يعرض 1 - 2 نتائج من 2 نتيجة بحث عن '"DNA flexibility"', وقت الاستعلام: 0.65s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المساهمون: Работа выполнена с использованием оборудования Центра коллективного пользования сверхвысокопроизводительными вычислительными ресурсами МГУ имени М.В. Ломоносова 26 при финансовой поддержке Российского научного фонда (проект №14-24-00031, соглашение №14-24-00031-п).

    المصدر: Vestnik Moskovskogo universiteta. Seriya 16. Biologiya; Том 73, № 2 (2018); 99-105 ; Вестник Московского университета. Серия 16. Биология; Том 73, № 2 (2018); 99-105 ; 0137-0952

    وصف الملف: application/pdf

    العلاقة: https://vestnik-bio-msu.elpub.ru/jour/article/view/584/430Test; Luger K., Mäder A.W., Richmond R.K., Sargent D.F., Richmond T.J. Crystal structure of the nucleosome core particle at 2.8 A resolution // Nature. 1997. Vol. 389. N 6648. P. 251–260.; Simpson R.T. Structure of the chromatosome, a chromatin particle containing 160 base pairs of DNA and all the histones // Biochemistry. 1978. Vol. 17. N 25. P. 5524–5531.; Lyubitelev A.V., Nikitin D.V., Shaytan A.K., Studitsky V.M., Kirpichnikov M.P. Structure and functions of linker histones // Biochemistry (Mosc.). 2016. Vol. 81. N 3. P. 213–223.; El Kennani S., Adrait A., Shaytan A.K., Khochbin S., Bruley C., Panchenko A.R., Landsman D., Pflieger D., Govin J. MS_HistoneDB, a manually curated resource for proteomic analysis of human and mouse histones // Epigenetics Chromatin. 2017. Vol. 10:2.; Syed S.H., Goutte-Gattat D., Becker N., Meyer S., Shukla M.S., Hayes J.J., Everaers R., Angelov D., Bednar J., Dimitrov S. Single-base resolution mapping of H1-nucleosome interactions and 3D organization of the nucleosome // Proc. Natl. Acad. Sci. U. S. A. 2010. Vol. 107. N 21. P. 9620–9625.; Ramakrishnan V., Finch J.T., Graziano V., Lee P.L., Sweet R.M. Crystal structure of globular domain of histone H5 and its implications for nucleosome binding // Nature. 1993. Vol. 362. N 6417. P. 219–223.; Brown D.T., Izard T., Misteli T. Mapping the interaction surface of linker histone H1(0) with the nucleosome of native chromatin in vivo // Nat. Struct. Mol. Biol. 2006. Vol. 13. N 3. P. 250–255.; Pruss D., Bartholomew B., Persinger J., Hayes J., Arents G., Moudrianakis E.N., Wolffe A.P. An asymmetric model for the nucleosome: a binding site for linker histones inside the DNA gyres // Science. 1996. Vol. 274. N 5287. P. 614–617.; Zhou Y.B., Gerchman S.E., Ramakrishnan V., Travers A., Muyldermans S. Position and orientation of the globular domain of linker histone H5 on the nucleosome // Nature. 1998. Vol. 395. N 6700. P. 402–405.; Bednar J., Garcia-Saez I., Boopathi R. et al. Structure and dynamics of a 197 bp nucleosome in complex with linker histone H1 // Mol. Cell. 2017. Vol. 66. N 3. P. 384–397; Zhou B.-R., Feng H., Kato H., Dai L., Yang Y., Zhou Y., Bai Y. Structural insights into the histone H1-nucleosome complex // Proc. Natl. Acad. Sci. U. S. A. 2013. Vol. 110. N 48. P. 19390–19395.; Zhou B.-R., Jiang J., Feng H., Ghirlando R., Xiao T.S., Bai Y. Structural mechanisms of nucleosome recognition by linker histones // Mol. Cell. 2015. Vol. 59. N 4. P. 628–638.; Zhou B.-R., Feng H., Ghirlando R., Li S., Schwieters C.D., Bai Y. A Small number of residues can determine if linker histones are bound on or off dyad in the chromatosome // J. Mol. Biol. 2016. Vol. 428. N 20. P. 3948–3959.; Cui F., Zhurkin V.B. Distinctive sequence patterns in metazoan and yeast nucleosomes: implications for linker histone binding to AT-rich and methylated DNA // Nucleic Acids Res. 2009. Vol. 37. N 9. P. 2818–2829.; Öztürk M.A., Pachov G.V., Wade R.C., Cojocaru V. Conformational selection and dynamic adaptation upon linker histone binding to the nucleosome // Nucleic Acids Res. 2016. Vol. 44. N 14. P. 6599–6613.; Pachov G.V., Gabdoulline R.R., Wade R.C. On the structure and dynamics of the complex of the nucleosome and the linker histone // Nucleic Acids Res. 2011. Vol. 39. N 12. P. 5255–5263.; Song F., Chen P., Sun D., Wang M., Dong L., Liang D., Xu R.-M., Zhu P., Li G. Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units // Science. 2014. Vol. 344. N 6182. P. 376–380.; Rohs R., Jin X., West S.M., Joshi R., Honig B., Mann R.S. Origins of specificity in protein-DNA recognition // Annu. Rev. Biochem. 2010. Vol. 79. P. 233–269.; Edgar R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput // Nucleic Acids Res. 2004. Vol. 32. N 5. P. 1792–1797.; Cock P.A., Antao T., Chang J.T., Chapman B.A., Cox C.J., Dalke A., Friedberg I., Hamelryck T., Kauff F., Wilczynski B., de Hoon M.J.L. Biopython: freely available Python tools for computational molecular biology and bioinformatics // Bioinformatics 2009. Vol. 25. N 11. Р. 1422–1423.; Webb B., Sali A. Comparative protein structure modeling using MODELLER // Curr. Protoc. Bioinformatics. 2016. Vol. 54. P. 5.6.1–5.6.37.; Martí-Renom M.A., Stuart A.C., Fiser A., Sánchez R., Melo F., Sali A. Comparative protein structure modeling of genes and genomes // Annu. Rev. Biophys. Biomol. Struct. 2000. Vol. 29. P. 291–325.; Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera — a visualization system for exploratory research and analysis // J. Comput. Chem. 2004. Vol. 25. N 13. P. 1605–1612.; Lu X., Olson W.K. 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures // Nucleic Acids Res. 2003. Vol. 31. N 17. P. 5108–5121.; Olson W.K., Gorin A.A., Lu X.-J., Hock L.M., Zhurkin V.B. DNA sequence-dependent deformability deduced from protein–DNA crystal complexes // Proc. Natl. Acad. Sci. U. S. A. 1998. Vol. 95. N 19. P. 11163–11168.; Воеводин В., Жуматий С., Соболев С., Антонов А., Брызгалов П., Никитенко Д., Стефанов К., Воеводин В. Практика суперкомпьютера “Ломоносов” // Открытые системы. СУБД. 2012. № 7 (183). С. 36–39.; https://vestnik-bio-msu.elpub.ru/jour/article/view/584Test

  2. 2
    دورية أكاديمية