يعرض 1 - 10 نتائج من 64 نتيجة بحث عن '"idiopathic pulmonary-fibrosis"', وقت الاستعلام: 0.86s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية

    المؤلفون: R. N. Mustafin

    المصدر: Вавиловский журнал генетики и селекции, Vol 26, Iss 3, Pp 308-318 (2022)

    وصف الملف: electronic resource

  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية

    المصدر: Meditsinskiy sovet = Medical Council; № 4 (2023); 132-140 ; Медицинский Совет; № 4 (2023); 132-140 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    العلاقة: https://www.med-sovet.pro/jour/article/view/7426/6620Test; Dechant K.L., Noble S. Erdosteine. Drugs. 1996;52(6):875–82. https://doi.org/10.2165/00003495-199652060-00009Test.; Moretti M. Pharmacology and clinical efficacy of erdosteine in chronic obstructive pulmonary disease. Expert Rev Respir Med. 2007;1(3):307–316. https://doi.org/10.1586/17476348.1.3.307Test.; Miyake K., Kaise T., Hosoe H., Akuta K., Manabe H., Ohmori K. The effect of erdosteine and its active metabolite on reactive oxygen species production by inflammatory cells. Inflamm Res. 1999;48(4):205–209. https://doi.org/10.1007/s000110050447Test.; Cazzola M., Calzetta L., Page C., Rogliani P., Matera M.G. Impact of erdosteine on chronic bronchitis and COPD: a meta-analysis. Pulm Pharmacol Ther. 2018;(48):185–194. https://doi.org/10.1016/j.pupt.2017.11.009Test.; Fioretti M., Bandera M. Prevention of exacerbations in chronic bronchitic patients with erdosteine. Med Praxis. 1991;(12):219–227.; Hotzinger H. Erdosteine or placebo combined with co-trimoxazole in the treatment of hypersecretive infectious bronchitis: a double blind clinical trial. Med Praxis. 1991;(12):171–181.; Zanasi A., Menarini A. Erdosteine versus N-acetylcysteine in the treatment of exacerbation of chronic bronchopneumopathies. Med Praxis. 1991;(12):207–217.; Ghiringhelli G. Cross-over study of efficacy and tolerability of erdosteine in the treatment of chronic obstructive bronchial disease in stable hypersecretive phase: controlled double-blind study vs placebo. Arch Med Int. 1995;47(4):113–120.; Чикина С.Ю. Муколитики: современная роль в ведении больных хронической обструктивной болезнью легких. Практическая пульмонология. 2015;(4):18–25. Режим доступа: http://www.atmosphere-ph.ru/modules/Magazines/articles/pulmo/PP_4_2015_23.pdfTest; Dal Negro R.W., Visconti M., Turco P. Efficacy of erdosteine 900 versus 600 mg/day in reducing oxi-dative stress in patients with COPD exacerbations: results of a double blind, placebocontrolled trial. Pulm Pharmacol Ther. 2015;(33):47–51. https://doi.org/10.1016/j.pupt.2015.06.004Test.; Moretti M., Bottrighi P., Dallari R., Da Porto R., Dolcetti A., Grandi P. et al. The effect of long-term treatment with erdosteine on chronic obstructive pulmonary disease: the EQUALIFE Study. Drugs Exp Clin Res. 2004;30(4):143–152. Available at: https://pubmed.ncbi.nlm.nih.gov/15553660Test.; Moretti M., Fagnani S. Erdosteine reduces inflammation and time to first exacerbation postdischarge in hospitalized patients with AECOPD. Int J Chron Obstruct Pulmon Dis. 2015;(10):2319–2325. https://doi.org/10.2147/COPD.S87091Test.; Moretti M. Erdosteine: its relevance in COPD treatment. Expert Opin Drug Metab Toxicol. 2009;5(3):333–343. https://doi.org/10.1517/17425250902814790Test.; Cazzola M., Page C., Rogliani P., Calzetta L., Matera M.G. Multifaceted Beneficial Effects of Erdosteine: More than a Mucolytic Agent. Drugs. 2020;80(17):1799–1809. https://doi.org/10.1007/s40265-020-01412-xTest.; Hosoe H., Kaise T., Ohmori K., Isohama Y., Kai H., Takahama K., Miyata T. Mucolytic and antitussive effects of erdosteine. J Pharm Pharmacol. 1999;51(8):959–966. https://doi.org/10.1211/0022357991773230Test.; Hosoe H., Kaise T., Ohmori K. Erdosteine enhances mucociliary clearance in rats with and without airway inflammation. J Pharmacol Toxicol Methods. 1998;40(3):165–171. https://doi.org/10.1016/s1056-8719Test(98)00053-7.; Irwin R.S., Boulet L.P., Cloutier M.M., Fuller R., Gold P.M., Hoffstein V. et al. Managing cough as a defense mechanism and as a symptom. A consensus panel report of the American College of Chest Physicians. Chest. 1998;114(2):133S–81S. https://doi.org/10.1378/chest.114.2_supplement.133sTest.; Bolser D.C. Cough suppressant and pharmacologic protussive therapy: ACCP evidence-based clinical practice guidelines. Chest. 2006;129(1):238S–249S. https://doi.org/10.1378/chest.129.1_suppl.238STest.; Cazzola M., Calzetta L., Page C., Rogliani P., Matera M.G. Thiol-based drugs in pulmonary medicine: much more than mucolytics. Trends Pharmacol Sci. 2019;40(7):452–463. https://doi.org/10.1016/j.tips.2019.04.015Test.; Braga P.C., Dal Sasso M., Zuccotti T. Assessment of the antioxidant activity of the SH metabolite I of erdosteine on human neutrophil oxidative bursts. Arzneimittelforschung. 2000;50(8):739–746. https://doi.org/10.1055/s-0031-1300281Test.; Marabini L., Calò R., Braga P.C. Protective effect of erdosteine metabolite I against hydrogen peroxide-induced oxidative DNA-damage in lung epithelial cells. Arzneimittelforschung. 2011;61(12):700–706. https://doi.org/10.1055/s-0031-1300590Test.; Braga P.C., Culici M., Dal Sasso M., Falchi M., Spallino A. Free radical scavenging activity of erdosteine metabolite I investigated by electron paramagnetic resonance spectroscopy. Pharmacology. 2010;85(4):195–202. https://doi.org/10.1159/000275063Test.; Boyaci H., Maral H., Turan G., Başyiğit I., Dillioğlugil M.O., Yildiz F. et al. Effects of erdosteine on bleomycin-induced lung fibrosis in rats. Mol Cell Biochem. 2006;281(1–2):129–137. https://doi.org/10.1007/s11010-006-0640-3Test.; Demiralay R., Gürsan N., Ozbilim G., Erdogan G., Demirci E. Comparison of the effects of erdosteine and N-acetylcysteine on apoptosis regulation in endotoxin-induced acute lung injury. J Appl Toxicol. 2006;26(4):301–308. https://doi.org/10.1002/jat.1133Test.; Erdem A., Gedikli E., Yersal N., Karaismailoglu S., Muftuoglu S., Fadillioglu E., Tuncer M. Protective role of erdosteine pretreatment on oleic acid-induced acute lung injury. J Surg Res. 2017;213:234–242. https://doi.org/10.1016/j.jss.2017.02.061Test.; Lee I.T., Yang C.M. Role of NADPH oxidase/ROS in pro-inflammatory mediators-induced airway and pulmonary diseases. Biochem Pharmacol. 2012;84(5):581–590. https://doi.org/10.1016/j.bcp.2012.05.005Test.; Basyigit I., Yildiz F., Cekmen M., Duman C., Bulut O. Effects of erdosteine on smoking-induced lipid peroxidation in healthy smokers. Drugs. 2005;6(2):83–89. https://doi.org/10.2165/00126839-200506020-00003Test.; Dal Negro R.W., Visconti M., Micheletto C., Tognella S. Changes in blood ROS, e-NO, and some pro-inflammatory mediators in bronchial secretions following erdosteine or placebo: a controlled study in current smokers with mild COPD. Pulm Pharmacol Ther. 2008;21(2):304–308. https://doi.org/10.1016/j.pupt.2007.07.004Test.; Dal Negro R.W., Visconti M. Erdosteine reduces the exercise-induced oxidative stress in patients with severe COPD: results of a placebo-controlled trial. Pulm Pharmacol Ther. 2016;(41):48–51. https://doi.org/10.1016/j.pupt.2016.09.007Test.; Park J.S., Park M.-Y., Cho Y.-J., Lee J.H., Yoo C.-G., Lee C.-T., Lee S.-M. Antiinflammatory effect of erdosteine in lipopolysaccharide-stimulated RAW 264.7 cells. Inflammation. 2016;39(4):1573–1581. https://doi.org/10.1007/s10753-016-0393-4Test.; Jang Y.Y., Song J.H., Shin Y.K., Han E.S., Lee C.S. Depressant effects of ambroxol and erdosteine on cytokine synthesis, granule enzyme release, and free radical production in rat alveolar macrophages activated by lipopolysaccharide. Pharmacol Toxicol. 2003;92(4):173–179. https://doi.org/10.1034/j.1600-0773.2003.920407.xTest.; Hayashi K., Hosoe H., Kaise T., Ohmori K. Protective effect of erdosteine against hypochlorous acid-induced acute lung injury and lipopolysaccharide-induced neutrophilic lung inflammation in mice. J Pharm Pharmacol. 2000;52(11):1411–1416. https://doi.org/10.1211/0022357001777414Test.; Demiralay R., Gürsan N., Erdem H. Regulation of sepsis-induced apoptosis of pulmonary cells by posttreatment of erdosteine and N-aceylcysteine. Toxicology. 2006;228(2–3):151–161. https://doi.org/10.1016/j.tox.2006.08.027Test.; Braga P.C., Dal Sasso M., Culici M., Verducci P., Lo Verso R., Marabini L. Effect of metabolite I of erdosteine on the release of human neutrophil elastase. Pharmacology. 2006;77(3):150–154. https://doi.org/10.1159/000094379Test.; Braga P.C., Dal Sasso M., Sala M.T., Gianelle V. Effects of erdosteine and its metabolites on bacterial adhesiveness. Arzneimittelforschung. 1999;49(4):344–350. https://doi.org/10.1055/s-0031-1300425Test.; Braga P.C., Zuccotti T., Dal Sasso M. Bacterial adhesiveness: effects of the SH metabolite of erdosteine (mucoactive drug) plus clarithromycin versus clarithromycin alone. Chemotherapy. 2001;47(3):208–214. https://doi.org/10.1159/000063223Test.; Dal Sasso M., Bovio C., Culici M., Braga P.C. The combination of the SH metabolite of erdosteine (a mucoactive drug) and ciprofloxacin increases the inhibition of bacterial adhesiveness achieved by ciprofloxacin alone. Drugs Exp Clin Res. 2002;28(2–3):75–82. Available at: https://pubmed.ncbi.nlm.nih.gov/12224380Test/.; Лазарева Н.Б., Максимов М.Л., Кукес И.В. Рациональная муколитическая терапия при респираторных заболеваниях: клиническая интерпретация фармакологических свойств для обоснованного выбора. Медицинский совет. 2021;(12):181–191. https://doi.org/10.21518/2079-701X-2021-12-181-191Test.; Marchioni C.F., Polu J.M., Taytard A., Hanard T., Noseda G., Mancini C. Evaluation of efficacy and safety of erdosteine in patients affected by chronic bronchitis during an infective exacerbation phase and receiving amoxycillin as basic treatment (ECOBES, European Chronic Obstructive Bronchitis Erdosteine Study). Int J Clin Pharmacol Ther. 1995;33(11):612–628. Available at: https://pubmed.ncbi.nlm.nih.gov/8688986Test/.; Aubier M., Berdah L. Multicenter, controlled, double-blind study of the efficacy and tolerance of Vectrine (erdostein) versus placebo in the treatment of stabilized chronic bronchitis with hypersecretion. Rev Mal Respir. 1999;16(4):521–528. Available at: https://pubmed.ncbi.nlm.nih.gov/10549062Test.; Crisafulli E., Coletti O., Costi S., Zanasi E., Lorenzi C., Lucic S. et al. Effectiveness of erdosteine in elderly patients with bronchiectasis and hypersecretion: a 15-day, prospective, parallel, open-label, pilot study. Clin Ther 2007;29(9):2001–2009. https://doi.org/10.1016/j.clinthera.2007.09.003Test.; Dal Negro R.W., Wedzicha J.A., Iversen M., Fontana G., Page C., Cicero A.F. et al. Effect of erdosteine on the rate and duration of COPD exacerbations: the RESTORE study. Eur Respir J. 2017;50(4):1700711. https://doi.org/10.1183/13993003.00711-2017Test.; Авдеев С.Н., Трушенко Н.В., Чикина С.Ю., Суворова О.А. Возможности терапии эрдостеином в снижении частоты обострений хронической обструктивной болезни легких. Пульмонология. 2022;32(2):253–259. https://doi.org/10.18093/0869-0189-2022-32-2-253-259Test.; Pizzino G., Irrera N., Cucinotta M., Pallio G., Mannino F., Arcoraci V. et al. Oxidative Stress: Harms and Benefits for Human Health. Oxid Med Cell Longev. 2017;2017:8416763. https://doi.org/10.1155/2017/8416763Test.; Dal Negro R., Visconti M., Trevisan F., Bertacco S., Micheletto C., Tognella S. Erdosteine enhances airway response to salbutamol in patients with mild-to-moderate COPD. Ther Adv Respir Dis. 2008;2(5):271–277. https://doi.org/10.1177/1753465808096109Test.; Dal Negro R.W., Visconti M., Tognella S., Micheletto C. Erdosteine affects eicosanoid production in COPD. Int J Clin Pharmacol Ther. 2011;49(1):41–45. https://doi.org/10.5414/cpp49041Test.; Cazzola M., Floriani I., Page C.P. The therapeutic efficacy of erdosteine in the treatment of chronic obstructive bronchitis: a meta-analysis of individual patient data. Pulm Pharmacol Ther. 2010;23(2):135–144. https://doi.org/10.1016/j.pupt.2009.10.002Test.; Dal Negro R.W., Visconti M., Turco P. Efficacy of erdosteine 900 versus 600 mg/day in reducing oxidative stress in patients with COPD exacerbations: results of a double blind, placebo-controlled trial. Pulm Pharmacol Ther. 2015;33:47–51. https://doi.org/10.1016/j.pupt.2015.06.004Test.; Jenkins C.R., Postma D.S., Anzueto A.R., Make B.J., Peterson S., Eriksson G., Calverley P.M. Reliever salbutamol use as a measure of exacerbation risk in chronic obstructive pulmonary disease. BMC Pulm. Med. 2015;15:97. https://doi.org/10.1186/s12890-015-0077-0Test.; Авдеев С.Н. Значение мукоактивных препаратов в терапии ХОБЛ. РМЖ. Медицинское обозрение. 2015;(4):206–211. Режим доступа: https://www.rmj.ru/articles/obshchie-stati/Znachenie_mukoaktivnyh_preparatov_v_terapii_HOBLTest.; Tjandrawinata R.R., Nofiarny D., Mangunegoro H., Rahmawati I., Yunus F. The Role of Erdosteine in Reducing the Need for Bronchodilators During Acute Exacerbation of Chronic Obstructive Pulmonary Disease. J Indones Med Association. 2007;2007:337–345. Available at: https://www.research-gate.net/publication/279998781_The_role_of_erdosteine_in_reducing_the_need_for_bronchodilators_during_acute_exacerbation_of_chronic_obstructive_pulmonary_diseaseTest.; Calverley P.M., Page C., Dal Negro R.W., Fontana G., Cazzola M., Cicero A.F., Pozzi E., Wedzicha J.A. Effect of Erdosteine on COPD Exacerbations in COPD Patients with Moderate Airflow Limitation. Int J Chron Obstruct Pulmon Dis. 2019;14:2733–2744. https://doi.org/10.2147/COPD.S221852Test.; Decramer M., Rutten-van Mölken M., Dekhuijzen P.N.R., Troosters T., van Herwaarden C., Pellegrino R. et al. Effects of N-acetylcysteine on outcomes in chronic obstructive pulmonary disease (Bronchitis Randomized on NAC Cost-Utility Study, BRONCUS): a randomised placebo-controlled trial. Lancet. 2005;365(9470):1552–1560. https://doi.org/10.1016/S0140-6736Test(05)66456-2.; Rogliani P., Matera M.G., Page C., Puxeddu E., Cazzola M., Calzetta L. Efficacy and safety profile of mucolytic/antioxidant agents in chronic obstructive pulmonary disease: a comparative analysis across erdosteine, carbocysteine, and N-acetylcysteine. Respir Res. 2019;20(1):104. https://doi.org/10.1186/s12931-019-1078-yTest.; Fraňová S., Kazimierová I., Pappová L., Molitorisová M., Jošková M., Šutovská M. The effect of erdosteine on airway defence mechanisms and inflammatory cytokines in the settings of allergic inflammation. Pulm Pharmacol Ther. 2019;(54):60–67. https://doi.org/10.1016/j.pupt.2018.11.006Test.; Sogut S., Ozyurt H., Armutcu F., Kart L., Iraz M., Akyol O. et al. Erdosteine prevents bleomycin-induced pulmonary fibrosis in rats. Eur J Pharmacol. 2004;494(2–3):213–220. https://doi.org/10.1016/j.ejphar.2004.04.045Test.; Yildirim Z., Kotuk M., Iraz M., Kuku I., Ulu R., Armutcu F., Ozen S. Attenuation of bleomycin-induced lung fibrosis by oral sulfhydryl containing antioxidants in rats: erdosteine and N-acetylcysteine. Pulm Pharmacol Ther. 2005;18(5):367–373. https://doi.org/10.1016/j.pupt.2005.02.001Test.; Guzel A., Kayhan S., Tutuncu S., Guzel A., Duran L., Alacam H. et al. Attenuation of bleomycin induced lung fibrosis by erdosteine and inhibition of the inducible nitric oxide synthase. Bratisl Lek Listy. 2015;116(3):196–202. https://doi.org/10.4149/bll_2015_039Test.; https://www.med-sovet.pro/jour/article/view/7426Test

  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية
  9. 9
    دورية أكاديمية
  10. 10
    دورية أكاديمية

    المؤلفون: D. I. Trukhan, Д. И. Трухан

    المصدر: Meditsinskiy sovet = Medical Council; № 18 (2022); 154-161 ; Медицинский Совет; № 18 (2022); 154-161 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    العلاقة: https://www.med-sovet.pro/jour/article/view/7134/6406Test; Авдеев С.Н., Адамян Л.В., Алексеева Е.И., Багненко С.Ф., Баранов А.А., Баранова Н.Н. и др. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19): временные методические рекомендации. (Версия 14 от 27.12.2021 г.). Режим доступа: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/059/041/original/%D0%92%D0%9C%D0%A0_COVID-19_V14_27-12-2021.pdfTest.; Чучалин А.Г., Авдеев С.Н., Айсанов З.Р., Белевский А.С., Васильева О.С., Геппе Н.А. и др. Бронхиальная астма: клинические рекомендации. 2021. Режим доступа: https://spulmo.ru/obrazovatelnye-resursy/federalnyeklinicheskie-rekomendatsiiTest.; Чучалин А.Г., Авдеев С.Н., Айсанов З.Р., Белевский А.С., Лещенко И.В., Овчаренко С.И., Шмелев Е.И. Хроническая обструктивная болезнь легких: клинические рекомендации. 2021. Режим доступа: https://cr.minzdrav.gov.ru/recomend/603_2Test.; Авдеев С.Н., Дехнич А.В., Зайцев А.А., Козлов Р.С., Рачина С.А., Руднов В.А. и др. Внебольничная пневмония у взрослых: клинические рекомендации. 2021. Режим доступа: https://spulmo.ru/upload/kr/Pneumonia_2021.pdfTest.; Wang B., Li R., Lu Z., Huang Y. Does comorbidity increase the risk of patients with COVID-19: evidence from meta-analysis. Aging (Albany NY). 2020;12(7):6049–6057. https://doi.org/10.18632/aging.103000Test.; Geng J., Yu X., Bao H., Feng Z., Yuan X., Zhang J. et al. Chronic Diseases as a Predictor for Severity and Mortality of COVID-19: A Systematic Review With Cumulative Meta-Analysis. Front Med (Lausanne). 2021;8:588013. https://doi.org/10.3389/fmed.2021.588013Test.; Zhao Q., Meng M., Kumar R., Wu Y., Huang J., Lian N. et al. The impact of COPD and smoking history on the severity of COVID-19: A systemic review and meta-analysis. J Med Virol. 2020;92(10):1915–1921. https://doi.org/10.1002/jmv.25889Test.; Lippi G., Henry B.M. Chronic obstructive pulmonary disease is associated with severe coronavirus disease 2019 (COVID-19). Respir Med. 2020;167:105941. https://doi.org/10.1016/j.rmed.2020.105941Test.; Reyes F.M., Hache-Marliere M., Karamanis D., Berto C.G., Estrada R., Langston M. et al. Assessment of the Association of COPD and Asthma with In-Hospital Mortality in Patients with COVID-19. A Systematic Review, Meta-Analysis, and Meta-Regression Analysis. J Clin Med. 2021;10(10):2087. https://doi.org/10.3390/jcm10102087Test.; Pardhan S., Wood S., Vaughan M., Trott M. The Risk of COVID-19 Related Hospitalsation, Intensive Care Unit Admission and Mortality in People With Underlying Asthma or COPD: A Systematic Review and Meta-Analysis. Front Med (Lausanne). 2021;8:668808. https://doi.org/10.3389/fmed.2021.668808Test.; Rabbani G., Shariful Islam S.M., Rahman M.A., Amin N., Marzan B., Robin R.C., Alif S.M. Pre-existing COPD is associated with an increased risk of mortality and severity in COVID-19: a rapid systematic review and meta-analysis. Expert Rev Respir Med. 2021;15(5):705–716. https://doi.org/10.1080/17476348.2021.1866547Test.; Gerayeli F.V., Milne S., Cheung C., Li X., Yang C.W.T., Tam A. et al. COPD and the risk of poor outcomes in COVID-19: A systematic review and meta-analysis. EClinicalMedicine. 2021;33:100789. https://doi.org/10.1016/j.eclinm.2021.100789Test.; Гриневич В.Б., Губонина И.В., Дощицин В.Л., Котовская Ю.В., Кравчук Ю.А., Педь В.И. и др. Особенности ведения коморбидных пациентов в период пандемии новой коронавирусной инфекции (COVID-19). Национальный Консенсус 2020. Кардиоваскулярная терапия и профилактика. 2020;19(4):2630. https://doi.org/10.15829/1728-8800-2020-2630Test.; Alqahtani J.S., Oyelade T., Aldhahir A.M., Mendes R.G., Alghamdi S.M., Miravitlles M. et al. Reduction in hospitalised COPD exacerbations during COVID-19: A systematic review and meta-analysis. PLoS ONE. 2021;16(8):e0255659. https://doi.org/10.1371/journal.pone.0255659Test.; Sunjaya A.P., Allida S.M., Di Tanna G.L., Jenkins C.R. Asthma and Coronavirus Disease 2019 Risk: a systematic review and meta-analysis. Eur Respir J. 2021:2101209. https://doi.org/10.1183/13993003.01209-2021Test.; Sunjaya A.P., Allida S.M., Di Tanna G.L., Jenkins C. Asthma and risk of infection, hospitalization, ICU admission and mortality from COVID-19: Systematic review and meta-analysis. J Asthma. 2022;59(5):866–879. https://doi.org/10.1080/02770903.2021.1888116Test.; Liu S., Cao Y., Du T., Zhi Y. Prevalence of Comorbid Asthma and Related Outcomes in COVID-19: A Systematic Review and Meta-Analysis. J Allergy Clin Immunol Pract. 2021;9(2):693–701. https://doi.org/10.1016/j.jaip.2020.11.054Test.; Shi L., Xu J., Xiao W., Wang Y., Jin Y., Chen S. et al. Asthma in patients with coronavirus disease 2019: A systematic review and meta-analysis. Ann Allergy Asthma Immunol. 2021;126(5):524–534. https://doi.org/10.1016/j.anai.2021.02.013Test.; Hou H., Xu J., Li Y., Wang Y., Yang H. The Association of Asthma With COVID-19 Mortality: An Updated Meta-Analysis Based on Adjusted Effect Estimates. J Allergy Clin Immunol Pract. 2021;9(11):3944–3968.e5. https://doi.org/10.1016/j.jaip.2021.08.016Test.; Трухан Д.И., Филимонов С.Н., Багишева Н.В. Болезни органов дыхания: актуальные аспекты диагностики и лечения. Новокузнецк; 2020. 227 с. Режим доступа: http://www.nii-kpg.ru/docs/bolezni_organov_dihaniya_2020.pdfTest.; Beaucoté V., Plantefève G., Tirolien J.A., Desaint P., Fraissé M., Contou D. Lung Abscess in Critically Ill Coronavirus Disease 2019 Patients With VentilatorAssociated Pneumonia: A French Monocenter Retrospective Study. Crit Care Explor. 2021;3(7):e0482. https://doi.org/10.1097/CCE.0000000000000482Test.; Abdelhadi A., Kassem A. Candida Pneumonia with Lung Abscess as a Complication of Severe COVID-19 Pneumonia. Int Med Case Rep J. 2021;14:853–861. https://doi.org/10.2147/IMCRJ.S342054Test.; Zamani N., Aloosh O., Ahsant S., Yassin Z., Abkhoo A., Riahi T. Lung abscess as a complication of COVID-19 infection, a case report. Clin Case Rep. 2021;9(3):1130–1134. https://doi.org/10.1002/ccr3.3686Test.; Renaud-Picard B., Gallais F., Riou M., Zouzou A., Porzio M., Kessler R. Delayed pulmonary abscess following COVID-19 pneumonia: A case report. Respir Med Res. 2020;78:100776. https://doi.org/10.1016/j.resmer.2020.100776Test.; Suliman A.M., Bitar B.W., Farooqi A.A., Elarabi A.M., Aboukamar M.R., Abdulhadi A.S. COVID-19-Associated Bronchiectasis and Its Impact on Prognosis. Cureus. 2021;13(5):e15051. https://doi.org/10.7759/cureus.15051Test.; Peng P., Wang F., Tang Z.R., Liu X., Zhang Z.H., Song H. et al. Bronchiectasis is one of the indicators of severe coronavirus disease 2019 pneumonia. Chin Med J (Engl). 2021;134(20):2486–2488. https://doi.org/10.1097/CM9.0000000000001368Test.; Martinez-Garcia M.A., Aksamit T.R., Aliberti S. Bronchiectasis as a LongTerm Consequence of SARS-COVID-19 Pneumonia: Future Studies are Needed. Arch Bronconeumol. 2021;57(12):739–740. https://doi.org/10.1016/j.arbres.2021.04.021Test.; Wang Y., Mao K., Li Z., Xu W., Shao H., Zhang R. Clinical study of pulmonary CT lesions and associated bronchiectasis in 115 convalescent patients with novel coronavirus pneumonia (COVID-19) in China. Can J Physiol Pharmacol. 2021;99(3):328–331. https://doi.org/10.1139/cjpp-2020-0522Test.; Hu Q., Liu Y., Chen C., Sun Z., Wang Y., Xiang M. Reversible Bronchiectasis in COVID-19 Survivors With Acute Respiratory Distress Syndrome: Pseudobronchiectasis. Front Med (Lausanne). 2021;8:739857. https://doi.org/10.3389/fmed.2021.739857Test.; Singh A.K., Kumar O.P., Bansal P., Margekar S.L., Aggarwal R., Ghotekar L.R., Gupta A. Post-COVID Interstitial Lung Disease – The Looming Epidemic. J Assoc Physicians India. 2021;69(7):11–12. Available at: https://pubmed.ncbi.nlm.nih.gov/34431265Test.; Трухан Д.И., Филимонов С.Н. Дифференциальный диагноз основных пульмонологических симптомов и синдромов. СПб.: СпецЛит; 2019. 176 с. Режим доступа: https://speclit.su/differentsialnyj-diagnoz-osnovnykhpulmonologichesTest.; Белевский А.С., Гембицкая Т.Е., Демко И.В., Захарова Е.Ю., Илькович М.М., Карчевская Н.А. и др. Эмфизема легких: клинические рекомендации. 2021. Режим доступа: https://spulmo.ru/upload/kr/Emfizema_2021.pdfTest.; Yoshikura H. Epidemiological correlation between COVID-19 epidemic and prevalence of alpha-1 antitrypsin deficiency in the world. Glob Health Med. 2021;3(2):73–81. https://doi.org/10.35772/ghm.2020.01068Test.; Faria N., Inês Costa M., Gomes J., Sucena M. Alpha-1 antitrypsin deficiency severity and the risk of COVID-19: A Portuguese cohort. Respir Med. 2021;181:106387. https://doi.org/10.1016/j.rmed.2021.106387Test.; Corsico A.G. COVID-19 infection in severe Alpha 1-antitrypsin deficiency: Looking for a rationale. Respir Med. 2021;183:106440. https://doi.org/10.1016/j.rmed.2021.106440Test.; Schneider C.V., Strnad P. SARS-CoV-2 infection in alpha1-antitrypsin deficiency. Respir Med. 2021;184:106466. https://doi.org/10.1016/j.rmed.2021.106466Test.; Авдеев С.Н., Айсанов З.Р., Белевский А.С., Коган Е.А., Мержоева З.М., Петров Д.В. и др. Идиопатический легочный фиброз: клинические рекомендации. 2021. Режим доступа: https://spulmo.ru/upload/kr/ILF_2021.pdfTest.; Shen H., Zhang N., Liu Y., Yang X., He Y., Li Q. et al. The Interaction Between Pulmonary Fibrosis and COVID-19 and the Application of Related Anti-Fibrotic Drugs. Front Pharmacol. 2022;12:805535. https://doi.org/10.3389/fphar.2021.805535Test.; Crisan-Dabija R., Pavel C.A., Popa I.V., Tarus A., Burlacu A. A Chain Only as Strong as Its Weakest Link”: An Up-to-Date Literature Review on the Bidirectional Interaction of Pulmonary Fibrosis and COVID-19. J Proteome Res. 2020;19(11):4327–4338. https://doi.org/10.1021/acs.jproteome.0c00387Test.; Burgoyne R.A., Fisher A.J., Borthwick L.A. The Role of Epithelial Damage in the Pulmonary Immune Response. Cells. 2021;10(10):2763. https://doi.org/10.3390/cells10102763Test.; Авдеев С.Н., Барбараш О.Л., Баутин А.Е., Волков А.В., Веселова Т.Н., Галявич А.С. и др. Легочная гипертензия, в том числе хроническая тромбоэмболическая легочная гипертензия: клинические рекомендации. 2020. Режим доступа: https://cr.minzdrav.gov.ru/schema/159_1#doc_a1Test.; Corica B., Marra A.M., Basili S., Cangemi R., Cittadini A., Proietti M., Romiti G.F. Prevalence of right ventricular dysfunction and impact on allcause death in hospitalized patients with COVID-19: a systematic review and meta-analysis. Sci Rep. 2021;11(1):17774. https://doi.org/10.1038/s41598-021-96955-8Test.; Suzuki Y.J., Nikolaienko S.I., Shults N.V., Gychka S.G. COVID-19 patients may become predisposed to pulmonary arterial hypertension. Med Hypotheses. 2021;147:110483. https://doi.org/10.1016/j.mehy.2021.110483Test.; Wats K., Rodriguez D., Prins K.W., Sadiq A., Fogel J., Goldberger M. et al. Association of right ventricular dysfunction and pulmonary hypertension with adverse 30-day outcomes in COVID-19 patients. Pulm Circ. 2021;11(2):20458940211007040. https://doi.org/10.1177/20458940211007040Test.; Paternoster G., Bertini P., Innelli P., Trambaiolo P., Landoni G., Franchi F. et al. Right Ventricular Dysfunction in Patients With COVID-19: A Systematic Review and Meta-analysis. J Cardiothorac Vasc Anesth. 2021;35(11):3319–3324. https://doi.org/10.1053/j.jvca.2021.04.008Test.; Mai V., Tan B.K., Mainbourg S., Potus F., Cucherat M., Lega J.C., Provencher S. Venous thromboembolism in COVID-19 compared to non-COVID-19 cohorts: A systematic review with meta-analysis. Vascul Pharmacol. 2021;139:106882. https://doi.org/10.1016/j.vph.2021.106882Test.; Lobbes H., Mainbourg S., Mai V., Douplat M., Provencher S., Lega J.C. Risk Factors for Venous Thromboembolism in Severe COVID-19: A Study-Level Meta-Analysis of 21 Studies. Int J Environ Res Public Health. 2021;18(24):12944. https://doi.org/10.3390/ijerph182412944Test.; Scudiero F., Silverio A., Di Maio M., Russo V., Citro R., Personeni D. et al.; Cov-IT Network. Pulmonary embolism in COVID-19 patients: prevalence, predictors and clinical outcome. Thromb Res. 2021;198:34–39. https://doi.org/10.1016/j.thromres.2020.11.017Test.; Nabeh O.A., Matter L.M., Khattab M.A., Menshawey E. The possible implication of endothelin in the pathology of COVID-19-induced pulmonary hypertension. Pulm Pharmacol Ther. 2021;71:102082. https://doi.org/10.1016/j.pupt.2021.102082Test.; Wieteska-Miłek M., Szmit S., Florczyk M., Kuśmierczyk-Droszcz B., Ryczek R., Dzienisiewicz M. et al. Fear of COVID-19, Anxiety and Depression in Patients with Pulmonary Arterial Hypertension and Chronic Thromboembolic Pulmonary Hypertension during the Pandemic. J Clin Med. 2021;10(18):4195. https://doi.org/10.3390/jcm10184195Test.; Sadiq Z., Rana S., Mahfoud Z., Raoof A. Systematic review and meta-analysis of chest radiograph (CXR) findings in COVID-19. Clin Imaging. 2021;80:229–238. https://doi.org/10.1016/j.clinimag.2021.06.039Test.; Ionescu M.D., Balgradean M., Cirstoveanu C.G., Balgradean I., Popa L.I., Pavelescu C. et al. Myopericarditis Associated with COVID-19 in a Pediatric Patient with Kidney Failure Receiving Hemodialysis. Pathogens. 2021;10(4):486. https://doi.org/10.3390/pathogens10040486Test.; Hung Y.P., Sun K.S. A case of myopericarditis with pleuritis following AstraZeneca COVID-19 vaccination. QJM. 2022;114(12):879–881. https://doi.org/10.1093/qjmed/hcab278Test.; Jeon Y.H., Lim D.H., Choi S.W., Choi S.J. A flare of Still’s disease following COVID-19 vaccination in a 34-year-old patient. Rheumatol Int. 2022;42(4):743–748. https://doi.org/10.1007/s00296-021-05052-6Test.; Wang J.G., Mo Y.F., Su Y.H., Wang L.C., Liu G.B., Li M., Qin Q.Q. Computed tomography features of COVID-19 in children: A systematic review and meta-analysis. Medicine (Baltimore). 2021;100(38):e22571. https://doi.org/10.1097/MD.0000000000022571Test.; Chong W.H., Saha B.K., Hu K., Chopra A. The incidence, clinical characteristics, and outcomes of pneumothorax in hospitalized COVID-19 patients: A systematic review. Heart Lung. 2021;50(5):599–608. https://doi.org/10.1016/j.hrtlng.2021.04.005Test.; Shrestha D.B., Sedhai Y.R., Budhathoki P., Adhikari A., Pokharel N., Dhakal R. et al. Pulmonary barotrauma in COVID-19: A systematic review and meta-analysis. Ann Med Surg (Lond). 2022;73:103221. https://doi.org/10.1016/j.amsu.2021.103221Test.; Singh A., Singh Y., Pangasa N., Khanna P., Trikha A. Risk Factors, Clinical Characteristics, and Outcome of Air Leak Syndrome in COVID-19: A Systematic Review. Indian J Crit Care Med. 2021;25(12):1434–1445. https://doi.org/10.5005/jp-journals-10071-24053Test.; Belletti A., Todaro G., Valsecchi G., Losiggio R., Palumbo D., Landoni G., Zangrillo A. Barotrauma in Coronavirus Disease 2019 Patients Undergoing Invasive Mechanical Ventilation: A Systematic Literature Review. Crit Care Med. 2022;50(3):491–500. https://doi.org/10.1097/CCM.0000000000005283Test.; https://www.med-sovet.pro/jour/article/view/7134Test