يعرض 1 - 10 نتائج من 10 نتيجة بحث عن '"electrochemical behavior"', وقت الاستعلام: 1.33s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: Izvestiya Vuzov. Tsvetnaya Metallurgiya (Izvestiya. Non-Ferrous Metallurgy); № 3 (2020); 13-22 ; Известия вузов. Цветная металлургия; № 3 (2020); 13-22 ; 2412-8783 ; 0021-3438

    وصف الملف: application/pdf

    العلاقة: https://cvmet.misis.ru/jour/article/view/1128/487Test; Резник И.Д., Ермаков Г.П., Шнеерсон Я.М. Никель. В 3 т. М.: Наука и технология, 2001.; Колесников А.С., Назарбекова С.П., Байболов К.С., Джол-дасова Ш.А. Термодинамическое моделирование химических и фазовых превращений в системе Fe2O3— NiO—CoO—C. Известия вузов. Цветная металлургия. 2017. No. 3. P 37—44. https://doi.org/10.17073/0021-3438-2017-3-37-44Test.; Калашникова М. Научные основы современной гидрометаллургии никеля и меди. Lambert Academic Publishing, 2011.; Брауэр Г. Руководство по неорганическому синтезу. М.: Мир, 1985.; Seggiania M, Vitoloa S, D’Antoneb S. Recovery of nickel from Orimulsion fly ash by iminodiacetic acid chelating resin. Hydrometallurgy. 2006. Vol. 81. No. 1. P. 9—14.; Alibhai K.A.K., Dudeney A.W.L., Leak D.J., Agatzini S, Tzeferis P. Bioleaching an bioprecipitation of nicel and iron iron from laterites. FEMS Microbiol. Rev. 1993. Vol. 1—3. Р. 87—96.; Касиков А.Г, Кшуманева Е.С., Максимов В.И. Использование элементарной серы для приготовления модификатора флотации медно-никелевых руд. Известия вузов. Цветная металлургия. 2006. No. 2. С. 16—21.; Kolesnikov A.S. Kinetic investigations into the distillation of nonferrous metals during complex processing of waste of metallurgical industry. Russ. J. Non-Ferr. Met. 2015. Vol. 56. No. 1. Р 1—5.; Кшуманева E.C., Касиков А.Г. Выщелачивание остатков синтеза карбонильного никеля растворами хлорида железа (III). Журн. прикл. химии. 2007. Т. 80. No. 4. С. 549—554.; Kolesnikov A.S., Sergeeva I.V, Botabaev N.E., Al’zhano-va A.Zh, Ashirbaev Kh.A. Chemical and phase transitions in oxidized manganese ore in the presence of carbon. Steel Transl. 2017. Vol. 47. No. 9. P. 605—609. DOI:10.3103/S0967091217090078.; Chanturiya V, Makarov V, Fors ling W, Makarov D, Va-sil’eva T, Trofimenko T, Kuznetsov V The effect of crys-tallochemical peculiarities of nickel sulphide minerals on flotation of copper-nickel ore. Int. J. Miner. Process. 2004. Vol. 74. No. 1-4. P. 289-301. DOI:10.1016/j.minpro.2004.02.001.; Колесников А.С., Сергеева И.В., Ботабаев Н.Е., Альжано-ва А.Ж., Аширбаев Х.А. Термодинамическое моделирование химических и фазовых превращений в системе окисленная марганцевая руда — углерод. Изв. вузов. Чер. металлургия. 2017. Т. 60. No. 9. С. 759—765.; McDonald C.E. Chlorosulfuric аcid. In Kirk-Othmer encyclopedia of chemical technology. 5th ed. Vol. 6. N.Y.: John Wiley & Sons, 2006.; Yu D., Torstein A., Utigard T., Barati M. Fluidized bed selective oxidation sulfation roasting of nickel sulfide concentrate. Part I: Oxidation roasting. Metall. Mater. Trans. B. 2014. Vol. 45. P. 653—661.; Yu D., Torstein A., Utigard T., Barati M. Fluidized bed selective oxidation sulfation roasting of nickel sulfide concentrate. Part II: Sulfation roasting. Metall. Mater. Trans. B. 2014. Vol. 45. P. 662—674.; Liu X.W, Feng Y.L., Li H.R. Recovery of valuable metals from a low-grade nickel ore using an ammonium sulfate roasting-leaching process. Int. J. Miner. Metall. Mater. 2012. Vol. 19. No. 5. P. 377—383.; Wang C.Y, Zhong S., Bradhurst D.H. Ni/Al/Co-substituted a-Ni(OH)2 as electrode materials in the nickel metal hydride cell. J. Alloys Compd. 2002. Vol. 330—332. P. 802— 805.; ProvaziK., GizM.J. The effect of Cd, Co and Zn additives on nickel hydroxide opto-electrochemical behaviour. J. Power Sources. 2001. No. 102. P. 224—232.; Liu L.P., Zhou Z.T, Peng C.H. Sonochemical intercalation synthesis of nano gamma-nickel oxyhydroxide: Structure and electrochemical properties. Electrochim. Acta. 2008. Vol. 54. No. 2. P. 434—441.; Van Bomme A., Dahn J.R. Analysis of the growth mechanism of coprecipitated spherical and dense nickel, manganese, and cobalt-containing hydroxides in the presence of aqueous ammonia. Chem. Mater. 2009. Vol. 21. No. 8. P. 1500—1503.; Tzanetakis N., Scott K. Recycling of nickel—metal hydride batteries. I: Dissolution and solvent extraction of metals. J. Chem. Technol. Biotechnol. 2004. Vol. 79. No. 9. P. 919— 926; Innocenzi V, Veglio F. Separation of manganese, zinc and nickel from leaching solution of nickel-metal hydride spent batteries by solvent extraction. Hydrometallurgy. 2012. Vol. 129—130. P. 50—58.; NaylA.A. Extraction and separation of Co(II) and Ni(II) from acidic sulfate solutions using Aliquat 336. J. Hazard. Mater. 2010. Vol. 173. No 1. P. 223—230.; Juang R.S., Kao H.C. Extraction separation of Co(II)/ Ni(II) from concentrated HCl solutions in rotating disc and hollow-fiber membrane contactors. Sep. Purif Technol. 2005. Vol. 42. No. 1. P. 65—73.; Amin M.A., Shokry E.M. Mabrouk. Nickel corrosion inhibition in sulfuric acid electrochemical studies, morphologies, and theoretical approach. Corrosion. 2012. Vol. 68. No. 8. P. 699.; https://cvmet.misis.ru/jour/article/view/1128Test

  2. 2
    دورية أكاديمية

    المصدر: Alternative Energy and Ecology (ISJAEE); № 12 (2015); 40-57 ; Альтернативная энергетика и экология (ISJAEE); № 12 (2015); 40-57 ; 1608-8298

    وصف الملف: application/pdf

    العلاقة: https://www.isjaee.com/jour/article/view/156/159Test; Pron A., Rannou P. Processible conjugated polymers: from organic semiconductors toorganic metals and superconductors. Progr. Polym. Sci., 2002, vol. 27 (1), pp. 135–190.; Inzelt G. Conducting polymers. A new era in electrochemistry. 2-nd ed. springer – Verlag. Berlin. Heidelberg. 2012. Chapter 7.; Gouerec P., Miousse D., Tran-Van F., Lee K.H., Dao L.H. Preparation and modification of polyacrylonitrile microcellular foam films for use as electrodes in supercapacitors. J. Electrochem. Soc., 2001, vol. 148, pp. А94–А101.; Fan L.-Zh., Hu Y.-Sh., Maier J., Adelhelm Ph., Smarsly B., Antonietti M. High electroactivity of polyaniline in supercapacitorsby using a hierarchically porous carbon monolith as a support. Adv. Funct. Mater., 2007, vol. 17, pp. 3083–3087.; Ding Z., Currier R.P., Zhao Y., Yang D. Self-assembled polyaniline nanotubes with rectangular cross-sections. Macromol. Chem. Phys., 2009, vol. 210, pp. 1600–1606.; Zotti G., Cattarin S., Comisso N. Cyclic potential sweep electropolymerization of aniline. The role of anions in the polymerization mechanism. J. Eletroanal. Chem., 1988, 239, pp. 387–396.; Aguirre M.J., Zagal J.H. Electrical properties of polyaniline films formed in acid with and without Cs+ ions in the electrolyte. J. Appl. Electrochem., 1994, vol. 24, pp. 1059–1065.; Aguirre M.J., Retamal B.A., Ureta-Zanartu M.S., Zagal J.H., Cordova R., Schrebler R., Biaggio S.R. Effects of alkaline cations on polyaniline electrochemical synthesis. J. Electroanalyt. Chem., 1992, vool. 328, pp. 349–354.; Volfkovich Yu.M., Sergeev A.G., Zolotova T.K., Afanasiev S.D., Efimov O.N., Krinichnaya E.P. Macrokinetics of polyaniline based electrode: effects of porous structure, microkinetics, diffusion, and electrical double layer. Electrochim. Acta, 1999, vol. 44, pp. 1543–1558.; Jiang H., Geng Ya., Li J., Jing X., Wang F. Organic acid doped polyaniline derivatives. Synth. Metals, 1997, vol. 84, pp. 125–126.; Abd El-Rahman H.A. A spectroelectrochemical study on polaron transformations in polyaniline in sulphuric and p-toluenesulphonic acids. Polym. Int., 1997, vol. 44, pp. 481–489.; Sahin Y., Pekmez K., Yildiz A. Electrochemical synthesis of self-doped polyaniline in fluorosulfonic acid/acetonitrile solution. Synth. Metals, 2002, vol. 129, pp. 107–115.; LaCroix J.-Ch., Diaz A.F. Electrooxidation of aromatics to polymer films. Macromol. Chem. Macromol. Symp., 1987, vol. 8, pp. 17–37.; Komura T., Mori K., Yamaguchi T., Takahashi K. Electrochemical growth and charge-transport properties of polyaniline/poly(styrenesulfonate) composite films. Bull. Chem. Soc., 2000, vol. 73, no. 1, pp. 19–27.; Motheo A.J., Santos J.R., Venancio E.C., Mattoso L.H.C. Influence of different types of acidic dopant on the electrodeposition and properties of polyaniline films. Polymer, 1998, vol. 39, no. 26, pp. 6977–6982.; Ivanov V.F., Gribkova O.L., Cheberyako K.V. Templatnyj sintez polianilina v prisutstvii poli-(2-akrilamido-2=metil-1-propansulʹfonovoj kisloty) [Template Synthesis of polyaniline in the presence of poly-(2-acrylamido-2-methyl-1-propanesulfonic acid)]. Russ. J. Electrochem., 2004, vol. 40, pp. 299–304 (in Russ.).; Sun L., Liu H., Clark R., Yang S.C. Double-strand polyaniline. Synth. Metals, 1997, vol. 84, pp. 67–68.; Liu W., Anagnostopoulos A., Bruno F.F., Senecal K., Kumar J., Tripathy S., Samuelson L. Biologically derived water soluble conducting polyaniline. Synth. Metals, 1999, vol. 101, pp. 738–741.; Samuelson L., Liu W., Nagarajan R., Kumar J., Bruno F.F., Cholli A., Tripathy S. Nanoreactors for the enzymatic synthesis of conducting polyaniline. Synth. Metals, 2001, vol. 119, pp. 271–272.; Cheung J.H., Stockton W.B., Rubner M.F. Molecular-Level Processing of conjugated polymers. 3. Layer-by-layer manipulation of polyaniline via electrostatic interactions. Macromolecules, 1997, vol. 30, pp. 2712–2716.; Guseva M.A., Tverskoi V.A., Isakova A.A., Gribkova O.L., Ivanov V.F., Vannikov A.V., Fedotov Yu.A. Matrix polymerization of aniline in the presence of polyamides containing sulfo acid groups. Polym. Sci. Ser. A, 2007, vol. 49, pp. 4–11.; Odin C., Nechtschein M. On the kinetics of electrochemical doping in conducting polymers: Experimental characterization. Synth. Metals, 1993, vol. 55, pp. 1281–1286.; Majidi M.R., Kane-Maguire L.A.P., Wallace G.G. Electrochemical synthesis of optically active polyanilines. Austr. J. Chem., 1998, vol. 51, pp. 23–30.; Barisci J.N., Innis P.C., Kane-Maguire L.A.P., Norris L.D., Wallace G.G. Preparation of chiral conducting polymer colloids. Synth. Metals., 1997, vol. 84, pp. 181–182.; Abdullin T.I., Nikitina I.I., Evtugin G.A. Electrochemical properties of a two-component DNA-polyaniline film at the surface of glassy carbon electrode. Russ. J. Electrochem., 2007, vol. 43, no. 11, pp. 1284–1288.; Hourch A.El., Belcadi S., Moisy P., Crouigneau P., Leger J.-M., Lamy C. Electrocatalytic reduction of oxygen at iron phthalocyanine modified polymer electrodes. J. Electroanal. Chem., 1992, vol. 339, pp. 1–12.; Skotheim T., Velazquez-Rosenthal M., Linkous C.A. Polypyrrole complexed with cobalt–phthalocyanine. A conducting polymer which is stable to air and moisture. J. Chem. Soc. Chem. Commun., 1985, pp. 612–613.; Elzing A., Patern A., Visscher W., Barendrecht E. The mechanism of oxygen reduction at iron tetrasulfonato-phthalocyanine incorporated in polypyrrole. J. Electroanal. Chem., 1987, vol. 233, pp. 113–123.; Rourke F., Crayston A. Cyclic voltammetry and morphology of polyaniline-coated electrodes containing [Fe(CN)6]3–/4– ions. J. Chem. Soc. Faraday Trans., 1993, vol. 89, pp. 295–302.; Yano J. Electrochromism of polyaniline film incorporating a red quinone 1-amino-4-bromoanthraquinone-2-sulfonate. J. Electrochem. Soc., 1997, vol. 144, pp. 477–481.; Mazeikiene R., Malinauskas A. Doping of polyaniline by some redox active organic anions. Europ. Polym. J., 2000, vol. 36, pp. 1347–1353.; Bidan G., Genies E.M., Lapkowski M. Modification of polyaniline films with heteropolyanions: electrocatalytic reduction of oxygen and protons. J. Chem. Soc. Chem. Commun., 1988, pp. 533–535.; Fabre B., Bida G. Electrosynthesis of different electronic conducting polymer films doped with an iron-substituted heteropolytungstate: choice of the immobilization matrix the most suitable for the electrocatalytic reduction of nitrite ions. Electrochim. Acta, 1997, vol. 42, pp. 2587–2590.; Qu L.Y., Lu R.Q., Peng J., Chen Y.G., Day Z.M. H3PW11MoO40•2H2O protonated polyaniline -synthesis, characterization and catalytic conversion of isopropanol. Synth. Metals, 1997, vol. 84, pp. 135–136.; Herrmann S., Ritchie C., Streb C. Polyoxometalate – conductive polymer composites for energy conversion, energy storage and nanostructured sensors. Dalton Trans., 2015, DOI:10.1039/C4DT03763D.; Ohtsuka T., Wakabayashi T., Einaga H. Optical characterization of polypyrrole-polytungstate anion composite films. Synth. Metals, 1996, vol. 79, pp. 235–239.; Sung H., So H., Paik W.K. Polypyrrole doped with heteropolytungstate anions. Electrochim. Acta, 1994, vol. 39, pp. 645–650.; Reinolds J.R., Pyo M., Qin Y.J. Charge and ion transport in poly(pyrrole copper phthalocyanine tetrasulfonate) during redox switching. J. Electrochem. Soc., 1994, vol. 141, pp. 35–40.; Tolgyesi M., Szues A., Visy C., Novak M. Redox anion doped polypyrolle films; electrochemical behaviour of polypyrrole prepared in Fe(CN)6 solution. Electrochim. Acta, 1995, vol. 40, pp. 1127–1133.; Shim Y.B., Won M.-S., Park S.-M. Electrochemistry of conductive polymers VIII: In situ spectroelectrochemical studies of polyaniline growth mechanisms. J. Electrochem. Soc., 1990, vol. 137, vol. 2, pp. 538–544.; Kogan Ja.L., Abalyaeva V.V., Gedrovich G. Electrochemical synthesis of polyaniline on tantalum and stainless-steel electrodes. Synth. Metals., 1994, vol. 63, pp. 153–156.; Abalyaeva V.V., Kogan Ja.L. Initiating agents for electrochemical polymerization of aniline on titanium electrodes. Synth. Metals, 1994, vol. 63, pp. 109–113.; Abalyaeva V.V., Efimov O.N. Èlektrohimičeskij sintez polianilina na svince [Electrochemical synthesis of polyaniline on lead]. Russ. J. Electrochem., 1995, vol. 31, no. 6, pp. 547–544 (in Russ.).; Abalyaeva V.V., Efimov O.N. Èlektrohimičeskij sintez polianilina na alûminievom èlektrode [Electrochemical synthesis of polyaniline on aluminium electrode]. Russ. J. Electrochem., 1996, vol. 32, no. 6, p. 607 (in Russ.).; Abalyaeva V.V., Efimov O.N. Electrocatalytic synthesis of polyaniline on non-noble metal electrodes. Polym. Adv. Technol., 1997, vol. 8, no. 8, pp. 517–524.; Abalyaeva V.V., Kulikov A.V., Efimov O.N. Kompleks anilina s hloriridat anionom kak katalizator èlektrohimičeskogo sinteza polianilina [Complex of aniline with chloroiridate anion as a catalyst of electrochemical synthesis of polyaniline]. Polym. Sci. Ser.A, 1997, vol. 39, pp. 216–221 (in Russ.).; Abalyaeva V.V., Efimov O.N. Electrochemical formation of conducting polymer coating on porous p- and n-silicon substrates. Polym. Adv. Technol., 2000, vol. 11, pp. 69–74.; Abalyaeva V.V., Efimov O.N. Polianilinovyj èlektrod dlâ opredeleniâ antioksidantov [Polyaniline electrode for assaying antioxidantss]. Russ. J. Electrochem., 2002, vol. 38, pp. 1093–1097 (in Russ.).; Abalyaeva V.V., Bogatirenko V.R., Anoshkin I.V., Efimov O.N. Kompozitnye materialy na osnove polianilina i mnogostennyh uglerodnyh nanotrubok. Morfologiâ i èlektrohimičeskoe povedenie [Composite materials based on polyaniline and multiwalled carbon nanotubes: Morphology and electrochemical behavior]. Polym. Sci. Ser. B, 2010, vol. 52, no. 3, pp. 252–262 (in Russ.).; Scott S.L., Chen W.J., Bakac A., Espenson J.H. Spectroscopic parameters, electrode - potentials, acid ionization constants, and electron exchange rates of the 2,2'-azinobis(3-ethylbenzothiazoline 6-sulfonate) radicals and ions. J. Phys. Chem., 1993, vol. 97, pp. 6710–6714.; Abalyaeva V.V., Efimov O. N. Sintez i èlektrohimičeskoe povedenie polianilina, dopirovannogo èlektroaktivnymi anionami [Synthesis and electrochemical behavior of polyaniline doped by electroactive anions]. Russ. J. Electrochem., 2011, vol. 47, no. 11, pp. 1299–1306 (in Russ.).; Abalyaeva V.V., Baskakov S.A., Dremova N.N., Efimov O.N. Èlektrosintez kompozita na osnove nanolistov oksida grafena i polianilina s učastiem geksahloriridat_aniona [Electrosynthesis of a composite based on graphene oxide nanosheets and polyaniline with hexachloroiridate anion]. Russ. Chem. Bull., 2014, vol. 63, no. 3, pp. 627–634 (in Russ.).; Abalyaeva V.V., Efimov O.N. Vliânie èlektroaktivnyh anionov na èlektrohimičeskoe povedenie polianilina [Effect of electroactive anions on electrochemical behavior of polyaniline]. Russ. J. Electrochem., 2010, vol. 46, pp. 571–580 (in Russ.).; Berman S.S., Beamish F.E., Mcbryde W.A.E. The colorimetric determination of iridium by o-dianisidine, Analyt. Chim. Acta, 1956, vol. 15, pp. 363–366.; Fine D.A. Studies of the iridium(III) and (IV)—chloride system in acid solution. J. Inorg. Nucl. Chem., 1970, vol. 32, no. 8, pp. 2731–2742.; Elzanowska H., Segal J., Birss V.I. Complications associated with kinetic studies of hydrous Ir oxide films, Electrochim. Acta, 1999, vol. 44, pp. 4515–4524.; Abalyaeva V.V., Efimov O.N. Èlektrohimičeskij sintez PAni na èlektrodah iz Pt, Ta, Si, iniciiruemyj katalitičeskimi dobavkami permanganata kaliâ [Electrochemical synthesis of polyaniline induced by potassium permanganate catalytic additives on the Pt, Ta, and Si electrodes]. Russ. J. Electrochem., 1998, vol. 34, no. 12, pp. 1358–1364 (in Russ.).; Abalyaeva V.V., Efimov O.N. Modificirovannyj polianilinovyj èlektrod v kačestve sensora dlâ opredeleniâ antioksidantov [Modified polyaniline based electrode as a sensor for the antioxidant determination]. Russ. J. Electrochem., 2005, vol. 41, pp. 1180–1184 (in Russ.).; Lapkovski M., Vieil E. Control of polyaniline electroactivity by ion size exclusion. Synth. Metals, 2000, vol. 109, pp. 199–201.; Goldade V.A., Pinchuk L.S., Makarevich A.V., Kestelman V.N. Plastics for corrosion inhibition. Springer Series in Material Science, Eds. R. Hull, R.M. Osgood, Ir., J. Paris, H. Warlimont, 2004, p. 82.; Sabouri M., Shahrabi T., Hosseini M.G. Influence of tungstate ion dopants in corrosion protection behavior of polyaniline coating on mild steel. Mater. Corros., 2008, vol. 59, no. 10, pp. 814–818.; Kamaraj K., Karpakam V., Sathiyanarayanan S., Syed Azim S., Venkatacharim G. Synthesis of tungstate doped polyaniline and its usefulness in corrosion protective coatings. Electrochim. Acta, 2011, vol. 56, pp. 9262–9268; Mohamad M.H., Momeni M.M. Silver nanoparticles dispersed in polyaniline matrixes coated on titanium substrate as a novel electrode for electro-oxidation of hydrazine. J Mater. Sci., 2010, vol. 45, no. 12, pp. 3304–3310.; Adhikari A., Claesson P., Pan J., Leygraf C., Dedinalte A., Blomberg E. Electrochemical behavior and anticorrosion properties of modified polyaniline dispersed in polyvinylacetate coating on carbon steel. Electrochim. Acta, 2008, vol. 5, no. 12, pp. 4239–4247.; Sudeshna Ch., Patil P.P. Inhibition of nickel coated mild steel corrosion by electrosynthesized polyaniline coatings. Electrochim. Acta, 2011, vol. 56, pp. 3049–3059.; Yagan A., Pekmez N.O., Yıldız A. Inhibition of corrosion of mild steel by homopolymer and bilayer coatings of polyaniline and polypyrrole. Prog.Org. Coat., 2007, vol. 59, pp. 297–303.; Kumara S.A., Meenakshi K.Sh., Sankaranarayanan T.S.N., Srikanth S. Corrosion resistant behaviour of PANI–metal bilayer coatings. Prog. Org. Coat., 2008, vol. 62, pp. 285–292.; Efimov O.N., Abalyaeva V.V., Korsakov V.S., Plavich L.A. Èlektroosaždenie polianilinovoj plenki na poristyj p- i n-Si [Electrodeposition of polyaniline films on porous p-silicon and n-silicon]. Russ. J. Electrochem., 1998, vol. 34, no. 9, pp. 902–907 (in Russ.).; Chen W.C., Wen T.C., Teng H.S. Polyaniline-deposited porous carbon electrode for supercapacitor, Electrochim. Acta, 2003, 48, no. 6, pp. 641–649.; Hillman A.R., Dong Q., Mohamoud M.A., Efimov I. Characterization of viscoelastic properties of composite films involving polyaniline and carbon nanotubes. Electrochim. Acta, 2010, vol. 55, pp. 8142–8153.; Zhang J., Kong L.-B., Wang B., Luo Y.-Ch., Kang L. In-situ electrochemical polymerization of multi-walled carbon nanotube/polyaniline composite films for electrochemical supercapacitors. Synth. Metals, 2009, vol. 159, no. 3–4, pp. 260–266.; Du X.S., Xiao M., Meng Y.Z. Facile synthesis of highly conductive polyaniline/graphite nanocomposites. Eur. Polym. J., 2004, vol. 40, no. 7, pp. 1489–1493; Sivakkumar S.R., Wan Ju.K., Choi Ji.-Ae., MacFarlane D.R., Forsyth M., Dong W.K. Electrochemical performance of polyaniline nanofibres and polyaniline/multi-walled carbon nanotube composite as an electrode material for aqueous redox supercapacitors. J. Power Sources, 2007, vol. 171, no. 2, pp. 1062–1068.; Sun Y., Wilson S.R., Schuster D.I. High dissolution and strong light emission of carbon nanotubes in aromatic amine solvents. J. Am. Chem. Soc., 2001, vol. 123, no. 22, pp. 5348–5349.; Wang Y.-G., Li H.-Q., Xia Y.-Y. Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. J. Adv. Mater., 2006, vol. 18, no. 19, pp. 2619–2623.; Wang D.-W., Li F., Zhao J., Ren W., Chen Zh.-G., Tan J., Wu Zh.-Sh., Gentle I., Lu G.Q., Cheng H.-M., Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano, 2009, vol. 3, no. 7, pp. 1745–1752; Wang H., Hao Q., Yang X., Lu L., Wang X. Effect of graphene oxide on the properties of its composite with polyaniline. ACS Appl. Mater. Interfaces, 2010, vol. 2, no. 3, pp. 821–828.; Wang Y.-G., Li H.-Q., Xia Y.-Y. Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv. Mater., 2006, vol. 18, pp. 2619–2623.; Li Y., Zhao X., Yu P., Zhang Q. Oriented arrays of polyaniline nanorods grown on graphite nanosheets for an electrochemical supercapacitor. Langmuir, 2013, vol. 29, pp. 493–500.; Yan J., Wei T., Shao B., Fan Zh., Qian W., Zhang M., Wei F. Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon, 2010, vol. 48, no. 2, pp. 487–493.; Mao L., Zhang K., Chan H.S.O., Wu J.S. Surfactant-stabilized graphene/polyaniline nanofiber composites for high performance supercapacitor electrode. J. Mater. Chem., 2012, vol. 22, no. 1, pp. 80–85.; Li J., Xie H.Q., Li Y., Liu J., Li Z.X. Electrochemical properties of graphene nanosheets/polyaniline nanofibers composites as electrode for supercapacitors. J. Pow. Sources, 2011, vol. 196, no. 24, pp. 10775–10781.; Lu X.J., Dou H., Yang S.D., Hao L., Zhang L.J., Shen L.F., Zhang F., Zhang X.G. Fabrication and electrochemical capacitance of hierarchical graphene/polyaniline/carbon nanotube ternary composite film. Electrochim. Acta, 2011, vol. 56, pp. 9224–9232.; Wang H.L., Hao Q.L., Yang X.J., Lu L.D., Wang X. A nanostructured graphene/polyaniline hybrid material for supercapacitors. Nanoscale, 2010, vol. 2, pp. 2164–2170.; Zhang K., Zhang L.L., Zhao X.S., Wu J.S. Graphene/polyaniline nanofiber composites as supercapacitor electrodes. J. Chem. Mater., 2010, vol. 22, pp. 1392–1401.; Yan J., Wei T., Fan Z.J., Qian W.Z., Zhang M.L., Shen X.D., Wei F. Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. J. Pow. Sources, 2010, vol. 195, vol. 9, pp. 3041–3045.; Liu S., Liu X.H., Li Z.P., Yang S.R., Wang J.Q. Fabrication of free-standing graphene/polyaniline nanofibers composite paper via electrostatic adsorption for electrochemical supercapacitors. New. J. Chem., 2011, vol. 35, no. 2, pp. 369–374.; Gomez H., Ram M.K., Alvi F., Villalba P., Stefanakos E., Kumar A. Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors. J. Pow. Sources, 2011, vol. 196, no. 8, pp. 4102–4108.; Avlyanov J.K., Josefowicz J.Y., MacDiarmid A.G. Atomic force microscopy surface morphology studies of ‘in situ’ deposited polyaniline thin films. Synth. Metals, 1995, vol. 73, no. 3, pp. 205–208.; Eftechary A., Jafarkhani P. Galvanodynamic synthesis of polyaniline: a flexible method for the deposition of electroactive materials. J. Electroanalyt. Chem., 2014, vol. 717–718, pp. 110–113.; Perepichka F., Wudl F., Wilson S.R., Sun Yi., Shuster D.I. The dissolution of carbon nanotubes in aniline. J. Mater. Chem., 2004, vol. 14, no. 18, pp. 2749–2752.; Yerushalmi-Rozen R., Szleifer I. Utilizing polymers for shaping the interfacial behavior of carbon nanotubes. Soft Mater., 2006, vol. 2, no. 1, pp. 24–28.; Orlov A.V., Kiseleva C.G., Yurchenko O.Yu., Karpacheva G.P. Borderline polymerization of aniline: interpretation in the context of the electrical double layer model. Polym. Sci. Ser. A, 2008, vol. 50, no. 10, pp. 1021–1027.; Trchová M., Šedĕnkvá I., Stejskal J. In-situ polymerized polyaniline films 6. FTIR spectroscopic study of aniline polymerisation. Synth. Metals, 2005, vol. 154, no. 1–3, pp. 1–4.; Geim A.K., Novoselov K.S. The rise of graphene. Nature Mater., 2007, vol. 6, pp. 183–191.; Choi H.-J., Jung S.-M., Seo J.-M., Chang D.W., Dai L., Baeka J.-B. Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy, 2012, vol. 1, pp. 534–551.; Shulga Y.M., Baskakov S.A., Abalyaeva V.V., Efimov O.N., Shulga Y., Michtchenko A., Lartundo-Rojas L., Moreno L.A., Cabañas-Moreno J.G., Vasilets V.N. Composite material for supercapacitors formed by polymerization of aniline in the presence of graphene oxide nanosheets. J. Pow. Sources, 2013, vol. 224, pp. 195–201.; Baskakov S.A., Shulga Yu.V., Efimov O.N., Gusev A.L. Kompozity polianilina i oksida grafena kak perspektivnye materialy dlâ superkondensatorov [Composites of polyaniline and graphene oxide nanosheets as promising materials for supercapacitors]. International «Al’ternativnaâ ènergetika i èkologiâ» (ISJAEE), 2012, no. 12, pp. 49–54 (in Russ.).; Chen K., Chen L., Chen Y., Bai H., Li L. Three-dimensional porous graphene-based composite materials: electrochemical synthesis and application. J. Mater. Chem., 2012, vol. 22, pp. 20968–20976.; Guo S., Dong S. Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem. Soc. Rev., 2011, vol. 40, pp. 2644–2672.; Abalyaeva V.V., Efimov O.N., Gusev A.L. Detektirovanie vodoroda s ispolʹzovaniem èlektrohimičeskoj sistemy Pd/polivinilovyj spirt/ H3PO4 [Hydrogen detection with using the electrochemical system Pd/ polyvinyl alcohol/H3PO4]. International «Al’ternativnaâ ènergetika i èkologiâ» (ISJAEE), 2002, no. 5, pp. 12–16 (in Russ.).; Abalyaeva V.V., Vershinin N.N., Efimov O.N., Gusev A.L. Èlektrohimičeskoe okislenie vodoroda na Pd, Pt, Rh, Ir , dispergirovannyh v polianilinovoj matrice i na nanotrubkah [Electrochemical oxidation of hydrogen on Pd, Pt, Rh, Ir dispersed in polyaniline matrix and carbon nanotubes]. International «Al’ternativnaâ ènergetika i èkologiâ» (ISJAEE), 2006, no. 3, pp. 47–52 (in Russ.).; Domansky K., Jing L., Janata J. Selective doping of chemically sensitive layers on a multisensing chip. J. Electrochem. Soc., 1997, 144, pp. L75–L78.; Josovich M., Li H.S., Domansky K., Baer D.R. Effect of oxidation state of palladium in polyaniline layers on sensitivity to hydrogen. Electroanalysis, 1999, vol. 11, no. 10, pp. 774–781.; Geletii Y.V., Balavoine G.G.A., Efimov O.N., Kulikova V.S. The Determination of total concentration and activity of antioxidants in foodstuffs. Russ. J. Bioorg. Chem., 2001, vol. 28, no. 6, pp. 501–514.; https://www.isjaee.com/jour/article/view/156Test

  3. 3
  4. 4
  5. 5
  6. 6
    دورية أكاديمية

    المساهمون: Gerasimov, V

    المصدر: At. Energ. (USSR), 26: 498-502(June 1969).; Other Information: Orig. Receipt Date: 31-DEC-69

    وصف الملف: Medium: X

  7. 7
    دورية أكاديمية

    المساهمون: Gerasimov, V

    المصدر: At. Energ. (USSR), 27: 289-93(Oct. 1969).; Other Information: Orig. Receipt Date: 31-DEC-70

    وصف الملف: Medium: X

  8. 8
    دورية أكاديمية

    المساهمون: Volkhonskii, E

    المصدر: At. Energ. (USSR) 29: No. 5, 364-5(Nov 1970) as paper No. 440/5632.; Other Information: Orig. Receipt Date: 31-DEC-71

    وصف الملف: Medium: X

  9. 9
    دورية أكاديمية

    المساهمون: Gerasimov, V

    المصدر: At. Energ. (USSR), 25: 302-5(Apr. 1968).; Other Information: Orig. Receipt Date: 31-DEC-68

    وصف الملف: Medium: X

  10. 10
    دورية أكاديمية

    المساهمون: Kimstach, V

    المصدر: Zh. Anal. Khim. 27: No. 7, 1289-92(Jul 1972).; Other Information: Orig. Receipt Date: 31-DEC-72

    وصف الملف: Medium: X