يعرض 1 - 10 نتائج من 47 نتيجة بحث عن '"李 洋"', وقت الاستعلام: 0.93s تنقيح النتائج
  1. 1
    رسالة جامعية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية

    المؤلفون: , , 陶, 然

    المصدر: SCIENTIA SINICA Terrae ; volume 44, issue 12, page 2735-2742 ; ISSN 1674-7240

  4. 4
    دورية أكاديمية

    المؤلفون: 陶, 然, , , 盛, 新庆

    المصدر: SCIENTIA SINICA Terrae ; volume 44, issue 10, page 2328-2338 ; ISSN 1674-7240

  5. 5
    تقرير
  6. 6
  7. 7
    تقرير
  8. 8
    دورية أكاديمية
  9. 9
    رسالة جامعية
  10. 10

    المؤلفون: Li, Yang-Guang, 李洋

    المساهمون: 衛榮漢, Wei, Zung-Hang

    مصطلحات موضوعية: 原子力顯微鏡, 樣品處理, 楊氏係數

    الوقت: 28

    العلاقة: [1] J. W. Lee, K. S. Lee, N. Cho, B. K. Ju, K. B. Lee, and S. H. Lee, "Topographical guidance of mouse neuronal cell on SiO2 microtracks," Sensors and Actuators B: Chemical, vol. 128, pp. 252-257, 2007. [2] W. T. Su, I. M. Chu, J. Y. Yang, and C. D. Lin, "The geometric pattern of a pillared substrate influences the cell-process distribution and shapes of fibroblasts," Micron, vol. 37, pp. 699-706, 2006. [3] J. Mai, C. Sun, S. Li, and X. Zhang, "A microfabricated platform probing cytoskeleton dynamics using multidirectional topographical cues," Biomedical Microdevices, vol. 9, pp. 523-531, 2007. [4] E. Martinez, E. Engel, J. A. Planell, and J. Samitier , "Effects of artificial micro-and nano-structured surfaces on cell behaviour," Annals of Anatomy, 2008. [5] J. O. Gallagher, K. F. McGhee, C. D. W. Wilkinson, and M. O. Riehle, "Interaction of animal cells with ordered nanotopography," Nanobioscience, IEEE Transactions on, vol. 1, pp. 24-28, 2002. [6] A. Thapa, T. J. Webster, and K. M. Haberstroh, "Polymers with nano-dimensional surface features enhance bladder smooth muscle cell adhesion," Journal of Biomedical Materials Research, vol. 67, pp. 1374-1383, 2003. [7] F. Johansson, P. Carlberg, N. Danielsen, L. Montelius, and M. Kanje, "Axonal outgrowth on nano-imprinted patterns," Biomaterials, vol. 27, pp. 1251-1258, 2006. [8] M. J. Dalby, N. Gadegaard, R. Tare, A. Andar, M. O. Riehle, P. Herzyk, C. D. W. Wilkinson, and R. O. C. Oreffo, "The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder," Nature Materials, vol. 6, p. 997, 2007. [9] S. C. Bayliss, L. D. Buckberry, I. Fletcher, and M. J. Tobin, "The culture of neurons on silicon," Sensors & Actuators: A. Physical, vol. 74, pp. 139-142, 1999. [10]S. Vassanelli and P. Fromherz, "Neurons from rat brain coupled to transistors," Applied Physics A: Materials Science & Processing, vol. 65, pp. 85-88, 1997. [11]D. H. Davis, C. S. Giannoulis, R. W. Johnson, and T. A. Desai, "Immobilization of RGD to silicon surfaces for enhanced cell adhesion and proliferation," Biomaterials, vol. 23, pp. 4019-4027, 2002. [12]J. Ma, F. Z. Cui, B. F. Liu, and Q. Y. Xu, "Atomic force and confocal microscopy for the study of cortical cells cultured on silicon wafers," Journal of Materials Science: Materials in Medicine, vol. 18, pp. 851-856, 2007. [13]N. Turner, M. Armitage, R. Butler, and G. Ireland, "An in vitro model to evaluate cell adhesion to metals used in implantation shows significant differences between palladium and gold or platinum," Cell Biology International, vol. 28, pp. 541-547, 2004. [14]D. O. Meredith, L. Eschbach, M. O. Riehle, A. S. Curtis , and R. G. Richards, "Microtopography of metal surfaces influence fibroblast growth by modifying cell shape, cytoskeleton, and adhesion," J Orthop Res, vol. 25, pp. 1523-33, 2007. [15]U. G. Hofmann, C. Rotsch, W. J. Parak, and M. Radmacher , "Investigating the Cytoskeleton of Chicken Cardiocytes with the Atomic Force Microscope," Journal of Structural Biology, vol. 119, pp. 84-91, 1997. [16]Y. Mizutani, M. Tsuchiya, S. Hiratsuka, K. Kawahara, H. Tokumoto, and T. Okajima, "Elasticity of Living Cells on a Microarray during the Early Stages of Adhesion Measured by Atomic Force Microscopy," Japanese Journal of Applied Physics, vol. 47, pp. 6177-6180, 2008. [17]R. Nowakowski, P. Luckham, and P. Winlove, "Imaging erythrocytes under physiological conditions by atomic force microscopy," Biochimica et Biophysica Acta, vol. 1514, pp. 170-176, 2001. [18]M. S. Ho, F. J. Kuo, and Y. S. Lee, "Atomic force microscopic observation of surface-supported human erythrocytes," Applied Physics Letters, vol. 91, pp. 023901, 2007. [19]O. Hekele, C. G. Goesselsberger, and I. C. Gebeshuber, , "Nanodiagnostics performed on human red blood cells with atomic force microscopy," Materials Science and Technology , vol. 24, pp. 1162-1165, 2008. [20]M. Lekka, M. Fornal, G. P. Fosciak, K. Lebed, B. Wizner, T. Grodzicki, and J. Styczen, "Erythrocyte stiffness probed using atomic force microscope," Biorheology , vol. 42, pp. 307-317, 2005. [21]M. Fornal, M. Lekka, G. P. Fosciak, K. Lebed, T. Grodzicki, B. Wizner, and J. Styczen, "Erythrocyte stiffness in diabetes mellitus studied with atomic force microscope," Clinical Hemorheology and Microcirculation , vol. 35, pp. 273-276, 2006. [22]黃佩瑜, "以原子力顯微術在病毒感染細胞之形態觀察及活體細 胞量測技術之發展," 碩士論文, 成功大學, 2005 [23]蘇俊賢, "貧血和非貧血大鼠的紅血球細胞膜剛性係數與直流脈 衝裂解時間的關係之研究," 碩士論文, 嘉義大學, 2008; http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/61065Test