يعرض 1 - 6 نتائج من 6 نتيجة بحث عن '"quantitative rt-pcr"', وقت الاستعلام: 0.89s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
  5. 5
    دورية أكاديمية
  6. 6
    رسالة جامعية

    المؤلفون: 陳子金

    المساهمون: 生物科技系暨研究所, 羅怡珮

    العلاقة: 校內校外均不公開,學年度:100,73頁; 1. Hwang JS. Ecology of Aedes mosquitoes and the relationships with Dengue epidemics in Taiwan area. Chinese J Entomol Special publ. 1991;6: 105-127. (in Chinese) 2. Reinert J, Harbach R, Kitching I. Phylogeny and classification of Aedini(Diptera: Culicidae), based on morphological charecters of all life stages. Zool. J. of the Linnean Society. 2004;142: 289-368. 3. Mousson L, Dauga C, Garrigues T, Schaffner F, Vazeille M, Failloux AB. Phylogeography of Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae) based on mitochondrial DNA variations. Genet Res. 2005;86(1):1-11. 4. 徐爾烈。市售環境用藥(液體電蚊香)藥效評估。 行政院環境保護署。 2002。 5. Gubler DJ. Dengue and dengue hemorrhagic fever. Clin Microbiol Rev. 1998;11(3):480-496. 6. 台灣世界衛生組織研究中心。 2010; http://www.twwho.orgTest/ 7. Ooi EE, Goh KT, Gubler DJ. Dengue prevention and 35 years of vector control in Singapore. Emerg Infect Dis. 2006;12(6):887-893. 8. WHO. Environmental Health Criteria 9: DDT and its derivatives. 1979. 9. The Bald Eagle-An American Emblem. 1999; http://www.baldeagleinfo.com/eagle/eagle9.htmlTest. 10. 徐爾烈。 登革熱病媒蚊對合成除蟲菊酯抗藥性之研究(II)。 行政院衛生署科技研究發展計畫。 1996。 11. Sutherst RW, Comins HN. The management of acaricide resistance in the cattle tick, Boophilus microplus (Canestrini) (Acari:Ixodidae), in Australia. Bull Entomol Res. 1979;69: 519-540. 12. Hemingway J, Hawkes NJ, McCarroll L, Ranson H. The molecular basis of insecticide resistance in mosquitoes. Insect Biochem Mol Biol. 2004;34:653-665. 13. Lin YH, Wu SH, Hsu EL, Teng HJ, Ho CM, Pai HH. Insecticide resistance in Aedes aegypti during dengue epidemics in Taiwan. Chinese J Entomol. 2003;23: 263-274. 14. Chang C, Shen WK, Wang TT, Lin YH, Hsu EL, Dai SM. A novel amino acid substitution in a voltage-gated sodium channel is associated with knockdown resistance to permethrin in Aedes aegypti. Insect Biochem Mol Biol. 2009;39: 272-278. 15. Devonshire AL, Field LM. Gene amplification and insecticide resistance. Ann Rev Entomol. 1991;36: 1-23. 16. 林鶯熹, 吳懷慧, 徐爾烈, 張念台, 羅怡珮。 台灣南部地區埃及斑蚊及白線斑蚊幼蟲對殺蟲劑的抗藥性。 台灣昆蟲。 2012;32:107-121。 17. Menn JJ. Comparative aspects of pesticide metabolism in plants and animals. Environ Health Perspect. 1978;27:113-124. 18. Ohkawa H, Kameko H, Miyamoto J. Metabolism of permethrin in bean plant. J. Pestic. Sci. 1977;2:67 19. Gaughan LC, Unai T, Casida JE. Permethrin metabolism in rats and cows and in bean and cotton plant. In: synthetic pyrethroids. American Chemical Society, Washington. 1977; pp. 186-200. 20. Petersen RA, Zangerl AR, Berenbaum MR, Schuler MA. Expression of CYP6B1 and CYP6B3 cytochrome P450 monooxygenases and furanocoumarin metabolism indifferent tissues of Papilio polyxenes (Lepidoptera: Papilionidae). Insect Biochem Mol Biol. 2001;31:679-690. 21. Hemingway J, Karunaratne SHPP. Mosquito carboxylesterases: a review of the molecular biology and biochemistry of a major insecticide resistance mechanism. Med Vet Entomol. 1998; 12(1):1-12. 22. Hemingway J, Hawkes N, Prapanthadara L, Jayawardenal KG, Ranson H. The role of gene splicing, gene amplification and regulation in mosquito insecticide resistance. Philos Trans R Soc Lond B Biol Sci. 1998;353:1695-1699. 23. Herath PRJ, Hemingway J, Weerasinghe IS, Jayawardena KGI. The detection and characterisation of malathion resistance in field populations of Anopheles culicifacies B in Sri Lanka. Pestic Biochem Physiol. 1987;29: 157–162. 24. Ziegler R, Whyard S, Downe AER, Wyatt GR, Walker VK. General esterase, malathion carboxylesterase and malathion restance in Culex tarsalis. Pest Biochem Physiol. 1987;28:279-285. 25. Halliwell, B., Gutterridge, J.M.C., Production against Radical Damage: Systems with Problems. Free Radicals in Biology and Medicine, second ed. 1989; Clarendon Press, Oxford. 26. Lim YS, Cha MK, Kim HK, et al. Removals of hydrogen peroxide and hydroxyl radical by thiol-specific antioxidant protein as a possible role in vivo. Biochem Biophys Res Commun. 1993;192(1):273-280. 27. Chae HZ, Chung SJ, Rhee SG. Thioredoxin-dependent peroxide reductase from yeast. J Biol Chem. 1994;269(44):27670-27678. 28. Kang SW, Baines IC, Rhee SG. Characterization of a mammalian peroxiredoxin that contains one conserved cysteine. J Biol Chem. 1998;273(11):6303-6311. 29. Chae HZ, Robison K, Poole LB, Church G, Storz G, Rhee SG. Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc Natl Acad Sci USA. 1994;91(15):7017-7021. 30. Kim K, Kim IH, Lee KY, Rhee SG, Stadtman ER. The isolation and purification of a specific “protector” protein which inhibits enzyme inactivation by a thiol/Fe(III)/O2 mixed-function oxidation system. J Biol Chem. 1988;263(10):4704-4711. 31. Demasi AP, Pereira GA, Netto LE. Cytosolic thioredoxin peroxidase I is essential for the antioxidant defense of yeast with dysfunctional mitochondria. FEBS Lett. 2001;509(3):430-434. 32. Radyuk SN, Klichko VI, Spinola B, Sohal RS, Orr WC. The peroxiredoxin gene family in Drosophila melanogaster. Free Radic Biol Med. 2001;31(9):1090-1100. 33. Nene V, Wortman JR, Lawson D, Haas B, Kodira C, Tu Z, et al., Genome sequence of Aedes aegypti, a major arbovirus vector. Science. 2007;316:1718-1723. 34. Weill M, Lutfalla G, Mogensen K, et al. Comparative genomics: Insecticide resistance in mosquito vectors. Nature. 2003;423(6936):136-137. 35. Ranson H, Jensen B, Vulule JM, Wang X, Hemingway J, Collins FH. Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Mol Biol. 2000;9(5):491-497. 36. Weill M, Lutfalla G, Mogensen K, et al. Comparative genomics: Insecticide resistance in mosquito vectors. Nature. 2003;423(6936):136-137. 37. Tseng WL. The voltage-gate sodium channel gene mutation in southern Taiwan Aedes aegypti (L.) [thesis]. Tainan: Chia-Nan University of Pharmacy and Science. 2010;87 pp. (in Chinese) 38. Strode C, Wondji CS, David JP, et al. Genomic analysis of detoxification genes in the mosquito Aedes aegypti. Insect Biochem Mol Biol. 2008;38(1):113-123. 39. Marcombe S, Poupardin R, Darriet F, et al. Exploring the molecular basis of insecticide resistance in the dengue vector Aedes aegypti: a case study in Martinique Island (French West Indies). BMC Genomics. 2009;10:494. 40. Riaz MA, Poupardin R, Reynaud S, Strode C, Ranson H, David JP. Impact of glyphosate and benzo [α] pyrene on the tolerance of mosquito larvae to chemical insecticides. Role of detoxification genes in response to xenobiotics. Aquat Toxicol. 2009;93:61-69. 41. Ranson H, Claudianos C, Ortelli F, et al., Evolution of supergene families associated with insecticide resistance. Science. 2002;298:179-181. 42. Kasai S, Scott JG. Over expression of cytochrome P450 CYP6D1 is associated with monooxygenase-mediated pyrethroid resistance in houseflies from Georgia. Pestic. Biochem. Physiol. 2000;68:34-41. 43. Kasai S, Weerashinghe IS, Shono T, Yamakawa M. Molecular cloning, nucleotide sequence and gene expression of a cytochrome P450 (CYP6F1) from the pyrethroid-resistant mosquito, Culex quinquefasciatus Say. Insect Biochem Mol Biol. 2000;30:163-171. 44. Shen B, Dong HQ, Tian HS, et al., Cytochrome p450 genes expressed in the deltamethrin-susceptible and –resistant strains of Culex pipiens pallens. Pestic Biochem Physiol.2003; 75:19–26. 45. Vontas JG, Small GJ, Hemingway J. Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens. Biochem J. 2001;357:65-72. 46. Martinez-Torres D, Chandre F, Williamson MS, et al. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol Biol. 1998;7(2):179-184. 47. Ranson H, Rossiter L, Ortelli F, et al. Identification of a novel class of insect glutathione S-transferases involved in resistance to DDT in the malaria vector Anopheles gambiae. Biochem J. 2001;359(Pt 2):295-304. 48. Nikou D, Ranson H, Hemingway J. An adult-specific CYP6 P450 gene is overexpressed in a pyrethroid-resistant strain of the malaria vector, Anopheles gambiae. Gene. 2003;318:91-102. 49. Lumjuan N, Rajatileka S, Changsom D, et al. The role of the Aedes aegypti Epsilon glutathione transferases in conferring resistance to DDT and pyrethroid insecticides. Insect Biochem Mol Biol. 41(3):203-209. 50. Yu SJ. Induction of detoxification enzymes by triazine herbicides in the fall armyworm, Spodoptera frugiperda. Pestic Biochem Physiol. 2004;80:113-122. 51. Suwanchaichinda C, Brattsten LB. Induction of microsomal cytochrome P450s by tire-leachate compounds, habitat components of Aedes albopictus mosquito larvae. Arch Insect Biochem Physiol. 2002;49:71-79. 52. Poupardin R, Reynaud S, Strode C, Ranson H, Vontas J, David JP. Cross-induction of detoxification genes by environmental xenobiotics and insecticides in the mosquito Aedes aegypti: impact on larval tolerance to chemical insecticides. Insect Biochem Mol Biol. 2008;38:540-551. 53. Vontas J, Blass C, Koutsos AC, et al. Gene expression in insecticide resistant and susceptible Anopheles gambiae strains constitutively or after insecticide exposure. Insect Mol Biol. 2005;14(5):509-521. 54. Lertkiatmongkol P, Pethuan S, Jirakanjanakit N, Rongnoparut P. Transcription analysis of differentially expressed genes in insecticide-resistant Aedes aegypti mosquitoes after deltamethrin exposure. J Vector Ecol. 2010;35:197-203. 55. Georghiou GP. Management of resistance in arthropods. In: Georghiou GP, Saito T (eds). Pest Resistance to Pesticides. Plenum Press. 1983; pp 769-792. 56. McKebzie JA, Batterham P. Predicting insecticide resistance: mutagenesis, selection and response. Philos Trans R Soc Lond B Biol Sci. 1998;353: 1729-1734. 57. WHO. Instructions for determining the susceptibility or resistance of mosquito larvae to insecticides. World Health Organization. 1981;WHO/VBC/81.807. 58. WHO. Techniques to detect insecticide resustance mechanisms. World Health Organization. 1998 ;WHO/CDS/CPC/MAL/98.6. 59. Poupardin R. Riza MA. Jones CM. Chandor-Proust A. Reynaud S. David JP. Do pollutants affect insecticide-driven gene selection in mosquitoes? Experimental evidence from transcriptomics. Aquatic Toxicology. 2012;49-57. 60. Berge JB, Chevillon C, Raymond M, Pasteur N. Resistance of insects to insecticide. Molecular mechanisms and epidemiology. C R Seances Soc Biol Fil.1996;190(4):445-454. 61. Vulue JM, Beach RF, Atieli FK, et al. Elevated oxidase and esterase levels associated with permethrin tolerance in Anopheles gambiae form Kenyan villages using permethrin-impregnated nets. Med Vet Entomol. 1999;13(3):239-244. 62. Brogdon WG, McALLister JC, Corwin AM, Cordon-Rosales C. Independent selection of multiple mechanisms for pyrethroid resistance in Fuatemalan Anopheles albimanus (Diptera: Culicidae). J Econ Entomol.1999;92(2):298-302. 63. Saavedra-Rodriguez K, Suarez AF, Salas IF, et al. Transcription of detoxification genes after permethrin selection in the mosquito Aedes aegypti. Insect Mol Biol. 21(1):61-77. 64. David JP. Boyer R. Mesneau A. Ball A. Ranson H. Dauphin-Villemant C. Involvement of cytochrome P450 monooxygenases in the response of mosquito larvae to dietary plant xenobiotics. Insect Biochemistry and Molecular Biology. 2006;36 (5)410–420. 65. Charoensilp G. Vararattanavech A. Leelapat P. Prapanthadara L. Ketterman AJ. Characterization of Anopheles dirus Glutathione Transferase Epsilon 4. Science Asia. 2006 (32): 159-165. 66. Gong MQ, Gu Y, Hu XB, et al. Cloning and overexpression of CYP6F1, a cytochrome P450 gene, from deltamethrin-resistant Culex pipiens pallens. Acta Biochim Biophys Sin (Shanghai). 2005;37(5):317-326. 67. Bingham G, Strode C, Tran L, Khoa PT, Jamet HP. Can piperonyl butoxide enhance the efficacy of pyrethroids against pyrethroid-resistant Aedes aegypti? Trop Med Int Health. 16(4):492-500. 68. Hsia WT, Wu PF, Lin C, Yang YC. The influence of sprayers and formulations of insecticide droplet subsidence. Formosan Entomol. 2010(30): 51-63; https://ir.cnu.edu.tw/handle/310902800/26127Test; https://ir.cnu.edu.tw/bitstream/310902800/26127/-1/index.htmlTest