يعرض 1 - 10 نتائج من 16 نتيجة بحث عن '"ELECTROENCEPHALOGRAPHY"', وقت الاستعلام: 1.34s تنقيح النتائج
  1. 1
    رسالة جامعية

    المؤلفون: Perdomo Cely, Alejandro Jesús

    المساهمون: Pardo Beainy, Camilo Ernesto, Universidad Santo Tomás

    جغرافية الموضوع: CRAI-USTA Tunja

    وصف الملف: application/pdf

    العلاقة: Amarillo, M. (2022). Componentes Comunes del ERP, Parte 1. Bogotá.; Biarnés Rabella, C. (2018). Diseño, caracterización y evaluación de electrodos capacitivos para la medida de ECG y EEG. Universitat Politécnica de Catalunya, 12-15.; Blanco Díaz, C. F., & Ruiz Olaya, A. F. (2019). Caracterización de señales de EEG relacionadas a potenciales evocados visuales en estado estacionario. Ontare, 18-20.; Broggi Angulo, O. A., Koc Gonzáles, D. G., & Martinez Esteban, P. C. (2022). Guía de procedimiento de electroencefalografía y videoelectroencefalografía. San Borja: Ministerio de Salud de la República del Perú.; Chandra Poonia, R., Singh, V., & Ranjan Nayak, S. (2022). Deep Learning for Sustainable Agriculture, A volume in Cognitive Data Science in Sustainable Computing. India: Elsevier.; Cohen, M. X. (2014). Advantages and Limitations of Time- and Time-Frequency-Domain Analyses. In M. X. Cohen, Analyzing Neural Time Series Data, Theory and Practice (pp. 15-30). London: The MIT Press.; El sistema 10-20 se utiliza en electroencefalografía (EEG). (s.f.). Obtenido de GVB geliMED GmbH: https://gvb-gelimed.com/es/10-20-elektrodensystem-in-der-elektroenzephalografie-eegTest/; Electroencefalografía (EEG). (2018). Obtenido de BrainSigns srl: https://brainsigns.com/es/science/s2/technologies/eegTest; Gannouni, S., Aledaily, A., Belwafi, K., & Aboalsamh, H. (2021). Emotion detection using electroencephalography signals and a zero time windowing based epoch estimation and relevant electrode identifcation. Nature Portfolio, 5-7.; García, T. T. (2011). Manual básico para enfermeros en electroencefalografía. Especial, 29-33.; Gonzales, L. (19 de Julio de 2019). K Vecinos más Cercanos – Teoría. Obtenido de aprendeIA: https://aprendeia.com/algoritmo-k-vecinos-mas-cercanos-teoria-machine-learningTest/; Hinrichs, H. (2004). Electroencephalography. In J. Moore, & G. Zouridakis, Biomedical Technology and Devices Handbook (pp. 153-173). Boca Raton: CRC Press LLC.; Hojas, I. M. (s.f.). Regresión Logística en Python. Obtenido de Stat Developer: https://www.statdeveloper.com/regresion-logistica-en-pythonTest/; Kumar, S. (19 de Julio de 2019). Data Augmentation Increases Accuracy of your model — But how ? Obtenido de Medium: https://medium.com/secure-and-private-ai-writing-challenge/data-augmentation-increases-accuracy-of-your-model-but-how-aa1913468722Test; Macías Macías, J. M., Ramirez Quintana, J. A., Méndez Aguirre, J. S., Chacón Murgia, M. I., & Corral Sáenz, A. D. (2020). Procesamiento Embebido de P300 Basado en Red Neuronal Convolucional para Interfaz Cerebro-Computadora Ubicua. ReCIBE. Revista electrónica de Computación, Informática, Biomédica y Electrónica, vol. 9, núm. 2, 1-24. Obtenido de https://www.redalyc.org/journal/5122/512267931005/htmlTest/; Morillo, L. E. (s.f.). ANÁLISIS VISUAL DEL ELECTROENCEFALOGRAMA. 145-153.; N.N. (27 de Septiembre de 2023). Desviación Típica. Obtenido de Wikipedia: https://es.wikipedia.org/wiki/DesviaciTestón_típica; Nunez, P. L., & Srinivasan, R. (2006). Recording Strategies, Reference Issues, and Dipole Localization. In P. L. Nunez, & R. Srinivasan, Electric Fields of the Brain, The Neurophysics of EEG (pp. 275-313). New York: Oxford University Press.; Peirce, J. G. (2019). PsychoPy2: Experiments in behavior made easy. Obtenido de Behavior research methods: https://doi.org/10.3758/s13428-018-01193-yTest; Razavi, M., Janfaza, V., Yamauchi, T., Leontyev, A., Longmire-Monford, S., & Orr, J. (2021). OpenSync: An opensource platform for synchronizing multiple measures in neuroscience experiments. 3-7.; Ríos P., L., & Álvarez D., C. (2013). Epilepsy diagnostic: update in eeg contribution. Revista Médica Clínica Las Condes, 953-957.; Romo, R. (s.f.). Árboles de Decisión / Decision Trees con python. Obtenido de Rubén J. Romo: https://rubenjromo.com/decision-treesTest/; Sherman, D., & Walterspacher, D. (2006). Electroencephalography. In J. G. Webster, Encyclopedia of Medical Devices and Instrumentation (pp. 62-83). Hoboken: John Wiley & Sons, Inc.; Urgilés Cárdenas, D. F., & Vásquez Rodríguez, G. J. (2017). Implementación de un Sistema BCI para el Análisis del Comportamiento de Bioseñales Neurológicas. 14-32.; Wallisch, P., Lusignan, M. E., Benayoun, M. D., Baker, T. I., Dickey, A. S., & Hatsopoulos, N. G. (2014). Matlab Tutorial. In P. Wallisch, M. E. Lusignan, M. D. Benayoun, T. I. Baker, A. S. Dickey, & N. G. Hatsopoulos, Matlab for Neuroscientists (pp. 38-53). Oxford: Elsevier.; Wood, C. C., Truett, A., Goff, W. R., Williamson, P. D., & Spencer, D. D. (2008). On the Neural Origin of P300 in Man. Science Direct, 51-56.; Zhuang, P., Toro, C., Grafman, J., Manganotti, P., Leocani, L., & Hallett, M. (1996). Event-related desynchronization (ERD) in the alpha frequency during development of implicit and explicit learning. Elsevier, 1-8.; Perdomo Cely, A. J. (2024). Uso de Machine Learning para detectar señales cerebrales de tipo P300 generando estímulos visuales y auditivos. [Trabajo de Grado, Universidad Santo Tomás]. Repositorio Institucional.; http://hdl.handle.net/11634/55193Test; reponame:Repositorio Institucional Universidad Santo Tomás; instname:Universidad Santo Tomás; repourl:https://repository.usta.edu.coTest

  2. 2
    كتاب
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية

    المؤلفون: Martínez-Cagigal, V., Hornero, R.

    المساهمون: Ministerio de Economía y Competitividad, European Regional Development Fund, Junta de Castilla y León, Universidad de Valladolid

    العلاقة: Revista Iberoamericana de Automática e Informática industrial; info:eu-repo/grantAgreement/MINECO//TEC2014-53196-R/ES/CARACTERIZACION DE LA ACTIVIDAD NEURONAL EN LA ENFERMEDAD DE ALZHEIMER MEDIANTE LA TEORIA DE REDES COMPLEJAS: NUEVOS BIOMARCADORES PARA SU DIAGNOSTICO PRECOZ/; info:eu-repo/grantAgreement/Junta de Castilla y León//VA037U16/ES/DIAGNÓSTICO Y ESTIMACIÓN DE SEVERIDAD DEL SÍNDROME DE LA APNEA-HIPOPNEA DEL SUEÑO EN NIÑOS MEDIANTE PROCESADO AUTOMÁTICO DE SEÑALES XIMÉTRICAS/; https://doi.org/10.1016/j.riai.2017.07.003Test; urn:issn:1697-7912; http://hdl.handle.net/10251/143299Test; urn:eissn:1697-7920

  6. 6
    دورية أكاديمية
  7. 7
    رسالة جامعية
  8. 8
  9. 9
    رسالة جامعية

    المساهمون: Niño Vásquez, Luis Fernando, LABORATORIO DE INVESTIGACIÓN EN SISTEMAS INTELIGENTES - LISI

    وصف الملف: 122 páginas; application/pdf

    العلاقة: Badcock, Nicholas A.; Mousikou, Petroula; Mahajan, Yatin; de Lissa, Peter; Thie, Johnson; McArthur, Genevieve: Validation of the Emotiv EPOC(®) EEG gaming system for measuring research quality auditory ERPs. En: PeerJ 1 (2013), Nr.1, p. e38; Bos, Danny O.: EEG-based emotion recognition. En: The Influence of Visual and Auditory Stimuli (2006), p. 1–17; Bradley, Margaret M.; Lang, Peter J.: Measuring emotion: The self-assessment ma- nikin and the semantic differential. En: Journal of Behavior Therapy and Experimental Psychiatry 25 (1994), Nr. 1, p. 49–59; Lang, Peter J.: The International Affective Digitized Sounds (2nd Edition; IADS-2): Affective ratings of sounds and instruction manual. Technical report B-3. En: Technical report B-3. (2007); Cabredo, Rafael; Legaspi, Roberto; Inventado, Paul S.; Numao, Masayuki: Dis- covering emotion-inducing music features using EEG signals. En: Journal of Advanced Computational Intelligence and Intelligent Informatics 17 (2013), p. 362–370. – ISSN 13430130; Candra, Henry; Yuwono, Mitchell; Handojoseno, Ardi; Chai, Rifai; Su, Steven; Nguyen, Hung T.: Recognizing emotions from EEG subbands using wavelet analy- sis. En: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS Vol. 2015-Novem, Institute of Electrical and Electronics Engineers Inc., 2015, p. 6030–6033; Cernea, Daniel; Kerren, Andreas; Ebert, Achim: Detecting insight and emotion in visualization applications with a commercial EEG headset. En: SIGRAD 2011 Confe- rence on Evaluations of Graphics and Visualization-Efficiency, Usefulness, Accessibility, Usability,(Stockholm, Sweden), 2011, p. 53–60; Chanel, Guillaume; Kronegg, Julien; Grandjean, Didier; Pun, Thierry: Emotion assessment: Arousal evaluation using EEG’s and peripheral physiological signals. En: Multimedia content representation, classification and security. Springer, 2006, p. 530– 537; Chawla, Nitesh V.; Hall, Lawrence O.; Kegelmeyer, W. P.; Bowyer, Kevin W.: SMOTE: Synthetic Minority Over-sampling Technique. En: Journal of Artificial Inte- lligence Research 16 (2002), Nr. 1, p. 321–357. – ISBN 013805326X; Cui, Zhicheng; Chen, Wenlin; Chen, Yixin: Multi-Scale Convolutional Neural Net- works for Time Series Classification. En: ArXiv preprint arXiv:1603.06995v4 [cs.CV] (2016); Delorme, Arnaud; Rousselet, Guillaume A.; Macé, Marc J M.; Fabre-Thorpe, Michèle: Interaction of top-down and bottom-up processing in the fast visual analysis of natural scenes. En: Cognitive Brain Research 19 (2004), Nr. 2, p. 103–113; Elgendi, Mohamed; Rebsamen, Brice; Cichocki, Andrzej; Vialatte, Francois; Dauwels, Justin: Real-time wireless sonification of brain signals. En: Advances in Cognitive Neurodynamics (III). Springer, 2013, p. 175–181; Escobar, Maria; Novoa, Edgar: Análisis de formatos de consentimiento informado en Colombia. Problemas ético-legales y dificultades en el lenguaje. En: Revista Latino- americana de Bioética 16(1) (2016), p. 14–37; Guennec, Arthur L.; Malinowski, Simon; Tavenard, Romain: Data Augmentation for Time Series Classification using Convolutional Neural Networks. En: ECML/PKDD Workshop on Advanced Analytics and Learning on Temporal Data, 2016; Guyon, Isabelle; Wenston, Jason; Barnhill, Stephen; Vapnik, Vladimir: Ge- ne Selection for Cancer Classification using Support Vector Machines. En: Machine Learning 46 (2002), Nr. 1-3, p. 389–422. – ISSN 1573–0565; Hadjidimitriou, Stelios K.; Hadjileontiadis, Leontios J.: Toward an EEG-based recognition of music liking using time-frequency analysis. En: IEEE Transactions on Biomedical Engineering 59 (2012), Nr. 12, p. 3498–3510; Hantke, Simone; Weninger, Felix; Han, Wenjing; Zhang, Zixing; Narayanan, Shrikanth: Automatic recognition of emotion evoked by general sound events. En: Icassp2012 (2012), Nr. Section 2, p. 341–344. ISBN 9781467300469; Higuchi, T: Approach to an irregular time series on the basis of the fractal theory. En: Physica D: Nonlinear Phenomena 31 (1988), Nr. 2, p. 277–283; Jatupaiboon, N.; Pan-ngum, S.; Israsena, P.: Emotion classification using minimal EEG channels and frequency bands. En: The 2013 10th International Joint Conference on Computer Science and Software Engineering (JCSSE), 2013, p. 21–24; Kesić, Srdjan; Spasić, Sladjana Z.: Application of Higuchi’s fractal dimension from basic to clinical neurophysiology: A review. En: Computer Methods and Programs in Biomedicine (2016). – ISSN 18727565; Klonowski, Wlodzimierz: Everything you wanted to ask about EEG but were afraid to get the right answer. En: Nonlinear Biomedical Physics 3 (2009), Nr. 1. – ISSN 1753–4631; Koelsch, Stefan; Fritz, Thomas; Müller, Karsten; Friederici, Angela D. [u. a.]: Investigating emotion with music: an fMRI study. En: Human brain mapping 27 (2006), Nr. 3, p. 239–250; Koelstra, S.; Muhl, C.; Soleymani, M.; Jong-Seok Lee; Yazdani, A.; Ebrahimi, T.; Pun, T.; Nijholt, A.; Patras, I.: DEAP: A Database for Emotion Analysis ;Using Physiological Signals. En: IEEE Transactions on Affective Computing 3 (2012), jan, Nr. 1, p. 18–31. – ISSN 1949–3045; Kolodziej, Marcin; Majkowski, Andrzej; Rak, Remigiusz J.: A new method of spatial filters design for brain-computer interface based on steady state visually evoked potentials. En: 2015 IEEE 8th International Conference on Intelligent Data Acquisi- tion and Advanced Computing Systems: Technology and Applications (IDAACS) Vol. 2, IEEE, 2015. – ISBN 978–1–4673–8359–2, p. 697–700; Kvaale, S. P.: Emotion Recognition in EEG: A neuroevolutionary approach., Norwe- gian University of Science and Technology, Tesis de Grado, 2012; Lee, Gregory; Gommers, Ralf; Waselewski, Filip; Wohlfahrt, Kai; O’Leary, Aaron: PyWavelets: A Python package for wavelet analysis. Journal of Open Source Software. En: The Journal of Open Source 4 (2019), Nr. 36, p. 1237; Li, Ma; Chai, Quek; Kaixiang, Teo; Wahab, Abdul; Abut, Hüseyin: EEG emotion recognition system. En: In-vehicle corpus and signal processing for driver behavior. Springer, 2009, p. 125–135; Lin, Yuan P.; Wang, Chi H.; Jung, Tzyy P.; Wu, Tien L.; Jeng, Shyh K.; Duann, Jeng R.; Chen, Jyh H.: EEG-based emotion recognition in music listening. En: IEEE Transactions on Biomedical Engineering 57 (2010), Nr. 7, p. 1798–1806; Chen, Jyh H.: Mul- tilayer perceptron for EEG signal classification during listening to emotional music. En: IEEE Region 10 Annual International Conference, Proceedings/TENCON (2007). ISBN 1424412722; Lin, Yuan-Pin; Wang, Chi-Hong; Wu, Tien-Lin; Jeng, Shyh-Kang; Chen, Jyh- Horng: EEG-based emotion recognition in music listening: A comparison of schemes for multiclass support vector machine. En: Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on IEEE, 2009, p. 489–492; Liu, Yisi; Sourina, Olga: EEG databases for emotion recognition. En: Proceedings - 2013 International Conference on Cyberworlds, CW 2013, IEEE Computer Society, 2013, p. 302–309; Sourina, Olga; Nguyen, Minh K.: Real-time EEG-based emotion recog- nition and its applications. En: Transactions on computational science XII. Springer, 2011, p. 256–277; Mohammadi, Zeynab; Frounchi, Javad; Amiri, Mahmood: Wavelet-based emotion recognition system using EEG signal. En: Neural Computing and Applications 28 (2017), Aug, Nr. 8, p. 1985–1990. – ISSN 1433–3058; Murugappan, M.; Nagarajan, R.; Yaacob, Sazali: Comparison of different wavelet features from EEG signals for classifying human emotions. En: 2009 IEEE Symposium on Industrial Electronics & Applications Vol. 2, IEEE, Oktober 2009. – ISBN 978–1– 4244–4681–0, p. 836–841; Murugappan, M; Rizon, M; Nagarajan, Ramachandran; Yaacob, S; Zunaidi, I; Hazry, Desa: Lifting scheme for human emotion recognition using EEG. En: Information Technology, 2008. ITSim 2008. International Symposium on Vol. 2 IEEE, 2008, p. 1–7; Murugappan, Murugappan; Ramachandran, Nagarajan; Sazali, Yaacob: Classi- fication of human emotion from EEG using discrete wavelet transform. En: Journal of Biomedical Science and Engineering 3 (2010), p. 390–396; Oikonomou, Vangelis P.; Liaros, Georgios; Georgiadis, Kostantinos; Chatzila- ri, Elisavet; Adam, Katerina; Nikolopoulos, Spiros; Kompatsiaris, Ioannis: Com- parative evaluation of state-of-the-art algorithms for SSVEP-based BCIs. En: CoRR abs/1602.00904 (2016); Olejarczyk, Elżbieta: Application of fractal dimension method of functional MRI time-series to limbic dysregulation in anxiety study, IEEE, 2007. – ISBN 978–1–4244– 0787–3; Plutchik, Robert: A psychoevolutionary theory of emotions. En: Social Science Information 21 (1982), Nr. 4-5, p. 529–553; Pongpanitanont, P; Sittiprapaporn, W; Charoensuk, W [u. a.]: Pattern re- cognition in brain FMRI for agnosia. En: Int J Appl Biomed Eng 3 (2010), p. 39–44; Ragot, Nicolas; Bouzbouz, F.; Khemmar, R.; Kokosy, Anne-Marie; Labbani- Igbida, Ouiddad; Sajous, Patricia; Niyonsaba, Emmanuel; Reguer, D.; Hu, Huosheng; McDonald-Maier, Klaus; Sirlantzis, Kostas; Howells, Gareth; Pepper, Matthew; Sakel, M.: Enhancing the Autonomy of Disabled Persons: Assis- tive Technologies Directed by User Feedback. En: 2013 Fourth International Conference on Emerging Security Technologies, 2010, p. 71–74; Ranky, GN; Adamovich, S: Analysis of a commercial EEG device for the control of a robot arm. En: Bioengineering Conference, Proceedings of the 2010 IEEE 36th Annual Northeast IEEE, 2010, p. 1–2; Russell, James A.: A circumplex model of affect. En: Journal of personality and social psychology 39 (1980), Nr. 6, p. 1161; Schalk, Gerwin; McFarland, Dennis J.; Hinterberger, Thilo; Birbaumer, Niels; Wolpaw, Jonathan R.: BCI2000: A general-purpose brain-computer interface (BCI) system. En: IEEE Transactions on Biomedical Engineering 51 (2004), Nr. 6, p. 1034–1043; Scherer, Klaus R.: What are emotions? And how can they be measured? En: Social Science Information 44 (2005), Nr. 4, p. 695–729; Schuller, Böjrn; Dorfner, Johannes; Rigoll, Gerhard: Determination of nonpro- totypical valence and arousal in popular music: Features and performances. En: Eurasip Journal on Audio, Speech, and Music Processing 2010 (2010). – ISSN 16874714; Smits, Fenne M.; Porcaro, Camillo; Cottone, Carlo; Cancelli, Andrea; Rossi- ni, Paolo M.; Tecchio, Franca: Electroencephalographic Fractal Dimension inHealthy Ageing and Alzheimer’s Disease. En: PLoS ONE 11, Nr. 2; Liu, Yisi: A Fractal-based Algorithm of Emotion Recognition from EEG using Arousal-Valence Model. En: BIOSIGNALS, 2011, p. 209–214; Stevenson, Ryan A.; James, Thomas W.: Affective auditory stimuli: Characteri- zation of the International Affective Digitized Sounds (IADS) by discrete emotional categories. En: Behavior Research Methods 40 (2008), Februar, Nr. 1, p. 315–321. – ISSN 1554–351X; Vareka, Lukas; Bruha, Petr; Moucek, Roman: Event-related potential datasets based on a three-stimulus paradigm. En: GigaScience 3 (2014), Nr. 1, p. 35; Vokorokos, Liberios; Madoš, Branislav; Ádám, Norbert; Baláž, Anton: Data Ac- quisition in Non-Invasive Brain-Computer Interface Using Emotiv Epoc Neuroheadset. En: Acta Electrotechnica et Informatica 12 (2012), Nr. 1, p. 5–8; Wen, Qingsong; Sun, Liang; Song, Xiaomin; Gao, Jingkun; Wang, Xue; Xu, Huan: Time Series Data Augmentation for Deep Learning: A Survey. En: ArXiv pre- print abs/2002.12478 (2020); Yohanes, Rendi E J.; Ser, Wee; Huang, Guang-bin: Discrete wavelet transform coefficients for emotion recognition from EEG signals. En: Conference proceedings : . Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference 2012 (2012), p. 2251–4. – ISBN 9781457717871; Zhang, X L.; Begleiter, H; Porjesz, B; Wang, W; Litke, a: Event related potentials during object recognition tasks. En: Brain research bulletin 38 (1995), Nr. 6, p. 531–538. – ISBN 0361–9230 (Print)\r0361–9230 (Linking); https://repositorio.unal.edu.co/handle/unal/79832Test; Universidad Nacional de Colombia; Repositorio Institucional Universidad Nacional de Colombia; https://repositorio.unal.edu.coTest/

  10. 10
    رسالة جامعية