دورية أكاديمية

Differentiated Interval Structural Characteristics of Wufeng−Longmaxi Formation Deep Shale Gas Reservoirs in Western Chongqing Area, China: Experimental Investigation Based on Low-Field Nuclear Magnetic Resonance (NMR) and Fractal Modeling

التفاصيل البيبلوغرافية
العنوان: Differentiated Interval Structural Characteristics of Wufeng−Longmaxi Formation Deep Shale Gas Reservoirs in Western Chongqing Area, China: Experimental Investigation Based on Low-Field Nuclear Magnetic Resonance (NMR) and Fractal Modeling
المؤلفون: Difei Zhao, Dandan Liu, Yuan Wei, Qinxia Wang, Shengxiu Wang, Xiaoyu Zou, Weiwei Jiao, Yinghai Guo, Geoff Wang
المصدر: Applied Sciences, Vol 14, Iss 11, p 4733 (2024)
بيانات النشر: MDPI AG, 2024.
سنة النشر: 2024
المجموعة: LCC:Technology
LCC:Engineering (General). Civil engineering (General)
LCC:Biology (General)
LCC:Physics
LCC:Chemistry
مصطلحات موضوعية: deep shale, pore structure, fractal analysis, high-quality reservoirs, Wufeng–Longmaxi Formation, heterogeneity, Technology, Engineering (General). Civil engineering (General), TA1-2040, Biology (General), QH301-705.5, Physics, QC1-999, Chemistry, QD1-999
الوصف: The study of deep shale gas (>3500 m) has become a new research hotspot in the field of shale gas research in China. In this study, 16 representative deep shale samples were selected from different layers of the Wufeng–Longmaxi Formation in the Z-3 well in the western Chongqing area to conduct low-field nuclear magnetic resonance (NMR) tests, field-emission scanning electron microscopy (FE-SEM) observation, and fractal modeling. By comparing the differences in pore structure and their influencing factors in representative samples from different layers, the particularities of high-quality reservoirs have been revealed. The results show that the Z-3 well shales mainly develop micropores and mesopores, with pore sizes of 1 nm–200 nm. The fractal dimensions of bound fluid pores D1 (1.6895–2.3821) and fractal dimension of movable fluid pores D2 (2.9914–2.9996) were obtained from T2 spectra and linear fitting, and the pores were divided into three sections based on the NMR fractal characteristics. TOC content was one of the major factors affecting the gas content in the study area. The shale samples in the bottom S1l1-1 sub-layer with a higher TOC content have larger porosity and permeability, leading to enhanced homogeneity of the pore structure and favorable conditions for shale gas adsorption. A comparative understanding of the particularities of pore structure and influencing factors in high-quality reservoirs with higher gas content will provide the scientific basis for further exploration and exploitation of the Wufeng–Longmaxi Formation deep shale reservoirs in the western Chongqing area.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2076-3417
العلاقة: https://www.mdpi.com/2076-3417/14/11/4733Test; https://doaj.org/toc/2076-3417Test
DOI: 10.3390/app14114733
الوصول الحر: https://doaj.org/article/ab67ca3053994684a5d1f6719cc43569Test
رقم الانضمام: edsdoj.b67ca3053994684a5d1f6719cc43569
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:20763417
DOI:10.3390/app14114733