatile Organic Compound. Definition and Information. Departament of the Environment, Water, Heritage and the Arts, 1-5.; Ordóñez, S., Bello, L., Sastre, H., Rosal, R., & Dı́ez, F. V. (2002). Kinetics of the deep oxidation of benzene, toluene, n-hexane and their binary mixtures over a platinum on γ-alumina catalyst. Applied Catalysis B: Enviromental, 38(2), 139-149. doi:10.1016/S0926-3373(02)00036-X; Monks, P. S., Tarasova, A. T., Thouret, O., von Schneidemesser, V., Sommariva, E., Wild, R., Williams, M. L. (2015). Tropospheric ozone and its precursors from the urban to the global. Atmos. Chem. Phys., 15(15), 8889–8973. doi:10.5194/acp-15-8889-2015, 2015.; Pan, L., & Li, L. &. (2011). A general synthesis of transition metal oxides with assistance of organic amines and their electrocatalytic properties. Science China Chemistry, 54, 1454-1460. doi:10.1007/s11426-011-4317-8; Prins, R. (2018). Eley-Rideal, the Other Mechanism. Topics in Catalysis, 61, 714-721. doi:10.1007/s11244-018-0948-8; Project, M. (2019a). Materials Project. doi:10.17188/1193796; Project, M. (2019b). Materials Project. doi:10.17188/1187823; Project, M. (2019c). Materials Project. doi:10.17188/1184648; Project, M. (2019d). Materials Project. doi:10.17188/1195334; Project, M. (2019e). Materials Project. Recuperado el 10 de Junio de 2020, de Materials Project: https://materialsproject.org/materials/mp-1185232Test/; Qin, L., Huang, X., Zhao, B., Wang, Y., & Han, J. (2019). Iron oxides as a promoter for Toluene Catalytic Oxidation over Fe-Mn/γ-Al2O3 Catalysts. Catalysis Letters, 150, 802-814. doi:10.1007/s10562-019-02975-5; Qiu, Y., Ye, N., Situ, D., & Zuo, S. a. (2019). Study of catalytic combustion of chlorobenzene and temperature programmed reactions over CrCeOx/AlFe pillared clay catalyst. Materials, 12(5), 728-740. doi:10.3390/ma12050728; Quéléver, Lauriane; Kristensen, Kasper; Jensen, Louise; Rosati, Bernadette; Teiwes, Ricky; Daellenbach, Kaspar; Peräkylä, Otso; Roldin, Pontus; Pedersen, Henrik; Glasius, Marianne; Bilde, Merete; Ehn, Mikael (2018). Effect of temperature on the formation of Highly-oxygenated Organic Molecules (HOMs) from alpha-pinene ozonolysis. Atmospheric Chemistry and Physics, 19(11), 7609-7625. doi:10.5194/acp-19-7609-2019; Rao, C. N. (1989). Transition Metal Oxides. Annual Review of Physical Chemistry, 40, 291-326. doi:10.1146/annurev.pc.40.100189.001451; Rao, G. R., & Mishra, B. G. (2003). Structural, redox and catalytic chemistry of ceria based materials. Bulletin of the Catalysis Society of India, 2, 122-134.; Raveau, B., & Seikh, M. (2012). Crystal chemistry of cobalt oxides. In B. Raveau, & M. Seikh, Cobalt oxides: from crystal chemistry to physics, 3-70. Wiley. doi:10.1002/9783527645527.ch1; Rayner-Canham, G. (2000). Química Inorgánica Descriptiva (Segunda ed.). Ciudad de México: S.A. Alhambra Mexicana.; Rogacehva, A. O., Buzaev, A. A., Brichkov, A. S., Khalipova, O. S., Klestov, S. A., & Paukshtis, E. A. (2019). Catalytically Active Composite Material Based on TiO2/Cr2O3 Hollow Spherical Particles. Kinetics and Catalysis, 60, 484-489. doi:10.1134/S002315841904013X; Ross, J. (2012). The kinetics and mechanism of catalytic reactions. In J. R. Ross, Heterogeneous Catalysis, Primera ed., 123-142. Elsevier. doi:10.1016/B978-0-444-53363-0.10006-4; Ross, J. R. (2019). The kinetics and mechanisms of catalytic reactions. En J. R. Ross, Contemporany Catalysis. Fundamentals and current applications, 161-186. Elsevier. doi:10.1016/b978-0-444-63474-0.00007-2; Sarkar, A. (2019). The formation and detection techniques of oxygen vacancies in titanium oxide-based nano-structures. Nanoscale, 11(8), 3414-3444. doi:10.1039/C8NR09666J; Scholosser, P. M., Bale, A. S., Gibbons, C. F., Wilkins, A., & Cooper, G. S. (Febrero de 2015). Human Health Effects of Dichloromethane: Key Findings and Scientific Issues. Environmental Health Perspectives, 123(2), 114-119. doi:10.1289/ehp.1308030; Sharma, M., Pathak, M., & Kapoor, P. (2018). The Sol-Gel Method: Pathway to Ultrapure and Homogeneous Mixed Metal Oxide Nanoparticles. Asian Journal of Chemistry, 30(7), 1405-1412. doi:10.14233/ajchem.2018.20845; Shayegan, Z., Haghighat, F., & Lee, C.-S. (2019). Photocatalytic oxidation of volatile organic compounds for indoor environment applications: Three different scaled setups. Chemical Engineering Journal, 357, 533-546. doi:10.1016/j.cej.2018.09.167; Shen, Y., Sun, J., Li, l., Yao, Y., Zhou, C., Su, R., & & Yang, Y. (2014, Enero 17). The enhanced magnetodielectric interaction of (1-x)BaTiO3–xCoFe2O4 multiferroic composites. Journal of Materials Chemistry, 2(14), 2545-2551. doi:10.1039/C4TC00008K; Shirai, T., Watanabe, H., Fuji, M., & Takahashi, M. (2009). Structural Properties and Surface Characteristics on Aluminum Oxide Powders. セラミックス基盤工学研究センター年報, 9, 23-31.; Shuai, Jianfei; Kim, Sunshin; Ryu, Hyeonsu; Park, Jinhyeon; Lee, Chae Kwan; Kim, Geun-Bae; Ultra, Venecio U. Jr.; Yang, Wonho (2018). Health risk assessment of volatile organic compounds exposure near Daegu dyeing industrial complex in South Korea. BMC Public Health, 18, 528-541. doi:10.1186/s12889-018-5454-1; Si, W., Wang, Y., Zhao, S., Hu, F., & & Li, J. (2016). A Facile Method for in Situ Preparation of the MnO2/LaMnO3 Catalyst for the Removal of Toluene. Environmental Science & Technology, 50(8), 4572-4578. doi:10.1021/acs.est.5b06255; Silva, F., Martinez, D., Ruiz, J., Mattos, L., Noronha, F., & Hori, C. (2007). The Effect of Pt Loading and Space Velocity on the perfomance of Pt/CeZrO2/Al2O3 catalyst for the partial oxidation of methane. Natural Gas Conversion VIII, Proceedings of the 8th Natural Gas Conversion Symposium. 167, 427-432. Elsevier. doi:10.1016/S0167-2991(07)80169-8; Singh, A., & Kumar, N. (2018). Title study of structural properties of rocksalt (B1). International Journal of Latest Trends in engineering and technology, 9(4), 24-26. doi:10.21172/1.94.05; Smallman, R. E., & Ngan, A. H. (2014). Point Defect Behavior. In R. E. Smallman, & A. H. Ngan, Modern Physical Metallurgy. Octava ed., 251-285. Elsevier. doi:10.1016/B978-0-08-098204-5.00006-7; Solsona, Benjamín; García, Tomás; Aylón, Elvira; Dejoz, Ana M.; Vásquez, Isabel; Agouram, Said; Davies, Thomas; Taylor, Stuart (2011). Promoting the activity and selectivity of high surface area Ni-Ce-O mixed oxides by gold deposition for VOC catalytic combustion. Chemical Engineering Journal, 175(15), 271-278. doi:10.1016/j.cej.2011.09.104; Soni, K. C., & Shekar, S. C. (2019). Catalytic oxidation of bis(2-chloroethyl) ether on vanadia titania nanocatalyst. Arabian Journal of Chemistry, 112(8), 5234-5245. doi:10.1016/j.arabjc.2016.12.023; Soni, V., Singh, P., Shree, V. (2018). Effects of VOCs on Human Health. In N. Sharma, A. Agarwal, P. Eastwood, T. Gupta, & A. P. Singh, Air Pollution and Control (pp. 119-142). Singapore: Springer Nature Singapore Pte Ltd. doi:10.1007/978-981-10-7185-0_8; Sun, Y., Zhou, L., Zhang, L., & Sui, H. (2012). Synergistic effects of non-thermal plasma assisted catalyst and ultrasound on toluene removal. Journal of Environmental Sciences, 24(5), 891-896. doi:10.1016/S1001-0742(11)60842-5; Tang, W., Deng, Y., Li, W., Li, S., Wu, X., & Chen, Y. (2015a). Restrictive nanoreactor for growth of transition metal oxides (MnO2, Co3O4, NiO) nanocrystal with enhanced catalytic oxidation activity. Catalysis Communications, 72, 165-169. doi:10.1016/j.catcom.2015.09.034; Tang, W., Liu, G., Li, D., Liu, H., Wu, X., & Han, N. &. (2015b). Design and synthesis of porous non-noble metal oxides. Science China Chemistry, 58, 1359-1366. doi:10.1007/s11426-015-5469-8; Tassi, F., Venturi, S., Cabassi, J., Vaselli, O., Gelli, I., Cinti, D., & Capecchiacci, F. (2015). Biodegradation of CO2, CH4 and volatile organic compounds (VOCs) in soil gas from the Vicano–Cimino hydrothermal system (central Italy). Organic Geochemistry, 86, 81-93. doi:10.1016/j.orggeochem.2015.06.004; Tatin, R., Moura, L., Dietrich, N., Baig, S., & Hébrard, G. (2015). Physical absortion of volatile organic compounds by spraying emulsion in a spray tower: Experiments and modelling. Chemical Engineering Research and Design, 104, 409-415. doi:10.1016/j.cherd.2015.08.030; Tian, Mingjiao; Guo, Xu; Dong, Rui; Guo, Zheng; Shi, Jianwen; Yu, Yanke; Cheng, Mingxing; Albilali, Reem; He, Chi (2019). Insight into the boosted catalytic performance and chlorine resistance of nanosphere-like meso-macroporous CrOx/MnCo3Ox for 1,2-dichloroethane destruction. Applied Catalysis B: Environmental, 259, 118018. doi:10.1016/j.apcatb.2019.118018; Tirone, J. (6 de Noviembre de 2019). Air Pollution. Bloomberg, págs. 1-5.; Tomatis, M., Moreira, M. T., Xu, H., He, J., & Parvez, A. M. (2019). Removal of VOCs from waste gases using various thermal oxidizers: A comparative study based on life cycle assessment and cost analysis in China. Journal of Cleaner Production, 233, 808-818. doi:10.1016/j.jclepro.2019.06.131; Tsuzuki, T. (2013). Properties of Nanoparticulate Materials. En T. Tsuzuki, Nanotechnology Commercialisation (págs. 1-32). Boca Ratón: Taylor & Francis Group.; Valenzuela Calahorro, C. (1999). Introducción a la química inorgánica (1 ed., Vol. 1). Madrid: McGraw-Hill.; Verma, K. C., Kotnala, R. K., & Goyal, N. (2018). Multi-Funcionality of Spinotronic Materials. In B. K. Kaushik, Nanoelectronics, 153-215. Elsevier. doi:10.1016/B978-0-12-813353-8.00004-X; Vivaldo, G., Masi, E., Taiti, C., Caldarelli, G., & Mancuso, S. (2017, Septiembre 8). The network of plants volatiles organic compounds. Scientific Reports, 7, 1-18. doi:10.1038/s41598-017-10975-x; Vu, V. H., Belkouch, J., Ould-Dris, A., & Taouk, B. (2009). Removal of hazardous chlorinated VOCs over Mn–Cu mixed oxide based catalyst. Journal of Hazardous Materials, 169(1-3), 758-765. doi:10.1016/j.jhazmat.2009.04.010; Wagner, P., & Kuttler, W. (2014). Biogenic and anthropogenic isoprene in the near-surface urban. Science of Total Enviroment, 475, 104-115. doi:10.1016/j.scitotenv.2013.12.026; Walsh, A., Payne, D. J., Edgell, R. G., & Watson, G. W. (2011). Stereochemistry of post-transition metal oxides: revision of the classical lone pair model. Chemical Society Reviews, 40(9), 4455-4463. doi:10.1039/C1CS15098G; Wang, J., Zhao, H., Liu, X., Xu, W., Guo, Y., Song, J., & Zhu, T. (2019). Study on the Catalytic Properties of Ru/TiO2 Catalysts for the Catalytic Oxidation of (Chloro)-Aromatics. Catalysis Letters, 149(38), 2004-2014. doi:10.1007/s10562-019-02802-x; Warahena, A. S., Chuah, Y. K. (2009). Energy Recovery Efficiency and Cost Analisys de VOC Thermal Oxidation Pollution Control Technology. Environmental Science & Technology, 43(15), 6101-6105. doi:10.1021/es900626e; Warneck, P. (1988). Photochemical Procesess and Elementary Reactions. En P. Warneck, & P. Warneck (Ed.), Chemistry of the Natural Atmosphere, 41, 46-90). Elsevier. doi:10.1016/s0074-6142(08)60627-0; Watanabe, T., Izumi, T., & Matsuyama, H. (2016). Accumulated phytotoxic ozone dose estimation for deciduous forest in Kanto, Japan in summer. Atmospheric Environment, 129, 176-185. doi:10.1016/j.atmosenv.2016.01.016; Weng, X., Xue, Y., Chen, J., Meng, Q., & Wu, Z. (2020). Elimination of chloroaromatic congeners on a commercial V2O5-WO3/TiO2 catalyst: The effect of heavy metal Pb. Journal of Hazardous Materials, 387, 121705. doi:10.1016/j.jhazmat.2019.121705; Wu, Y., Shi, S., Yuan, S., Bai, T., & Xing, S. (2019). Insight into the enhanced activity of Ag/NiOx-MnO2 for catalytic oxidation of o-xylene at low temperatures. Appied Surface Science, 479, 1262-1269. doi:10.1016/j.apsusc.2019.01.134; Xia, Y., Wang, Z., Feng, Y., Xie, S., Liu, Y., Dai, H., & Deng, J. (2019). In situ molten salt derived iron oxide supported platinum catalyst with high catalytic performance for o-xylene elimination. Catalysis Today, 351, 30-36. doi:10.1016/j.cattod.2019.01.076; Xiang, Y., Zhu, Y., Lu, J., Zhu, C., Zhu, M., Xie, Q., & Chen, T. (2019). Co3O4/α-Fe2O3 catalyzed oxidative degradation of gaseous benzene: Preparation, characterization and its catalytic properties. Solid States Sciences, 93, 79-86. doi:10.1016/j.solidstatesciences.2019.05.008; Yagi, S., Ichikawa, Y., Yamada, I., Doi, T., Ichitsubo, T., & Matsubara, E. (2013). Synthesis of Binary Magnesium–Transition Metal Oxides via Inverse Coprecipitation. Japanese Journal of Applied Physics, 52(2R), 1-6. doi:10.7567/JJAP.52.025501; Yan, Z., Xu, Z., Cheng, B., & Jiang, C. (2017). Co3O4 nanorod-supported Pt with enhanced performance for catalytic HCHO oxidation at room temperature. Applied Surface Science, 404, 426-434. doi:10.1016/j.apsusc.2017.02.010; Yang, G., & Park, S.-J. (2019a). Conventional and Microwave Hydrothermal Synthesis and Application of Functional Materials: Areview. Materials, 12(7), 1177-1195. doi:10.3390/ma12071177; Yang, Yang; Li, Hao, Haitao; Qu, Ruiyang; Zhang, Shuo; Hu, Wenshuo; Yu, Xinning; Zhu, Xinbo; Liu, Shaojun; Zheng, Chenghang; Gao, Xiang (2019b). Structure and crystal phase transition effect of Sn doping on anatase TiO2 for dichloromethane decomposition. Journal of Hazardous Materials, 371, 156-164. doi:10.1016/j.jhazmat.2019.02.103; Yang, Yang; Li, Hao; Zhang, Shuo; Yu, Xinning; Liu, Shaojun; Qu, Ruiyang; Zheng, Chenchang; Gao, Xiang (2019c). Different reacive behaviours of dichloromethane over anatase TiO2 supported RuO2 and V2O5. Catalysis Today, In Press, 2-28. doi:10.1016/j.cattod.2019.11.009; Yoshikawa, M., Zhang, M., & Kurisu, F. &. (2017a). Bacterial Degraders of Coexisting Dichloromethane, Benzene, and Toluene, Identified by Stable-Isotope Probing. Water, Air, & Soil Pollution, 228(11), 418. doi:10.1007/s11270-017-3604-1; Yoshikawa, M., Zhang, M., & Toyota, K. (2017b). Biodegradation of Volatile Organic Compounds and their effects on biodegradbility under Co-existing conditions. Microbes and Environments, 32(3), 188-200. doi:10.1264/jsme2.ME16188; Yu, F., Ma, J., & Wu, Y. (2011). Adsorption of toluene, ethylbenzene and m-xylene on multi-walled carbon nanotubes with different oxygen contents from aqueous solutions. Journal of Hazardous Materials, 192(3), 1370-1379. doi:10.1016/j.jhazmat.2011.06.048; Zeng, Xiaohong; Cheng, Gao; Liu, Qi; Yu, Weixiong; Yang, Runnong; Wu, Huajie; Li, Yongfeng; Sun, Ming; Zhang, Canyang; Yu, Lin (2019a). Novel Ordered Mesoporous γ-MnO2 Catalyst for High-Performance Catalytic Oxidation of Toluene and o-Xylene. Industrial & Engineering Chemistry Research, 58(31), 13926-13934. doi:10.1021/acs.iecr.9b02087; Zeng, Y., Wang, Y., Meng, Y., Song, F., Zhang, S., & Zhong, Q. (2019b). The effect of preparation method on oxygen activation over Pt/TiO2. Chemical Physics Letters, 730, 95-99. doi:10.1016/j.cplett.2019.05.048; Zhang, Y., Liu, J., Qin, Y., Yang, Z., Cao, J., Xing, Y., & Li, J. (2019). Performance and microbial community evolution of toluene degradation using a fungi-based bio-trickling filter. Journal of Hazardous Materials, 365, 642-649. doi:10.1016/j.jhazmat.2018.11.062; Zhao, F., Zhang, G., Zeng, P., Yang, X., & Ji, S. f. (2011). Preparation of CuxCo1-x/Al2O3/Cordierite Monolithic Catalysts and the Catalytic Combustion of Toluene. Chinese Journal of Catalysis, 32(5), 821-826. doi:10.1016/S1872-2067(10)60184-2; Zhao, Q., Ge, Y., Fu, K. Z., Liu, Q., & Song, C. (2019). Catalytic performance of the Pd/TiO2 modified with MnOx catalyst for acetone total oxidation. Applied Surface Science, 496, 143579. doi:10.1016/j.apsusc.2019.143579; Zhou, B., Zhang, X., Wang, Y., Xie, J., Xi, K., Zhou, Y., & Lu, H. (2019). Effect of Ni-V loading on the performance of hollow anatase TiO2 in the catalytic combustion of dichlorometane. Journal of Environmental Sciences, 84, 59-68. doi:10.1016/j.jes.2019.04.013; Zhu, Y., Liu, X., Jin, S., Chen, H., Lee, W., Liu, M., & Chen, Y. (2019). Anionic defect engineering of transition metal oxides for oxygen reduction and evolution reactions. Journal of Materials Chemistry A, 7(11), 5875-5897. doi:10.1039/C8TA12477A; Zou, L., Luo, Y., & Hopper, M. H. (2006). Removal of VOCs by photocatalysis process using adsorption enhanced TiO2-SiO2 catalyst. Chemical Engineering and Processing: Process Intensification, 45(11), 959-964. doi:10.1016/j.cep.2006.01.014; García Caro, W. (2019). Óxidos de Metales de Transición como catalizadores para la oxidación total de Compuestos Orgánicos Volátiles (COVs) en fase gaseosa [Trabajo de grado, maestría en ciencias - química]. Universidad Nacional de Colombia; https://repositorio.unal.edu.co/handle/unal/77819Test

  5. 5
    رسالة جامعية

    المساهمون: Moreno Guáqueta, Sonia, Estado Sólido y Catálisis Ambiental, Bueno Corredor, Natalia 58169421400

    وصف الملف: xv, 111 páginas; application/pdf

    العلاقة: UNICEF & WHO. Progress on Household Drinking Water, Sanitation and Hygiene 2000-2017. Unicef/Who 2019, 140.; Ameta, S. C. Introduction. Adv. Oxid. Process. Wastewater Treat. Emerg. Green Chem. Technol. 2018, 1–12. https://doi.org/10.1016/B978-0-12-810499-6.00001-2Test.; Wang, N.; Zheng, T.; Zhang, G.; Wang, P. A Review on Fenton-like Processes for Organic Wastewater Treatment. J. Environ. Chem. Eng. 2016, 4 (1), 762–787. https://doi.org/10.1016/j.jece.2015.12.016Test.; Babuponnusami, A.; Muthukumar, K. A Review on Fenton and Improvements to the Fenton Process for Wastewater Treatment. J. Environ. Chem. Eng. 2014, 2 (1), 557–572. https://doi.org/10.1016/j.jece.2013.10.011Test.; Mohapatra, D. P.; Brar, S. K.; Tyagi, R. D.; Picard, P.; Surampalli, R. Y. Analysis and Advanced Oxidation Treatment of a Persistent Pharmaceutical Compound in Wastewater and Wastewater Sludge-Carbamazepine. Sci. Total Environ. 2014, 470–471, 58–75. https://doi.org/10.1016/j.scitotenv.2013.09.034Test.; Yang, Y.; Ok, Y. S.; Kim, K. H.; Kwon, E. E.; Tsang, Y. F. Occurrences and Removal of Pharmaceuticals and Personal Care Products (PPCPs) in Drinking Water and Water/Sewage Treatment Plants: A Review. Sci. Total Environ. 2017, 596–597, 303–320. https://doi.org/10.1016/j.scitotenv.2017.04.102Test.; World Health Organization. Pharmaceuticals in drinking-water https://apps.who.int/iris/handle/10665/44630Test (accessed Nov 21, 2021).; Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C. U.; Mohan, D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem. Rev. 2019, 119 (6), 3510–3673. https://doi.org/10.1021/acs.chemrev.8b00299Test.; Golovko, O.; Örn, S.; Sörengård, M.; Frieberg, K.; Nassazzi, W.; Lai, F. Y.; Ahrens, L. Occurrence and Removal of Chemicals of Emerging Concern in Wastewater Treatment Plants and Their Impact on Receiving Water Systems. Sci. Total Environ. 2021, 754, 142122. https://doi.org/10.1016/j.scitotenv.2020.142122Test.; Li, F.; Chen, L.; Bao, Y.; Zheng, Y.; Huang, B.; Mu, Q.; Feng, C.; Wen, D. Identification of the Priority Antibiotics Based on Their Detection Frequency, Concentration, and Ecological Risk in Urbanized Coastal Water. Sci. Total Environ. 2020, 747, 141275. https://doi.org/10.1016/j.scitotenv.2020.141275Test.; Mijangos, L.; Ziarrusta, H.; Ros, O.; Kortazar, L.; Fernández, L. A.; Olivares, M.; Zuloaga, O.; Prieto, A.; Etxebarria, N. Occurrence of Emerging Pollutants in Estuaries of the Basque Country: Analysis of Sources and Distribution, and Assessment of the Environmental Risk. Water Res. 2018, 147, 152–163. https://doi.org/10.1016/j.watres.2018.09.033Test.; Botero-Coy, A. M.; Martínez-Pachón, D.; Boix, C.; Rincón, R. J.; Castillo, N.; Arias-Marín, L. P.; Manrique-Losada, L.; Torres-Palma, R.; Moncayo-Lasso, A.; Hernández, F. ‘An Investigation into the Occurrence and Removal of Pharmaceuticals in Colombian Wastewater.’ Sci. Total Environ. 2018, 642, 842–853. https://doi.org/10.1016/j.scitotenv.2018.06.088Test.; Aus der Beek, T.; Weber, F. A.; Bergmann, A.; Hickmann, S.; Ebert, I.; Hein, A.; Küster, A. Pharmaceuticals in the Environment-Global Occurrences and Perspectives. Environ. Toxicol. Chem. 2016, 35 (4), 823–835. https://doi.org/10.1002/etc.3339Test.; Ahmed, M. B.; Zhou, J. L.; Ngo, H. H.; Guo, W.; Thomaidis, N. S.; Xu, J. Progress in the Biological and Chemical Treatment Technologies for Emerging Contaminant Removal from Wastewater: A Critical Review. J. Hazard. Mater. 2017, 323, 274–298. https://doi.org/10.1016/j.jhazmat.2016.04.045Test.; Murray, C. J.; Ikuta, K. S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; Johnson, S. C.; Browne, A. J.; Chipeta, M. G.; Fell, F.; Hackett, S.; Haines-Woodhouse, G.; Kashef Hamadani, B. H.; Kumaran, E. A. P.; McManigal, B.; Agarwal, R.; Akech, S.; Albertson, S.; Amuasi, J.; Andrews, J.; Aravkin, A.; Ashley, E.; Bailey, F.; Baker, S.; Basnyat, B.; Bekker, A.; Bender, R.; Bethou, A.; Bielicki, J.; Boonkasidecha, S.; Bukosia, J.; Carvalheiro, C.; Castañeda-Orjuela, C.; Chansamouth, V.; Chaurasia, S.; Chiurchiù, S.; Chowdhury, F.; Cook, A. J.; Cooper, B.; Cressey, T. R.; Criollo-Mora, E.; Cunningham, M.; Darboe, S.; Day, N. P. J.; De Luca, M.; Dokova, K.; Dramowski, A.; Dunachie, S. J.; Eckmanns, T.; Eibach, D.; Emami, A.; Feasey, N.; Fisher-Pearson, N.;Forrest, K.; Garrett, D.; Gastmeier, P.; Giref, A. Z.; Greer, R. C.; Gupta, V.; Haller, S.; Haselbeck, A.; Hay, S. I.; Holm, M.; Hopkins, S.; Iregbu, K. C.; Jacobs, J.; Jarovsky, D.; Javanmardi, F.; Khorana, M.; Kissoon, N.; Kobeissi, E.; Kostyanev, T.; Krapp, F.; Krumkamp, R.; Kumar, A.; Kyu, H. H.; Lim, C.; Limmathurotsakul, D.; Loftus, M. J.; Lunn, M.; Ma, J.; Mturi, N.; Munera-Huertas, T.; Musicha, P.; Mussi-Pinhata, M. M.; Nakamura, T.; Nanavati, R.; Nangia, S.; Newton, P.; Ngoun, C.; Novotney, A.; Nwakanma, D.; Obiero, C. W.; Olivas-Martinez, A.; Olliaro, P.; Ooko, E.; Ortiz-Brizuela, E.; Peleg, A. Y.; Perrone, C.; Plakkal, N.; Ponce-de-Leon, A.; Raad, M.; Ramdin, T.; Riddell, A.; Roberts, T.; Robotham, J. V.; Roca, A.; Rudd, K. E.; Russell, N.; Schnall, J.; Scott, J. A. G.; Shivamallappa, M.; Sifuentes-Osornio, J.; Steenkeste, N.; Stewardson, A. J.; Stoeva, T.; Tasak, N.; Thaiprakong, A.; Thwaites, G.; Turner, C.; Turner, P.; van Doorn, H. R.; Velaphi, S.; Vongpradith, A.; Vu, H.; Walsh, T.; Waner, S.; Wangrangsimakul, T.; Wozniak, T.; Zheng, P.; Sartorius, B.; Lopez, A. D.; Stergachis, A.; Moore, C.; Dolecek, C.; Naghavi, M. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399 (10325), 629–655. https://doi.org/10.1016/S0140-6736Test(21)02724-0/ATTACHMENT/B227DEB3-FF04-497F-82AC-637D8AB7F679/MMC1.PDF.; Antimicrobial resistance https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistanceTest (accessed May 29, 2022).; Jim O’Neill. Tackling drug-resistant infections globally: final report and recommendations. The review on antimicrobial resistance https://apo.org.au/node/63983Test (accessed May 29, 2022).; Global Action Plan on Antimicrobial Resistance. Microbe Mag. 2015, 10 (9), 354–355. https://doi.org/10.1128/microbe.10.354.1Test.; Cuerda-Correa, E. M.; Alexandre-Franco, M. F.; Fernández-González, C. Advanced Oxidation Processes for the Removal of Antibiotics from Water. An Overview. Water (Switzerland) 2020, 12 (1). https://doi.org/10.3390/w12010102Test.; Macías-Quiroga, I. F.; Henao-Aguirre, P. A.; Marín-Flórez, A.; Arredondo-López, S. M.; Sanabria-González, N. R. Bibliometric Analysis of Advanced Oxidation Processes (AOPs) in Wastewater Treatment: Global and Ibero-American Research Trends. Environ. Sci. Pollut. Res. 2020 2819 2020, 28 (19), 23791–23811. https://doi.org/10.1007/S11356-020-11333-7Test.; Ribeiro, A. R.; Nunes, O. C.; Pereira, M. F. R.; Silva, A. M. T. An Overview on the Advanced Oxidation Processes Applied for the Treatment of Water Pollutants Defined in the Recently Launched Directive 2013/39/EU. Environ. Int. 2015, 75, 33–51. https://doi.org/10.1016/J.ENVINT.2014.10.027Test.; J. M. Thomas andW. J. Thomas. Principles and Practice of Heterogeneous Catalysis; 2015.; Navalon, S.; Alvaro, M.; Garcia, H. Heterogeneous Fenton Catalysts Based on Clays, Silicas and Zeolites. Appl. Catal. B Environ. 2010, 99 (1–2), 1–26. https://doi.org/10.1016/j.apcatb.2010.07.006Test.; Huang, C. P.; Dong, C.; Tang, Z. Advanced Chemical Oxidation: Its Present Role and Potential Future in Hazardous Waste Treatment. Waste Manag. 1993, 13 (5–7), 361–377. https://doi.org/10.1016/0956-053XTest(93)90070-D.; Nidheesh, P. V. Heterogeneous Fenton Catalysts for the Abatement of Organic Pollutants from Aqueous Solution: A Review. RSC Adv. 2015, 5 (51), 40552–40577. https://doi.org/10.1039/c5ra02023aTest.; World Health Organization. WHO Report on Surveillance of Antibiotic Consumption. Who 2018, 128.; Elizalde-Velázquez, A.; Gómez-Oliván, L. M.; Galar-Martínez, M.; Islas-Flores, H.; Dublán-García, O.; SanJuan-Reyes, N. Amoxicillin in the Aquatic Environment, Its Fate and Environmental Risk. Environ. Heal. Risk - Hazard. Factors to Living Species 2016. https://doi.org/10.5772/62049Test.; De Franco, M. A. E.; de Carvalho, C. B.; Bonetto, M. M.; Soares, R. de P.; Féris, L. A. Removal of Amoxicillin from Water by Adsorption onto Activated Carbon in Batch Process and Fixed Bed Column: Kinetics, Isotherms, Experimental Design and Breakthrough Curves Modelling. J. Clean. Prod. 2017, 161, 947–956. https://doi.org/10.1016/j.jclepro.2017.05.197Test.; Roy, J. The Top Five Most Common or Long-Selling Drugs. An Introd. to Pharm. Sci. 2011, 231–296. https://doi.org/10.1533/9781908818041.231Test.; Pesqueira, J. F. J. R.; Pereira, M. F. R.; Silva, A. M. T. Environmental Impact Assessment of Advanced Urban Wastewater Treatment Technologies for the Removal of Priority Substances and Contaminants of Emerging Concern: A Review. J. Clean. Prod. 2020, 261. https://doi.org/10.1016/j.jclepro.2020.121078Test.; Thomas, N.; Dionysiou, D. D.; Pillai, S. C. Heterogeneous Fenton Catalysts: A Review of Recent Advances. J. Hazard. Mater. 2021, 404, 124082. https://doi.org/10.1016/j.jhazmat.2020.124082Test.; A. Ya. Sychev; V. G. Isak. Iron Compounds and the Mechanisms of the Homogeneous Catalysis of the Activation of O2 and H2O2 and of the Oxidation of Organic Substrates. Russ. Chem. Rev. 1995, 64 (12), 1105–1129.; Guo, R.; Xie, X.; Chen, J. The Degradation of Antibiotic Amoxicillin in the Fenton-Activated Sludge Combined System. Environ. Technol. (United Kingdom) 2015, 36 (7), 844–851. https://doi.org/10.1080/09593330.2014.963696Test.; Trovó, A. G.; Melo, S. A. S.; Nogueira, R. F. P. Photodegradation of the Pharmaceuticals Amoxicillin, Bezafibrate and Paracetamol by the Photo-Fenton Process—Application to Sewage Treatment Plant Effluent. J. Photochem. Photobiol. A Chem. 2008, 198 (2–3), 215–220. https://doi.org/10.1016/J.JPHOTOCHEM.2008.03.011Test.; Trovó, A. G.; Pupo Nogueira, R. F.; Agüera, A.; Fernandez-Alba, A. R.; Malato, S. Degradation of the Antibiotic Amoxicillin by Photo-Fenton Process - Chemical and Toxicological Assessment. Water Res. 2011, 45 (3), 1394–1402. https://doi.org/10.1016/j.watres.2010.10.029Test.; Ayodele, O. B.; Lim, J. K.; Hameed, B. H. Pillared Montmorillonite Supported Ferric Oxalate as Heterogeneous Photo-Fenton Catalyst for Degradation of Amoxicillin. Appl. Catal. A Gen. 2012, 413–414, 301–309. https://doi.org/10.1016/j.apcata.2011.11.023Test.; Zha, S.; Cheng, Y.; Gao, Y.; Chen, Z.; Megharaj, M.; Naidu, R. Nanoscale Zero-Valent Iron as a Catalyst for Heterogeneous Fenton Oxidation of Amoxicillin. Chem. Eng. J. 2014, 255, 141–148. https://doi.org/10.1016/j.cej.2014.06.057Test.; Ayodele, O. B. Effect of Phosphoric Acid Treatment on Kaolinite Supported Ferrioxalate Catalyst for the Degradation of Amoxicillin in Batch Photo-Fenton Process. Appl. Clay Sci. 2013, 72, 74–83. https://doi.org/10.1016/j.clay.2013.01.004Test.; Kalantary, R. R.; Farzadkia, M.; Kermani, M.; Rahmatinia, M. Heterogeneous Electro-Fenton Process by Nano-Fe3O4 for Catalytic Degradation of Amoxicillin: Process Optimization Using Response Surface Methodology. J. Environ. Chem. Eng. 2018, 6 (4), 4644–4652. https://doi.org/10.1016/j.jece.2018.06.043Test.; Liu, Y.; Zha, S.; Rajarathnam, D.; Chen, Z. Divalent Cations Impacting on Fenton-like Oxidation of Amoxicillin Using NZVI as a Heterogeneous Catalyst. Sep. Purif. Technol. 2017, 188 (July), 548–552. https://doi.org/10.1016/j.seppur.2017.07.061Test.; Fenton, H. J. H. LXXIII. - Oxidation of Tartaric Acid in Presence of Iron. J. Chem. Soc. Trans. 1894, 65, 899–910. https://doi.org/10.1039/CT8946500899Test.; Giwa, A.; Yusuf, A.; Balogun, H. A.; Sambudi, N. S.; Bilad, M. R.; Adeyemi, I.; Chakraborty, S.; Curcio, S. Recent Advances in Advanced Oxidation Processes for Removal of Contaminants from Water: A Comprehensive Review. Process Saf. Environ. Prot. 2021, 146, 220–256. https://doi.org/10.1016/j.psep.2020.08.015Test.; liu, X. Progress in the Mechanism and Kinetics of Fenton Reaction. MOJ Ecol. Environ. Sci. 2018, 3 (1). https://doi.org/10.15406/mojes.2018.03.00060Test.; Zhu, Y.; Zhu, R.; Xi, Y.; Zhu, J.; Zhu, G.; He, H. Strategies for Enhancing the Heterogeneous Fenton Catalytic Reactivity: A Review. Appl. Catal. B Environ. 2019, 255 (May), 117739. https://doi.org/10.1016/j.apcatb.2019.05.041Test.; Szultka, M.; Krzeminski, R.; Jackowski, M.; Buszewski, B. Identification of In Vitro Metabolites of Amoxicillin in Human Liver Microsomes by LC-ESI/MS. Chromatographia 2014, 77 (15), 1027–1035. https://doi.org/10.1007/S10337-014-2648-2Test.; He, J.; Yang, X.; Men, B.; Wang, D. Interfacial Mechanisms of Heterogeneous Fenton Reactions Catalyzed by Iron-Based Materials: A Review. J. Environ. Sci. (China) 2016, 39, 97–109. https://doi.org/10.1016/j.jes.2015.12.003Test.; Nie, M.; Li, Y.; He, J.; Xie, C.; Wu, Z.; Sun, B.; Zhang, K.; Kong, L.; Liu, J. Degradation of Tetracycline in Water Using Fe3O4 Nanospheres as Fenton-like Catalysts: Kinetics, Mechanisms and Pathways. New J. Chem. 2020, 44 (7), 2847–2857. https://doi.org/10.1039/d0nj00125bTest.; Hakimi, M.; Alikhani, M. Characterization of α-Fe2O3 Nanoparticles Prepared from a New [Fe(Ofloxacin)2Cl2] Precursor: A Heterogeneous Photocatalyst for Removal of Methylene Blue and Ciprofloxacin in Water. J. Inorg. Organomet. Polym. Mater. 2020, 30 (2), 504–512. https://doi.org/10.1007/s10904-019-01210-3Test.; He, F.; Ma, W.; Zhong, D.; Yuan, Y. Degradation of Chloramphenicol by α-FeOOH-Activated Two Different Double-Oxidant Systems with Hydroxylamine Assistance. Chemosphere 2020, 250, 126150. https://doi.org/10.1016/j.chemosphere.2020.126150Test.; Ahmad, A. R. D.; Imam, S. S.; Oh, W. Da; Adnan, R. Fenton Degradation of Ofloxacin Using a Montmorillonite–Fe3o4 Composite. Catalysts 2021, 11 (2), 1–17. https://doi.org/10.3390/catal11020177Test.; Ahmad, A. R. D.; Imam, S. S.; Oh, W. Da; Adnan, R. Fe3O4-Zeolite Hybrid Material as Hetero-Fenton Catalyst for Enhanced Degradation of Aqueous Ofloxacin Solution. Catalysts 2020, 10 (11), 1–19. https://doi.org/10.3390/catal10111241Test.; Zheng, C. M.; Yang, C. W.; Cheng, X. Z.; Xu, S. C.; Fan, Z. P.; Wang, G. H.; Wang, S. B.; Guan, X. F.; Sun, X. H. Specifically Enhancement of Heterogeneous Fenton-like Degradation Activities for Ofloxacin with Synergetic Effects of Bimetallic Fe-Cu on Ordered Mesoporous Silicon. Sep. Purif. Technol. 2017, 189, 357–365. https://doi.org/10.1016/j.seppur.2017.08.015Test.; Liu, J.; Wu, X.; Liu, J.; Zhang, C.; Hu, Q.; Hou, X. Ofloxacin Degradation by Fe3O4-CeO2/AC Fenton-like System: Optimization, Kinetics, and Degradation Pathways. Mol. Catal. 2019, 465, 61–67. https://doi.org/10.1016/j.mcat.2018.12.020Test.; Tang, J.; Wang, J. Metal Organic Framework with Coordinatively Unsaturated Sites as Efficient Fenton-like Catalyst for Enhanced Degradation of Sulfamethazine. Environ. Sci. Technol. 2018, 52 (9), 5367–5377. https://doi.org/10.1021/acs.est.8b00092Test.; De Melo Costa-Serge, N.; Gonçalves, R. G. L.; Rojas-Mantilla, H. D.; Santilli, C. V.; Hammer, P.; Nogueira, R. F. P. Fenton-like Degradation of Sulfathiazole Using Copper-Modified MgFe-CO3 Layered Double Hydroxide. J. Hazard. Mater. 2021, 413, 125388. https://doi.org/10.1016/j.jhazmat.2021.125388Test.; Hernández, W.; Moreno, S.; Molina, R. Caracterización Estructural y Textural de Una Bentonita Colombiana. Rev. colomb. quím. 2007, 36 (1), 213–225.; Carriazo, J. Saavedra, M. Molina, F. Estudio Por DRX de La Intercalación de Un Mineral de Arcilla Tipo 2:1 Con Especies Polioxocationicas de Aluminio. Rev. Mex. Ing. Química 2009, 8 (1), 299–305.; Gonzalez-Olmos, R.; Martin, M. J.; Georgi, A.; Kopinke, F. D.; Oller, I.; Malato, S. Fe-Zeolites as Heterogeneous Catalysts in Solar Fenton-like Reactions at Neutral PH. Appl. Catal. B Environ. 2012, 125, 51–58. https://doi.org/10.1016/j.apcatb.2012.05.022Test.; Liu, T. X.; Liu, Y.; Zhang, Z. J.; Li, F. B.; Li, X. Z. Comparison of Aqueous Photoreactions with TiO2 in Its Hydrosol Solution and Powdery Suspension for Light Utilization. Ind. Eng. Chem. Res. 2011, 50 (13), 7841–7848. https://doi.org/10.1021/ie102584jTest.; Kay, A.; Cesar, I.; Grätzel, M. New Benchmark for Water Photooxidation by Nanostructured α-Fe 2O3 Films. J. Am. Chem. Soc. 2006, 128 (49), 15714–15721. https://doi.org/10.1021/ja064380lTest.; Xiang, Q.; Yu, J.; Wong, P. K. Quantitative Characterization of Hydroxyl Radicals Produced by Various Photocatalysts. J. Colloid Interface Sci. 2011, 357 (1), 163–167. https://doi.org/10.1016/j.jcis.2011.01.093Test.; Tehrani-Bagha, A. R.; Balchi, T. Catalytic Wet Peroxide Oxidation. Adv. Oxid. Process. Wastewater Treat. Emerg. Green Chem. Technol. 2018, 375–402. https://doi.org/10.1016/B978-0-12-810499-6.00012-7Test.; Kumar, A.; Rana, A.; Sharma, G.; Naushad, M.; Dhiman, P.; Kumari, A.; Stadler, F. J. Recent Advances in Nano-Fenton Catalytic Degradation of Emerging Pharmaceutical Contaminants. J. Mol. Liq. 2019, 290. https://doi.org/10.1016/j.molliq.2019.111177Test.; Mirzaei, A.; Chen, Z.; Haghighat, F.; Yerushalmi, L. Removal of Pharmaceuticals from Water by Homo/Heterogonous Fenton-Type Processes – A Review. Chemosphere 2017, 174, 665–688. https://doi.org/10.1016/j.chemosphere.2017.02.019Test.; Hamd, W. S.; Dutta, J. Heterogeneous Photo-Fenton Reaction and Its Enhancement upon Addition of Chelating Agents; Elsevier Inc., 2020. https://doi.org/10.1016/b978-0-12-818489-9.00011-6Test.; Bergaya, F.; Theng, B. K. G.; Lagaly, G. Handbook of Clay Science; 2006; Vol. 1. https://doi.org/10.1016/S1572-4352Test(05)01039-1.; Macías-Quiroga, I. F.; Rengifo-Herrera, J. A.; Arredondo-López, S. M.; Marín-Flórez, A.; Sanabria-González, N. R. Research Trends on Pillared Interlayered Clays (PILCs) Used as Catalysts in Environmental and Chemical Processes: Bibliometric Analysis. Sci. World J. 2022, 2022. https://doi.org/10.1155/2022/5728678Test.; Galeano, L. A.; Gil, A.; Vicente, M. A. Effect of the Atomic Active Metal Ratio in Al/Fe-, Al/Cu- and Al/(Fe-Cu)-Intercalating Solutions on the Physicochemical Properties and Catalytic Activity of Pillared Clays in the CWPO of Methyl Orange. Appl. Catal. B Environ. 2010, 100 (1–2), 271–281. https://doi.org/10.1016/j.apcatb.2010.08.003Test.; Sanabria, N.; Álvarez, A.; Molina, R.; Moreno, S. Synthesis of Pillared Bentonite Starting from the Al-Fe Polymeric Precursor in Solid State, and Its Catalytic Evaluation in the Phenol Oxidation Reaction. Catal. Today 2008, 133–135 (1–4), 530–533. https://doi.org/10.1016/j.cattod.2007.12.082Test.; Sanabria, N. R.; Centeno, M. A.; Molina, R.; Moreno, S. Pillared Clays with Al-Fe and Al-Ce-Fe in Concentrated Medium: Synthesis and Catalytic Activity. Appl. Catal. A Gen. 2009, 356 (2), 243–249. https://doi.org/10.1016/j.apcata.2009.01.013Test.; Martínez T, L. M.; Domínguez, M. I.; Sanabria, N.; Hernández, W. Y.; Moreno, S.; Molina, R.; Odriozola, J. A.; Centeno, M. A. Deposition of Al-Fe Pillared Bentonites and Gold Supported Al-Fe Pillared Bentonites on Metallic Monoliths for Catalytic Oxidation Reactions. Appl. Catal. A Gen. 2009, 364 (1–2), 166–173. https://doi.org/10.1016/j.apcata.2009.05.046Test.; Olaya, A.; Moreno, S.; Molina, R. Synthesis of Pillared Clays with Al13-Fe and Al13-Fe-Ce Polymers in Solid State Assisted by Microwave and Ultrasound: Characterization and Catalytic Activity. Appl. Catal. A Gen. 2009, 370 (1–2), 7–15. https://doi.org/10.1016/j.apcata.2009.08.018Test.; Sanabria, N. R.; Molina, R.; Moreno, S. Development of Pillared Clays for Wet Hydrogen Peroxide Oxidation of Phenol and Its Application in the Posttreatment of Coffee Wastewater. Int. J. Photoenergy 2012, 2012 (1). https://doi.org/10.1155/2012/864104Test.; Peralta, Y. M.; Sanabria, N. R.; Carriazo, J. G.; Moreno, S.; Molina, R. Catalytic Wet Hydrogen Peroxide Oxidation of Phenolic Compounds in Coffee Wastewater Using Al–Fe-Pillared Clay Extrudates. Desalin. Water Treat. 2015, 55 (3), 647–654. https://doi.org/10.1080/19443994.2014.920279Test.; Sanabria, N.; Molina, R.; Moreno, S. Efecto Del Ultrssonido En La Síntesis de Arcilla Pilarizada Con Aluminio En Medio Concentrado. Rev. Colomb. Química 2008, 37 (3), 325–335.; González, O. P.; Becerra, J. E.; Irreño, N. A. T.; Vargas, S. S.; Ávila, A. P.; Primelles, R. F. L.; González, R. G.; González, H.; Ortiz, F. J. Z.; Rincón, G. P.; Aponte, C. L. G.; Cárdenas, S. C. Recursos Minerales de Colombia. Libr. del Serv. Geológico Colomb. 2019, 1. https://doi.org/10.32685/9789585246973Test.; Hussain, S.; Aneggi, E.; Goi, D. Catalytic Activity of Metals in Heterogeneous Fenton-like Oxidation of Wastewater Contaminants: A Review. Environ. Chem. Lett. 2021, No. 0123456789. https://doi.org/10.1007/s10311-021-01185-zTest.; Bokare, A. D.; Choi, W. Review of Iron-Free Fenton-like Systems for Activating H2O2 in Advanced Oxidation Processes; Elsevier B.V., 2014; Vol. 275. https://doi.org/10.1016/j.jhazmat.2014.04.054Test.; Lin, S. S.; Gurol, M. D. Catalytic Decomposition of Hydrogen Peroxide on Iron Oxide: Kinetics, Mechanism, and Implications. Environ. Sci. Technol. 1998, 32 (10), 1417–1423. https://doi.org/10.1021/es970648kTest.; Wang, X.; Zhang, X.; Zhang, Y.; Wang, Y.; Sun, S. P.; Wu, W. D.; Wu, Z. Nanostructured Semiconductor Supported Iron Catalysts for Heterogeneous Photo-Fenton Oxidation: A Review. J. Mater. Chem. A 2020, 8 (31), 15513–15546. https://doi.org/10.1039/d0ta04541aTest.; Lai, C.; Shi, X.; Li, L.; Cheng, M.; Liu, X.; Liu, S.; Li, B.; Yi, H.; Qin, L.; Zhang, M.; An, N. Enhancing Iron Redox Cycling for Promoting Heterogeneous Fenton Performance: A Review. Sci. Total Environ. 2021, 775, 145850. https://doi.org/10.1016/j.scitotenv.2021.145850Test.; Li, Y.; Dong, H.; Li, L.; Tang, L.; Tian, R.; Li, R.; Chen, J.; Xie, Q.; Jin, Z.; Xiao, J.; Xiao, S.; Zeng, G. Recent Advances in Waste Water Treatment through Transition Metal Sulfides-Based Advanced Oxidation Processes. Water Res. 2021, 192, 116850. https://doi.org/10.1016/j.watres.2021.116850Test.; Nguyen, T. B.; Dong, C. Di; Huang, C. P.; Chen, C. W.; Hsieh, S. L.; Hsieh, S. Fe-Cu Bimetallic Catalyst for the Degradation of Hazardous Organic Chemicals Exemplified by Methylene Blue in Fenton-like Reaction. J. Environ. Chem. Eng. 2020, 8 (5), 104139. https://doi.org/10.1016/J.JECE.2020.104139Test.; Qian, H.; Qianwen, S.; Qi, Z.; Yanhui, N.; Yongqiang, W. Development of Mesh-Type Fenton-like Cu/Fex/γ-Al2O3/Al Catalysts and Application for Catalytic Degradation of Dyes. Water Sci. Technol. 2020, 81 (10), 2057–2065. https://doi.org/10.2166/WST.2020.261Test.; Hurtado, L.; Romero, R.; Mendoza, A.; Brewer, S.; Donkor, K.; Gómez-Espinosa, R. M.; Natividad, R. Paracetamol Mineralization by Photo Fenton Process Catalyzed by a Cu/Fe-PILC under Circumneutral PH Conditions. J. Photochem. Photobiol. A Chem. 2019, 373, 162–170. https://doi.org/10.1016/J.JPHOTOCHEM.2019.01.012Test.; Khankhasaeva, S. T.; Dashinamzhilova, E. T.; Dambueva, D. V. Oxidative Degradation of Sulfanilamide Catalyzed by Fe/Cu/Al-Pillared Clays. Appl. Clay Sci. 2017, 146, 92–99. https://doi.org/10.1016/J.CLAY.2017.05.018Test.; Hadjltaief, H. B.; Zina, M. Ben; Galvez, M. E.; Da Costa, P. Photo-Fenton Oxidation of Phenol over a Cu-Doped Fe-Pillared Clay. Comptes Rendus Chim. 2015, 18 (10), 1161–1169. https://doi.org/10.1016/J.CRCI.2015.08.004Test.; Zhou, S.; Zhang, C.; Hu, X.; Wang, Y.; Xu, R.; Xia, C.; Zhang, H.; Song, Z. Catalytic Wet Peroxide Oxidation of 4-Chlorophenol over Al-Fe-, Al-Cu-, and Al-Fe-Cu-Pillared Clays: Sensitivity, Kinetics and Mechanism. Appl. Clay Sci. 2014, 95, 275–283. https://doi.org/10.1016/J.CLAY.2014.04.024Test.; Zhao, G.; Zou, J.; Chen, X.; Liu, L.; Wang, Y.; Zhou, S.; Long, X.; Yu, J.; Jiao, F. Iron-Based Catalysts for Persulfate-Based Advanced Oxidation Process: Microstructure, Property and Tailoring. Chem. Eng. J. 2021, 421, 127845. https://doi.org/10.1016/J.CEJ.2020.127845Test.; Wang, J.; Wang, S. Activation of Persulfate (PS) and Peroxymonosulfate (PMS) and Application for the Degradation of Emerging Contaminants. Chem. Eng. J. 2018, 334, 1502–1517. https://doi.org/10.1016/j.cej.2017.11.059Test.; Duan, X.; Yang, S.; Wacławek, S.; Fang, G.; Xiao, R.; Dionysiou, D. D. Limitations and Prospects of Sulfate-Radical Based Advanced Oxidation Processes. J. Environ. Chem. Eng. 2020, 8 (4), 103849. https://doi.org/10.1016/J.JECE.2020.103849Test.; Dulova, N.; Kattel, E.; Trapido, M. Degradation of Naproxen by Ferrous Ion-Activated Hydrogen Peroxide, Persulfate and Combined Hydrogen Peroxide/Persulfate Processes: The Effect of Citric Acid Addition. Chem. Eng. J. 2017, 318, 254–263. https://doi.org/10.1016/J.CEJ.2016.07.006Test.; Kyzas, G. Z.; Mengelizadeh, N.; Saloot, M. khodadadi; Mohebi, S.; Balarak, D. Sonochemical Degradation of Ciprofloxacin by Hydrogen Peroxide and Persulfate Activated by Ultrasound and Ferrous Ions. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 642, 128627. https://doi.org/10.1016/J.COLSURFA.2022.128627Test.; Li, M.; Yang, X.; Wang, D. S.; Yuan, J. Enhanced Oxidation of Erythromycin by Persulfate Activated Iron Powder–H2O2 System: Role of the Surface Fe Species and Synergistic Effect of Hydroxyl and Sulfate Radicals. Chem. Eng. J. 2017, 317, 103–111. https://doi.org/10.1016/J.CEJ.2016.12.126Test.; Karimifard, S.; Alavi Moghaddam, M. R. Application of Response Surface Methodology in Physicochemical Removal of Dyes from Wastewater: A Critical Review. Sci. Total Environ. 2018, 640–641, 772–797. https://doi.org/10.1016/J.SCITOTENV.2018.05.355Test.; Peixoto, A. L. de C.; Costalonga, A. G. C.; Esperança, M. N.; Salazar, R. F. dos S. Design of Experiments Applied to Antibiotics Degradation by Fenton’s Reagent. Stat. Approaches With Emphas. Des. Exp. Appl. to Chem. Process. 2018. https://doi.org/10.5772/68097Test.; Pulido, H. G.; Salazar, R. de la V. Análisis y Diseño de Experimentos, Segunda ed.; Mc Graw Hill, 2008.; Nair, A. T.; Makwana, A. R.; Ahammed, M. M. The Use of Response Surface Methodology for Modelling and Analysis of Water and Wastewater Treatment Processes: A Review. Water Sci. Technol. 2014, 69 (3), 464–478. https://doi.org/10.2166/WST.2013.733Test.; Ay, F.; Kargi, F. Advanced Oxidation of Amoxicillin by Fenton’s Reagent Treatment. J. Hazard. Mater. 2010, 179 (1–3), 622–627. https://doi.org/10.1016/J.JHAZMAT.2010.03.048Test.; Yazdanbakhsh, A. R.; Daraei, H.; Rafiee, M.; Kamali, H. Performance of Iron Nano Particles and Bimetallic Ni/Fe Nanoparticles in Removal of Amoxicillin Trihydrate from Synthetic Wastewater. Water Sci. Technol. 2016, 73 (12), 2998–3007. https://doi.org/10.2166/WST.2016.157Test.; Verma, M.; Haritash, A. K. Photocatalytic Degradation of Amoxicillin in Pharmaceutical Wastewater: A Potential Tool to Manage Residual Antibiotics. Environ. Technol. Innov. 2020, 20, 101072. https://doi.org/10.1016/J.ETI.2020.101072Test.; Casey, W. H. Large Aqueous Aluminum Hydroxide Molecules. Chem. Rev. 2006, 106 (1), 1–16. https://doi.org/10.1021/CR040095D/ASSET/CR040095D.FP.PNG_V03Test.; Wen, K.; Wei, J.; He, H.; Zhu, J.; Xi, Y. Keggin-Al30: An Intercalant for Keggin-Al30 Pillared Montmorillonite. Appl. Clay Sci. 2019, 180, 105203. https://doi.org/10.1016/J.CLAY.2019.105203Test.; Cardona, Y.; Korili, S. A.; Gil, A. Understanding the Formation of Al13 and Al30 Polycations to the Development of Microporous Materials Based on Al13-and Al30-PILC Montmorillonites: A Review. Appl. Clay Sci. 2021, 203, 105996. https://doi.org/10.1016/J.CLAY.2021.105996Test.; Sarpola, A. The Hydrolysis of Aluminium, A Mass Spectrometric Study; 2007.; Furrer, G.; Ludwig, C.; Schindler, P. W. On the Chemistry of the Keggin Al13 Polymer. J. Colloid Interface Sci. 1992, 149 (1), 56–67. https://doi.org/10.1016/0021-9797Test(92)90391-x.; Corona., O. C.; Pastrana., L. El Método de La Intensidad Absoluta Por Fluorescencia de Rayos X Para El Análisis Cuantitativo de Elementos Pesados. Rev. Mex. Física 1962, 11 (2), 79–128.; Jenkins, R.; Snyder, R. L. Introduction to X-Ray Powder Diffractometry. Introd. to X-ray Powder Diffractometry 1996. https://doi.org/10.1002/9781118520994Test.; Reimschussel, A. M.; Fredericks, R. J. Application of Scanning Electron Microscopy to the Study of the Morphology of Multicomponent Catalyst Systems. J. Mater. Sci. 1969 410 1969, 4 (10), 885–889. https://doi.org/10.1007/BF00549779Test.; Ipohorski, M.; Bozzano, P. B. Microscopía Electrónica de Barrido En La Caracterización de Materiales. Cienc. Invest. 2013, 63 (3), 43–53.; Hemminger, W.; Sarge, S. M. Definitions, Nomenclature, Terms and Literature. Handb. Therm. Anal. Calorim. 1998, 1, 1–73. https://doi.org/10.1016/S1573-4374Test(98)80004-6.; Kloprogge, J. T.; Geus, J. W.; Jansen, J. B. H.; Seykens, D. Thermal Stability of Basic Aluminum Sulfate. Thermochim. Acta 1992, 209 (C), 265–276. https://doi.org/10.1016/0040-6031Test(92)80204-A.; Galeano, L. A.; Vicente, M. Á.; Gil, A. Catalytic Degradation of Organic Pollutants in Aqueous Streams by Mixed Al/M-Pillared Clays (M = Fe, Cu, Mn). Catal. Rev. - Sci. Eng. 2014, 56 (3), 239–287. https://doi.org/10.1080/01614940.2014.904182Test.; Aouad, A.; Pineau, A.; Tchoubar, D.; Bergaya, F. Al-Pillared Montmorillonite Obtained in Concentrated Media. Effect of the Anions (Nitrate, Sulfate and Chloride) Associated with the Al Species. Clays Clay Miner. 2006, 54 (5), 626–637. https://doi.org/10.1346/CCMN.2006.0540509Test.; Baloyi, J.; Ntho, T.; Moma, J. Synthesis and Application of Pillared Clay Heterogeneous Catalysts for Wastewater Treatment: A Review. RSC Adv. 2018, 8 (10), 5197–5211. https://doi.org/10.1039/c7ra12924fTest.; Banwart, W. .; Stucki, J. . Advanced Chemical Methods for Soil and Clay Minerals Research; 1979. https://doi.org/10.1007/978-94-009-9094-4Test.; Olaya, A.; Blanco, G.; Bernal, S.; Moreno, S.; Molina, R. Synthesis of Pillared Clays with Al–Fe and Al–Fe–Ce Starting from Concentrated Suspensions of Clay Using Microwaves or Ultrasound, and Their Catalytic Activity in the Phenol Oxidation Reaction. Appl. Catal. B Environ. 2009, 93 (1–2), 56–65. https://doi.org/10.1016/J.APCATB.2009.09.012Test.; Daza, C. E.; Gallego, R. M. Estudio Morfológico y Estructural de Una Arcilla Colombiana Pilarizada En Presencia de Ultrasonido y Microondas. Sci. Tech. 2011, 3 (49), 292–297. https://doi.org/10.22517/23447214.1547Test.; Gil, A.; Korili, S. A.; Trujillano, R.; Vicente, M. A. A Review on Characterization of Pillared Clays by Specific Techniques. Appl. Clay Sci. 2011, 53 (2), 97–105. https://doi.org/10.1016/J.CLAY.2010.09.018Test.; Marinkovic-Neducin, R. P.; Kiss, E. E.; Cukic, T. Z.; Obadovic, D. Z. Thermal Behavior of Al-, AlFe- And AlCu-Pillared Interlayered Clays. J. Therm. Anal. Calorim. 2004, 78 (1), 307–321. https://doi.org/10.1023/B:JTAN.0000042177.82033.d0Test.; Galeano, L. A.; Gil, A.; Vicente, M. A. Strategies for Immobilization of Manganese on Expanded Natural Clays: Catalytic Activity in the CWPO of Methyl Orange. Appl. Catal. B Environ. 2011, 104 (3–4), 252–260. https://doi.org/10.1016/j.apcatb.2011.03.023Test.; Gregg, S. J.; Sing, K. S. W.; Salzberg, H. W. Adsorption Surface Area and Porosity. J. Electrochem. Soc. 1967, 114 (11), 279Ca. https://doi.org/10.1149/1.2426447Test.; Rouquerol, F.; Rouquerol, J. (Jean); Sing, K. S. W. Adsorption by Powders and Porous Solids : Principles, Methodology, and Applications. 1999, 467.; Wagner, C. D.; Davis, L. E.; Zeller, M. V.; Taylor, J. A.; Raymond, R. H.; Gale, L. H. Empirical Atomic Sensitivity Factors for Quantitative Analysis by Electron Spectroscopy for Chemical Analysis. Surf. Interface Anal. 1981, 3 (5), 211–225. https://doi.org/10.1002/SIA.740030506Test.; Wagner, C. D. Sensitivity Factors for XPS Analysis of Surface Atoms. J. Electron Spectros. Relat. Phenomena 1983, 32 (2), 99–102. https://doi.org/10.1016/0368-2048Test(83)85087-7.; Degaga, G. D.; Trought, M.; Nemsak, S.; Crumlin, E. J.; Seel, M.; Pandey, R.; Perrine, K. A. Investigation of N2 Adsorption on Fe3O4(001) Using Ambient Pressure X-Ray Photoelectron Spectroscopy and Density Functional Theory. J. Chem. Phys. 2020, 152 (5), 054717. https://doi.org/10.1063/1.5138941Test.; Poulin, S.; França, R.; Moreau-Bélanger, L.; Sacher, E. Confirmation of X-Ray Photoelectron Spectroscopy Peak Attributions of Nanoparticulate Iron Oxides, Using Symmetric Peak Component Line Shapes. J. Phys. Chem. C 2010, 114 (24), 10711–10718. https://doi.org/10.1021/JP100964X/ASSET/IMAGES/MEDIUM/JP-2010-00964X_0009.GIFTest.; Grosvenor, A. P.; Kobe, B. A.; Biesinger, M. C.; McIntyre, N. S. Investigation of Multiplet Splitting of Fe 2p XPS Spectra and Bonding in Iron Compounds. Surf. Interface Anal. 2004, 36 (12), 1564–1574. https://doi.org/10.1002/SIA.1984Test.; Asif, M.; Haitao, W.; Shuang, D.; Aziz, A.; Zhang, G.; Xiao, F.; Liu, H. Metal Oxide Intercalated Layered Double Hydroxide Nanosphere: With Enhanced Electrocatalyic Activity towards H2O2 for Biological Applications. Sensors Actuators B Chem. 2017, 239, 243–252. https://doi.org/10.1016/J.SNB.2016.08.010Test.; Weng, X.; Chen, Z.; Chen, Z.; Megharaj, M.; Naidu, R. Clay Supported Bimetallic Fe/Ni Nanoparticles Used for Reductive Degradation of Amoxicillin in Aqueous Solution: Characterization and Kinetics. Colloids Surfaces A Physicochem. Eng. Asp. 2014, 443, 404–409. https://doi.org/10.1016/j.colsurfa.2013.11.047Test.; Sostenible, M. de A. y D. Resolución 631 de 2015 https://www.minambiente.gov.co/documento-normativa/resolucion-631-de-2015Test/ (accessed Nov 26, 2022).; Carriazo, J.; Guélou, E.; Barrault, J.; Tatibouët, J. M.; Molina, R.; Moreno, S. Catalytic Wet Peroxide Oxidation of Phenol by Pillared Clays Containing Al-Ce-Fe. Water Res. 2005, 39 (16), 3891–3899. https://doi.org/10.1016/j.watres.2005.06.034Test.; Franck, S.; Fuhrmann-Selter, T.; Joseph, J. F.; Michelet, R.; Casilag, F.; Sirard, J. C.; Wicha, S. G.; Kloft, C. A Rapid, Simple and Sensitive Liquid Chromatography Tandem Mass Spectrometry Assay to Determine Amoxicillin Concentrations in Biological Matrix of Little Volume. Talanta 2019, 201, 253–258. https://doi.org/10.1016/J.TALANTA.2019.03.098Test.; Weng, X.; Cai, W.; Lin, S.; Chen, Z. Degradation Mechanism of Amoxicillin Using Clay Supported Nanoscale Zero-Valent Iron. Appl. Clay Sci. 2017, 147 (July), 137–142. https://doi.org/10.1016/j.clay.2017.07.023Test.; Weng, X.; Sun, Q.; Lin, S.; Chen, Z.; Megharaj, M.; Naidu, R. Enhancement of Catalytic Degradation of Amoxicillin in Aqueous Solution Using Clay Supported Bimetallic Fe/Ni Nanoparticles. Chemosphere 2014, 103, 80–85. https://doi.org/10.1016/j.chemosphere.2013.11.033Test.; Hirte, K.; Seiwert, B.; Schüürmann, G.; Reemtsma, T. New Hydrolysis Products of the Beta-Lactam Antibiotic Amoxicillin, Their PH-Dependent Formation and Search in Municipal Wastewater. Water Res. 2016, 88, 880–888. https://doi.org/10.1016/j.watres.2015.11.028Test.; Cha, J. M.; Yang, S.; Carlson, K. H. Trace Determination of β-Lactam Antibiotics in Surface Water and Urban Wastewater Using Liquid Chromatography Combined with Electrospray Tandem Mass Spectrometry. J. Chromatogr. A 2006, 1115 (1–2), 46–57. https://doi.org/10.1016/j.chroma.2006.02.086Test.; Timm, A.; Borowska, E.; Majewsky, M.; Merel, S.; Zwiener, C.; Bräse, S.; Horn, H. Photolysis of Four Β‑lactam Antibiotics under Simulated Environmental Conditions: Degradation, Transformation Products and Antibacterial Activity. Sci. Total Environ. 2019, 651, 1605–1612. https://doi.org/10.1016/j.scitotenv.2018.09.248Test.; Nägele, E.; Moritz, R. Structure Elucidation of Degradation Products of the Antibiotic Amoxicillin with Ion Trap MSn and Accurate Mass Determination by ESI TOF. J. Am. Soc. Mass Spectrom. 2005, 16 (10), 1670–1676. https://doi.org/10.1016/j.jasms.2005.06.002Test.; Längin, A.; Alexy, R.; König, A.; Kümmerer, K. Deactivation and Transformation Products in Biodegradability Testing of SS-Lactams Amoxicillin and Piperacillin. Chemosphere 2009, 75 (3), 347–354. https://doi.org/10.1016/j.chemosphere.2008.12.032Test.; https://repositorio.unal.edu.co/handle/unal/84299Test; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.coTest/

  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية
  8. 8
    رسالة جامعية

    المؤلفون: Martínez Ortigosa, Joaquín

    مرشدي الرسالة: Blasco Lanzuela, Teresa, Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química

  9. 9
    دورية أكاديمية
  10. 10
    دورية أكاديمية

    المصدر: Revista de Investigaciones Universidad del Quindío; Vol. 24 No. 1 (2013); 49-58 ; Revista de Investigaciones Universidad del Quindío; Vol. 24 Núm. 1 (2013); 49-58 ; 2500-5782 ; 1794-631X

    وصف الملف: application/pdf