يعرض 1 - 10 نتائج من 111 نتيجة بحث عن '"Insertion"', وقت الاستعلام: 1.67s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    مؤتمر

    وصف الملف: text; 76-84; application/pdf

    العلاقة: 13th Research and Education in Aircraft Design: Conference proceedings; http://www.lu.fme.vutbr.cz/read2018czTest/; 13th Research and Education in Aircraft Design: Conference proceedings. s. 76-84. ISBN 978-80-214-5696-9; http://hdl.handle.net/11012/137296Test

  3. 3
    دورية أكاديمية

    المساهمون: Technická univerzita v Liberci

    وصف الملف: text; 6 stran; application/pdf

    العلاقة: Mao X.H, Bao M.(2005) Weaving Volume II. China Textile Publishing House (Beijing); Dong, Z., & Sun, C. T. (2009). Testing and modeling of yarn pull-out in plain woven Kevlar fabrics. Composites Part A: Applied science and manufacturing, 40(12), 1863- 1869. https://doi.org/10.1016/j.compositesa.2009.04.019Test; Leaf, J., Wu, R., Schweickart, E., James, D. L., & Marschner, S. (2018). Interactive design of periodic yarnlevel cloth patterns. ACM Transactions on Graphics (TOG), 37(6), 1-15. https://doi.org/10.1145/3272127.3275105Test; Jauffrès, D., Sherwood, J. A., Morris, C. D., & Chen, J. (2010). Discrete mesoscopic modeling for the simulation of woven-fabric reinforcement forming. International journal of material forming, 3(2), 1205-1216. http://dx.doi.org/10.1007%2Fs12289-009-0646-yTest; Tripathi, L., Chowdhury, S., & Behera, B. K. (2022). Modeling and simulation of impact behavior of 3D woven solid structure for ballistic application. Journal of Industrial Textiles, 51(4_suppl), 6065S-6086S. https://doi.org/10.1177/1528083720980467Test; Özdemir, H., & Başer, G. (2008). Computer simulation of woven fabric appearances based on digital video camera recordings of moving yarns. Textile Research Journal, 78(2), 148-157. http://dx.doi.org/10.1177/0040517507080692Test; Özdemir, H., & Başer, G. (2009). Computer simulation of plain woven fabric appearance from yarn photographs. The Journal of The Textile Institute, 100(3), 282-292. https://doi.org/10.1080/00405000701757529Test; Fang, J., Ma, Y., Li, Y., et al. (2021). Design and development of urban cultural and creative products with segment filling insertion. In Journal of Physics: Conference Series: 1790(1): 012032. doi:10.1088/1742-6596/1790/1/012032; Nilakantan, G., Keefe, M., Bogetti, T. A., Adkinson, R., & Gillespie Jr, J. W. (2010). On the finite element analysis of woven fabric impact using multiscale modeling techniques. International Journal of Solids and Structures,47(17), 2300-2315. https://doi.org/10.1016/j.ijsolstr.2010.04.029Test; Rief, S., Glatt, E., Laourine, E., Aibibu, D., Cherif, C., & Wiegmann, A. (2011). Modeling and CFD-simulation of woven textiles to determine permeability and retention properties. AUTEX Research Journal, 11(3), 78-83.; Kyosev Y. Generalized geometric modeling of tubular and flat braided structures with arbitrary floating length and multiple filaments. Textile Research Journal. 2016;86(12):1270-1279. https://doi.org/10.1177/0040517515609261Test; Kyosev, Y., Topology-Based Modeling of Textile Structures and Their Joint Assemblies, Springer Nature Switzerlang AG, 2019, 238 p, https://doi.org/10.1007/978-3-030-02541-0Test; Dash, B. P., Behera, B. K., Mishra, R., & Militky, J. (2013). Modeling of internal geometry of 3D woven fabrics by computation method. Journal of the Textile Institute, 104(3), 312-321. https://doi.org/10.1080/00405000.2012.720850Test; Wielhorski, Y., Mendoza, A., Rubino, M., & Roux, S. (2022). Numerical modeling of 3D woven composite reinforcements: A review. Composites Part A: Applied Science and Manufacturing, 154, 106729. https://doi.org/10.1016/j.compositesa.2021.106729Test; Manjunath, R. N., & Behera, B. K. (2017). Modelling the geometry of the unit cell of woven fabrics with integrated stiffener sections. The Journal of The Textile Institute, 108(11), 2006-2012. https://doi.org/10.1080/00405000.2017.1308785Test; Lee, S. K., Byun, J. H., & Hong, S. H. (2003). Effect of fiber geometry on the elastic constants of the plain woven fabric reinforced aluminum matrix composites. Materials Science and Engineering: A, 347(1-2), 346-358. https://doi.org/10.1016/S0921-5093Test(02)00614-7; Daelemans, L., Faes, J., Allaoui, S., Hivet, G., Dierick, M., Van Hoorebeke, L., & Van Paepegem, W. (2016). Finite element simulation of the woven geometry and mechanical behaviour of a 3D woven dry fabric under tensile and shear loading using the digital element method. Composites Science and Technology, 137, 177-187. http://dx.doi.org/10.1016/j.compscitech.2016.11.003Test; Liu, H., Kyosev, Y., & Jiang, G. (2022). Yarn level simulation of warp-knitted clothing elements – first results and challenges. Communications in Development and Assembling of Textile Products, 3(2), 115-126. https://doi.org/10.25367/cdatp.2022.3.p115-126Test; Cirio, G., Lopez-Moreno, J., Miraut, D., & Otaduy, M. A. (2014). Yarn-level simulation of woven cloth. ACM Transactions on Graphics (TOG), 33(6), 1-11. https://doi.org/10.1145/2661229.2661279Test; Nilakantan, G., & Gillespie Jr, J. W. (2012). Ballistic impact modeling of woven fabrics considering yarn strength, friction, projectile impact location, and fabric boundary condition effects. Composite Structures, 94(12), 3624-3634. http://dx.doi.org/10.1016/j.compstruct.2012.05.030Test; Fibres and Textiles; https://dspace.tul.cz/handle/15240/167233Test

  4. 4
    رسالة جامعية
  5. 5
  6. 6
    رسالة جامعية
  7. 7
  8. 8
    رسالة جامعية
  9. 9
    رسالة جامعية
  10. 10
    دورية أكاديمية