Circuit-Level Exploration of Ternary Logic Using Memristors and MOSFETs.

التفاصيل البيبلوغرافية
العنوان: Circuit-Level Exploration of Ternary Logic Using Memristors and MOSFETs.
المؤلفون: Yang, Jeonggyu1 (AUTHOR) jg.yang@knu.ac.kr, Lee, Hyundong2 (AUTHOR), Jeong, Jae Hoon1 (AUTHOR), Kim, Taehak1 (AUTHOR), Lee, Sin-Hyung1 (AUTHOR), Song, Taigon1 (AUTHOR) tsong@knu.ac.kr
المصدر: IEEE Transactions on Circuits & Systems. Part I: Regular Papers. Feb2022, Vol. 69 Issue 2, p707-720. 14p.
مصطلحات موضوعية: *LOGIC, METAL oxide semiconductor field-effect transistors, SEQUENTIAL circuits, COMPUTER performance, PASSIVE components, TERNARY system
مستخلص: In recent decades, the performance of binary computers has escalated through transistor scaling. However, due to the impotent forecasts of transistor scaling, ternary systems are regaining attention. Among many ternary device candidates, a passive device called memristor that is based on resistance switching is considered a good candidate when integrated with MOSFETs. Therefore, in this paper, we design various terna-ry logic based on memristors and MOSFETs from primitive logic to sequential logic and perform a thorough diagnosis for circuit design. We highlight design issues that should be resolved (e.g., signal distortion and high static current) and present practical solutions such as “Strength Design.” Then, we report a proper design methodology of sequential circuits considering the spike phenomena of memristor-based gates. We present 16 novel ternary logic cells and circuitry, including the design of the first balanced ternary full-adder (TFA) and memristor-based ternary pulsed-latch (MTPL). By our TFA, we emphasize that it is possible to design the most practical ternary circuits using memristors and MOSFETs. Our TFA uses 97 transistors and 87 memristors, which is the most reasonable TFA design that has the highest potential to be implemented in the near future. Besides, the proposed MTPL uses 16 transistors and 10 memristors, and it occupies only 72.7% of the silicon area, compared to the master-slave ternary flip-flop. [ABSTRACT FROM AUTHOR]
Copyright of IEEE Transactions on Circuits & Systems. Part I: Regular Papers is the property of IEEE and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Business Source Index
الوصف
تدمد:15498328
DOI:10.1109/TCSI.2021.3121437