يعرض 1 - 10 نتائج من 315 نتيجة بحث عن '"TYPE 1 DIABETES MELLITUS"', وقت الاستعلام: 0.77s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية
  9. 9
    دورية أكاديمية

    المصدر: The Russian Archives of Internal Medicine; Том 13, № 6 (2023); 413-421 ; Архивъ внутренней медицины; Том 13, № 6 (2023); 413-421 ; 2411-6564 ; 2226-6704

    وصف الملف: application/pdf

    العلاقة: https://www.medarhive.ru/jour/article/view/1690/1271Test; https://www.medarhive.ru/jour/article/view/1690/1279Test; Standl E., Khunti K., Hansen T.B. et al. The global epidemics of diabetes in the 21st century: current situation and perspectives. European Journal of Preventive Cardiology. 2019; 26(Sup.2): 7–14. doi:10.1177/2047487319881021.; Zheng Y., Wang Z., Zhou Z. miRNAs: novel regulators of autoimmunity-mediated pancreatic β-cell destruction in type 1 diabetes. Cellular and Molecular Immunology. 2017; 14(6): 488–496. doi:10.1038/cmi.2017.7.; Tovo P.A., Rabbone I., Tinti D. et al. Enhanced expression of human endogenous retroviruses in new-onset type 1 diabetes: Potential pathogenetic and therapeutic implications. Autoimmunity. 2020; 53: 283-288. doi:10.1080/08916934.2020.1777281.; Zayed H. Genetic Epidemiology of Type 1 Diabetes in the 22 Arab Countries. Curr. Diab. Rep. 2016; 16: 37. doi:10.1007/s11892-016-0736-4.; Johnson S.R., Ellis J.J., Leo P.J. et al. Comprehensive genetic screening: The prevalence of maturity-onset diabetes of the young gene variants in a population-based childhood diabetes cohort. Pediatr. Diabetes. 2019; 20: 57-64. doi:10.1111/pedi.12766.; Johnson S.R., McGown I., Oppermann U. et al. A novel INS mutation in a family with maturity-onset diabetes of the young: Variable insulin secretion and putative mechanisms. Pediatr. Diabetes. 2018; 19: 905-909. doi: 10.111/pedi.12679.; Polychronakos C., Li Q. Understanding type 1 diabetes through genetics: advances and prospects. Nature Reviews Genetics. 2011; 12: 781-792. doi:10.1038/nrg3069.; Redondo M.J., Steck A.K., Pugliese A. Genetics of type 1 diabetes. Pediatr. Diabetes. 2018; 19: 346-353. doi:10.1111/pedi.12597.; Мустафин Р.Н. Роль транспозонов в структурной эволюции геномов эукариот. Гены и клетки. 2021; 16(2): 23-30. doi:10.23868/202107001; Lakhter A.J., Pratt R.E., Moore R.E. et al. Beta cell extracellular vesicle miR-21-5p cargo is increased in response to inflammatory cytokines and serves as a biomarker of type 1 diabetes. Diabetologia. 2018; 61:1124–1134. doi:10.1007/s00125-018-4559-5.; Poy M.N., Eliasson L., Krutzfeldt J. et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004; 432:226-230.; Nielsen L.B., Wang C., Sorensen K. et al. Circulating levels of microRNA from children with newly diagnosed type 1 diabetes and healthy controls: evidence that miR-25 associates to residual beta-cell function and glycaemic control during disease progression. Exp. Diabetes Res. 2012; 2012:896362. doi:10.1155/2012/896362.; Roggli E., Gattesco S., Caille D. et al. Changes in microRNA expression contribute to pancreatic beta-cell dysfunction in prediabetic NOD mice. Diabetes. 2012; 61: 1742–1751.; Zhang Y., Feng Z.P., Naselli G. et al. MicroRNAs in CD4(+) T cell subsets are markers of disease risk and T cell dysfunction in individuals at risk for type 1 diabetes. J. Autoimmun. 2016; 68: 52–61.; Nabih E.S., Andrawes N.G. The Association Between Circulating Levels of miRNA-181a and Pancreatic Beta Cells Dysfunction via SMAD7 in Type 1 Diabetic Children and Adolescents. J. Clin. Lab. Anal. 2016; 30: 727–731. doi:10.1002/jcla.21928.; Assmann T.S., Recamonde-Mendoza M., de Souza B.M., Crispim D. MicroRNA expression profiles and type 1 diabetes mellitus: systematic review and bioinformatics analysis. Endocr. Connect. 2017; 6(8): 773-790. doi:10.1530/EC-17-0248.; Margaritis K., Margioula-Siarkou G., Margioula-Siarkou C. et al. Circulating serum and plasma levels of micro-RNA in type-1 diabetes in children and adolescents: A systematic review and meta-analysis. Eur J Clin Invest. 2021; 51(7): e13510. doi:10.1111/eci.13510.; Sebastiani G., Grieco F.A., Spagnuolo I. et al. Increased expression of microRNA miR-326 in type 1 diabetic patients with ongoing islet autoimmunity. Diabetes Metab. Res. Rev. 2011; 27:862–866.; Yang M., Ye L., Wang B. et al. Decreased miR-146 expression in peripheral blood mononuclear cells is correlated with ongoing islet autoimmunity in type 1 diabetes patients 1miR-146. J. Diabetes. 2015; 7:158–165.; Hezova R., Slaby O., Faltejskova P. et al. microRNA-342, microRNA-191 and microRNA-510 are differentially expressed in T regulatory cells of type 1 diabetic patients. Cell Immunol. 2010; 260(2):70-74. doi:10.1016/j.cellimm.2009.10.012.; de Jong V.M., van der Slik A.R., Laban S. et al. Survival of autoreactive T lymphocytes by microRNA-mediated regulation of apoptosis through TRAIL and Fas in type 1 diabetes. Genes Immun. 2016; 17:342-348.; Ghaffari M., Razi S., Zalpoor H. et al. Association of MicroRNA-146a with Type 1 and 2 Diabetes and their Related Complivations. J. Diabetes Res. 2023; 2023: 2587104. doi:10.1155/2023/2587104.; Wei G., Qin S., Li W. et al.MDTE DB: a database for microRNAs derived from Transposable element. IEEE/ACM Trans. Comput. Biol. Bioinform. 2016; 13: 1155–1160.; de Koning A.P., Gu W., Castoe T.A. et al. Repetitive Elements May Comprise Over Two-Thirds of the Human Genome. PLOS Genetics. 2011; 7(12): e1002384.; Mustafin R.N., Khusnutdinova E. Perspective for studying the relationship of miRNAs with transposable elements. Current Issues in Molecular Biology. 2023; 45(4): 3122-3145. doi:10.3390/cimb45040204.; Takahashi P., Xavier D., Evangelista A.F. et al. MicroRNA expression profiling and functional annotation analysis of their targets in patients with type 1 diabetes mellitus. Gene. 2014; 539: 213-223. doi:10.1016/j.gene.2014.01.075.; Ferraz R.S., Santos L.C.B., da-Silva-Cruz et al. Global miRNA expression reveals novel nuclear and mitochondrial interactions in Type 1 diabetes mellitus. Front. Endocrinol. (Lausanne). 2022; 13: 1033809.; Morales-Sanchez P., Lambert C., Ares-Blanco J. et al. Circulating miRNA expression in long-standing type 1 diabetes mellitus. Sci. Rep. 2023; 13: 8611. doi:10.1038/s41598-023-35836-8.; Sun X.G., Tao J.H., Xiang N. et al. Negative Correlation Between miR-326 and Ets-1 in Regulatory T Cells from new-Onset SLE Patients. Inflammation. 2016; 39: 822–829. doi:10.1007/s10753-016-0312-8.; Rouas R., Fayyad-Kazan H., El Zien N. et al. Human natural Treg microRNA signature: Role of microRNA-31 and microRNA-21 in FOXP3 expression. Eur. J. Immunol. 2009; 39:1608–1618. doi:10.1002/eji.200838509.; Fayyad-Kazan H., Rouas R., Fayyad-Kazan M. et al. MicroRNA profile of circulating CD4-positive regulatory T cells in human adults and impact of differentially expressed microRNAs on expression of two genes essential to their function. J. Biol. Chem. 2012; 287:9910-9922. doi:10.1074/jbc.M111.337154.; Han Q., Zhang Y., Jiao T. et al. Urinary sediment microRNAs can be used as potential noninvasive biomarkers for diagnosis, reflecting the severity and prognosis of diabetic nephropathy. Nutr. Diabetes. 2021; 11(1):24. doi:10.1038/s41387-021-00166-z.; Liu L., Yan J., Xu H. et al. Two novel MicroRNA biomarkers related to beta-cell damage and their potential values for early diagnosis of type 1 diabetes J. Clin. Endocrinol. Metab. 2018; 103(4):1320-1329.; Bacon S., Engelbrecht B., Schmid J. et al. MicroRNA-224 is readily detectable in urine of individuals with diabetes mellitus and is a potential Indicator of beta-cell demise. Genes. 2015; 6:399-416.; Tesovnik T., Kovač J., Pohar K. et al. Extracellular vesicles derived human-miRNAs modulate the immune system in type 1 diabetes. Front. Cell. Dev. Biol. 2020; 8:202. doi:10.3389/fcell.2020.00202.; Hunter R.G., Gagnidze K., McEwen B.S. et al. Stress and the dynamic genome: steroids, epigenetics, and the transposome. Proc. Natl. Acad. Sci. USA. 2014; 112:6828–6833. doi:10.1073/pnas.1411260111.; Мустафин Р.Н., Хуснутдинова Э.К. Стресс-индуцированная активация транспозонов в экологическом морфогенезе. Вавиловский журнал генетики и селекции. 2019; 23(4): 380–389. doi:10.18699/VJ19.506.; Stauffer Y., Marguerat S., Meylan F. et al. Interferon-alpha-induced endogenous superantigen. A model linking environment and autoimmunity. Immunity. 2001; 15: 591-601. doi:10.1016/s1074-7613(01)00212-6.; Levet S., Charvet B., Bertin A. et al. Human Endogenous Retroviruses and Type 1 Diabetes. Curr. Diab. Rep. 2019; 19(12): 141. doi:10.1007/s11892-019-1256-9.; Annibalini G., Bielli P., De Santi M. et al. MIR retroposonexonization promotes evolutionary variability and generates species-specific expression of IGF-1 splice variants. Biochimica et Biophysica Acta. 2016; 1859: 757-768.; Parrott A.M., Mathews M.B. snaR genes: recent descendants of Alu involved in the evolution of chorionic gonadotropins. Cold. Spring. Harb. Symp. Quant. Biol. 2009; 74:363-373. doi:10.1101/sqb.2009.74.038.; Jacobsen B.M., Jambal P., Schittone S.A., Horwitz K.B. ALU repeats in promoters are position-dependent co-response elements (coRE) that enhance or repress transcription by dimeric and monomeric progesterone receptors. Mol. Endocrinol. 2009; 23:989–1000.; Gombart A.F., Saito T., Koeffler H.P. Exaptation of an ancient Alu short interspersed element provides a highly conserved vitamin D-mediated innate immune response in humans and primates. BMC Genomics. 2009; 10:321. doi:10.1186/1471-2164-10-321.; Cotnoir-White D, Laperriere D, Mader S. Evolution of the repertoire of nuclear receptor binding sites in genomes. Mol. Cell. Endocrinol. 2011; 334:76–82.; Klein S.J., O’Neill R.J. Transposable elements: genome innovation, chromosome diversity, and centromere conflict. Chromosome Res. 2018; 26:5-23. doi:10.1007/s10577-017-9569-5.; Мустафин Р.Н. Взаимосвязь транспозонов с транскрипционными факторами в эволюции эукариот. Журнал эволюционной биохимии и физиологии. 2019; 55: 14-22.; Emera D., Casola C., Lynch V.J. et al. Convergent evolution of endometrial prolactin expression in primates, mice, and elephants through the independent recruitment of transposableelements. Mol. Biol. Evol. 2012; 29:239-247. doi:10.1093/molbev/msr189.; Gianfrancesco O., Bubb V.J., Quinn J.P. SVA retrotransposons as potential modulators of neuropeptide gene expression. Neuropeptides. 2017; 64:3-7. doi:10.1016/j.npep.2016.09.006.; Franchini L.F., Lopez-Leal R., Nasif S. et al. Convergent evolution of two mammalian neuronal enhancers by sequential exaptation of unrelated retroposons. Proc. Natl. Acad. Sci. USA. 2011; 108:15270-15275. doi:10.1073/pnas.1104997108.; Chuong E.B. The placenta goes viral: Retroviruses control gene expression in pregnancy. PLoS Biol. 2018; 16(10):e3000028.; Trujillo M.A., Sakagashira M., Eberhardt N.L. The human growth hormone gene contains a silencer embedded within an Alu repeat in the 3’-flanking region. Mol. Endocrinol. 2006; 20:2559-2575. doi:10.1210/me.2006-0147.; Richardson S.J., Leete P., Bone A.J. et al. Expression of the enteroviral capsid protein VP1 in the islet cells of patients with type 1 diabetes is associated with induction of protein kinase R and downregulation of Mcl-1. Diabetologia. 2013; 56:185-193. doi:10.1007/s00125-012-2745-4.; Krogvold L., Edwin B., Buanes T. et al. Detection of a low-grade enteroviral infection in the islets of langerhans of living patients newly diagnosed with type 1 diabetes. Diabetes. 2015; 64:1682-1687. doi:10.2337/db14-1370.; Bian X., Wallstrom G., Davis A. et al. Immunoproteomic Profiling of Antiviral Antibodies in New-Onset Type 1 Diabetes Using Protein Arrays. Diabetes. 2016; 65:285-296. doi:10.2337/db15-0179.; Levet S., Medina J., Joanou J. et al. An ancestral retroviral protein identified as a therapeutic target in type-1 diabetes. JCI Insight. 2017; 2:e94387. doi:10.1172/jci.insight.94387.; Curtin F., Bernard C., Levet S. et al. A new therapeutic approach for type 1 diabetes: Rationale for GNbAC1, an anti-HERV-W-Env monoclonal antibody. Diabetes Obes. Metab. 2018; 20:2075-2084. doi:10.1111/dom.13357.; Niegowska M., Wajda-Cuszlag M., Stepien-Ptak G. et al. Anti-HERV-W Env antibodies are correlated with seroreactivity against Mycobacterium avium subsp. Paratuberculosis in children and youths at T1D risk. Sci. Rep. 2019; 9:6282. doi:10.1038/s41598-019-42788-5.; Bashratyan R., Regn D., Rahman M.J. et al. Type 1 diabetes pathogenesis is modulated by spontaneous autoimmune responses to endogenous retrovirus antigens in NOD mice. Eur. J. Immunol. 2017; 47(3): 575-584. doi:10.1002/eji.201646755.; Dai Y.D., Dias P., Margosiak A. et al. Endogenous retrovirus Gag antigen and its gene variants are unique autoantigens expressed in the pancreatic islets of non-obese diabetic mice. Immunol. Lett. 2020; 223: 62-70.; Han J., Masonbrink R.E., Shan W. et al. Rapid proliferation and nucleolar organizer targeting centromeric retrotransposons in cotton. Plant. J. 2016; 88: 992-995.; Zhang N., Huang W., Dong F. et al. Insulin gene VNTR polymorphisms -2221MspI and -23HphI are associated with type 1 diabetes and latent autoimmune diabetes in adults: a meta-analysis. Acta Diabetol. 2015; 52:1143-1155. doi:10.1007/s00592-015-0805-1.; Durinovic-Bello I., Wu R.P., Gersuk V.H. et al. Insulin gene VNTR genotype associates with frequency and phenotype of the autoimmune response to proinsulin. Genes Immun. 2010; 11:188-93. doi:10.1038/gene.2009.108.; Pani M.A., Wood J.P., Bieda K. et al. The variable endogenous retro-viral insertion in the human complement C4 gene: a transmission study in type I diabetes mellitus. Hum. Immunol. 2002; 63:481-484. doi:10.1016/s0198-8859(02)00398-1.; Bieda K., Pani M.A., van der Auwera B. et al. A retroviral long terminal repeat adjacent to the HLA DQB1 gene (DQ-LTR13) modifies Type I diabetes susceptibility on high risk DQ haplotypes. Diabetologia. 2002; 45: 443-447.; Donner H., Tonjers R.R., van der Auwera B. et al. The presence or absence of a retroviral long terminal repeat influences the genetic risk for type 1 diabetes conferred by human leukocyte antigen DQ haplotypes. Belgian Diabetes Registry. J. Clin. Endocrionol. Metab. 1999; 84: 1404-1408. doi:10.1210/jcem.84.4.5638.; https://www.medarhive.ru/jour/article/view/1690Test

  10. 10
    دورية أكاديمية