يعرض 1 - 3 نتائج من 3 نتيجة بحث عن '"PROSTANOIDS"', وقت الاستعلام: 0.70s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المؤلفون: 江柏政, Chiang, Po-Cheng

    المساهمون: 顧記華, 臺灣大學:藥學研究所

    وصف الملف: 2149688 bytes; application/pdf

    العلاقة: 參考文獻 1. Aden, D. P., Fogel, A., Plotkin, S., Damjanov, I., and Knowles, B. B. Controlled synthesis of HBsAg in a differentiated human liver carcinoma-derived cell line. Nature, 282: 615-616, 1979. 2. Bader, T., Yamada, Y., and Ankel, H. Antiviral activity of the prostanoid clavulone II against vesicular stomatitis virus. Antiviral Res., 16: 341-355, 1991. 3. Shen, Y. C., Cheng, Y. B., Lin, Y. C., Guh, J. H., Teng, C. M., and Ko, C. L. New prostanoids with cytotoxic activity from Taiwanese octocoral Clavularia viridis. J. Nat. Prod., 67: 542-546, 2004. 4. Duh, C. Y., El Gamal, A. A., Chu, C. J., Wang, S. K., and Dai, C. F. New cytotoxic constituents from the Formosan soft corals Clavularia viridis and Clavularia violacea. J. Nat. Prod., 65: 1535-1539, 2002. 5. Watanabe, K., Sekine, M., Takahashi, H., and Iguchi, K. New halogenated marine prostanoids with cytotoxic activity from the Okinawan soft coral Clavularia viridis. J. Nat. Prod., 64: 1421-1425, 2001. 6. Iguchi, K., Kaneta, S., Mori, K., and Yamada, Y. A new marine epoxy prostanoid with an antiproliferative activity from the stolonifer Clavularia viridis Quoy and Gaimard. Chem. Pharm. Bull. (Tokyo), 35: 4375-4376, 1987. 7. Honda, A., Mori, Y., Iguchi, K., and Yamada, Y. Antiproliferative and cytotoxic effects of newly discovered halogenated coral prostanoids from the Japanese stolonifer Clavularia viridis on human myeloid leukemia cells in culture. Mol. Pharmacol., 32: 530-535, 1987. 8. Honda, A., Yamamoto, Y., Mori, Y., Yamada, Y., and Kikuchi, H. Antileukemic effect of coral-prostanoids clavulones from the stolonifer Clavularia viridis on human myeloid leukemia (HL-60) cells. Biochem. Biophys. Res. Commun., 130: 515-523, 1985. 9. Iwashima, M., Okamoto, K., Konno, F., and Iguchi, K. New marine prostanoids from the okinawan soft coral, clavularia viridis. J. Nat. Prod., 62: 352-354, 1999. 10. Watanabe, K., Sekine, M., and Iguchi, K. Isolation and structures of new halogenated prostanoids from the Okinawan soft coral Clavularia viridis. J. Nat. Prod., 66: 1434-1440, 2003. 11. Suzuki, M., Watanabe, K., Fujiwara, S., Kurasawa, T., Wakabayashi, T., Tsuzuki, M., Iguchi, K., and Yamori, T. Isolation of peridinin-related norcarotenoids with cell growth-inhibitory activity from the cultured dinoflagellate of Symbiodinium sp., a symbiont of the Okinawan soft coral Clavularia viridis, and analysis of fatty acids of the dinoflagellate. Chem. Pharm. Bull.(Tokyo), 51: 724-727, 2003. 12. Yamada, Y. [Studies on discovery and synthesis of bioactive marine organic molecules]. Yakugaku Zasshi, 122: 727-743, 2002. 13. Di Giacomo, M., Leggeri, P., Papeo, G., Pirillo, D., and Traverso, G. Synthesis of a 11-deoxyprostanoid in the area of preclavulones: (+,-)-8,12-trans- (5Z-14Z)-9-oxo-prosta-5,14-dienoic acid from 2-allyl-2-cyclopenten-1-one. Farmaco, 47: 379-385, 1992. 14. Kerr, J. F., Wyllie, A. H., and Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer, 26: 239-257, 1972. 15. Walker, N. I., Harmon, B. V., Gobe, G. C., and Kerr, J. F. Patterns of cell death. Methods Achiev. Exp. Pathol., 13: 18-54, 1988. 16. Wyllie, A. H., Kerr, J. F., and Currie, A. R. Cell death: the significance of apoptosis. Int. Rev. Cytol., 68: 251-306, 1980. 17. Kass, G. E., Eriksson, J. E., Weis, M., Orrenius, S., and Chow, S. C. Chromatin condensation during apoptosis requires ATP. Biochem. J., 318 ( Pt 3): 749-752, 1996. 18. Levee, M. G., Dabrowska, M. I., Lelli, J. L., Jr., and Hinshaw, D. B. Actin polymerization and depolymerization during apoptosis in HL-60 cells. Am. J. Physiol, 271: C1981-C1992, 1996. 19. Savill, J. S., Wyllie, A. H., Henson, J. E., Walport, M. J., Henson, P. M., and Haslett, C. Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutrophil leads to its recognition by macrophages. J. Clin. Invest, 83: 865-875, 1989. 20. Cory, S. and Adams, J. M. The Bcl2 family: regulators of the cellular life-or-death switch. Nat. Rev. Cancer, 2: 647-656, 2002. 21. Tsujimoto, Y. and Shimizu, S. The voltage-dependent anion channel: an essential player in apoptosis. Biochimie, 84: 187-193, 2002. 22. Zong, W. X., Lindsten, T., Ross, A. J., MacGregor, G. R., and Thompson, C. B. BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev., 15: 1481-1486, 2001. 23. Wang, K., Yin, X. M., Chao, D. T., Milliman, C. L., and Korsmeyer, S. J. BID: a novel BH3 domain-only death agonist. Genes Dev., 10: 2859-2869, 1996. 24. Eskes, R., Desagher, S., Antonsson, B., and Martinou, J. C. Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol. Cell Biol., 20: 929-935, 2000. 25. Desagher, S. and Martinou, J. C. Mitochondria as the central control point of apoptosis. Trends Cell Biol., 10: 369-377, 2000. 26. Esposti, M. D. The roles of Bid. Apoptosis, 7: 433-440, 2002. 27. Shimizu, S. and Tsujimoto, Y. Proapoptotic BH3-only Bcl-2 family members induce cytochrome c release, but not mitochondrial membrane potential loss, and do not directly modulate voltage-dependent anion channel activity. Proc. Natl. Acad. Sci. U.S. A., 97: 577-582, 2000. 28. Adams, J. M. and Cory, S. The Bcl-2 protein family: Arbiters of cell survival. Science, 281: 1322-1326, 1998. 29. Martinou, J. C., Desagher, S., and Antonsson, B. Cytochrome c release from mitochondria: all or nothing. Nature Cell Biology, 2: E41-E43, 2000. 30. Kelekar, A. and Thompson, C. B. Bcl-2-family proteins: the role of the BH3 domain in apoptosis. Trends Cell Biol., 8: 324-330, 1998. 31. Eskes, R., Desagher, S., Antonsson, B., and Martinou, J. C. Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol. Cell. Biol., 20: 929-935, 2000. 32. Kaufmann, S. H. and Hengartner, M. O. Programmed cell death: alive and well in the new millennium. Trends Cell Biol., 11: 526-534, 2001. 33. Tanaka, Y., Yoshihara, K., Tsuyuki, M., and Kamiya, T. Apoptosis induced by adenosine in human leukemia HL-60 cells. Exp. Cell Res., 213: 242-252, 1994. 34. Pan, G., O'Rourke, K., and Dixit, V. M. Caspase-9, Bcl-XL, and Apaf-1 form a ternary complex. J. Biol. Chem., 273: 5841-5845, 1998. 35. Samejima, K. and Earnshaw, W. C. ICAD/DFF regulator of apoptotic nuclease is nuclear. Exp. Cell Res., 243: 453-459, 1998. 36. Van de, C. M., Declercq, W., Van, d. b., I, Fiers, W., and Vandenabeele, P. The proteolytic procaspase activation network: an in vitro analysis. Cell Death Differ., 6: 1117-1124, 1999. 37. Shi, Y. G. Mechanisms of caspase activation and inhibition during apoptosis. Molecular Cell, 9: 459-470, 2002. 38. Thornberry, N. A. and Lazebnik, Y. Caspases: Enemies within. Science, 281: 1312-1316, 1998. 39. Hengartner, M. O. The biochemistry of apoptosis. Nature, 407: 770-776, 2000. 40. Sakahira, H., Enari, M., and Nagata, S. Functional differences of two forms of the inhibitor of caspase-activated DNase, ICAD-L, and ICAD-S. J. Biol. Chem., 274: 15740-15744, 1999. 41. Zheng, T. S., Schlosser, S. F., Dao, T., Hingorani, R., Crispe, I. N., Boyer, J. L., and Flavell, R. A. Caspase-3 controls both cytoplasmic and nuclear events associated with Fas-mediated apoptosis in vivo. Proc. Natl. Acad.Sci. U. S. A., 95: 13618-13623, 1998. 42. Sakahira, H., Enari, M., and Nagata, S. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature, 391: 96-99, 1998. 43. Bossy-Wetzel, E. and Green, D. R. Caspases induce cytochrome c release from mitochondria by activating cytosolic factors. J. Biol. Chem., 274: 17484-17490, 1999. 44. Adams, J. M. and Cory, S. Apoptosomes: engines for caspase activation. Curr. Opin. Cell Biol., 14: 715-720, 2002. 45. Morishima, N., Nakanishi, K., Takenouchi, H., Shibata, T., and Yasuhiko, Y. An endoplasmic reticulum stress-specific caspase cascade in apoptosis - Cytochrome c-independent activation of caspase-9 by caspase-12. J. Biol. Chem., 277: 34287-34294, 2002. 46. Acehan, D., Jiang, X., Morgan, D. G., Heuser, J. E., Wang, X., and Akey, C. W. Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol. Cell, 9: 423-432, 2002. 47. Bratton, S. B., Walker, G., Srinivasula, S. M., Sun, X. M., Butterworth, M., Alnemri, E. S., and Cohen, G. M. Recruitment, activation and retention of caspases-9 and -3 by Apaf-1 apoptosome and associated XIAP complexes. EMBO J., 20: 998-1009, 2001. 48. Datta, R., Oki, E., Endo, K., Biedermann, V., Ren, J., and Kufe, D. XIAP regulates DNA damage-induced apoptosis downstream of caspase-9 cleavage. J. Biol. Chem., 275: 31733-31738, 2000. 49. Riedl, S. J., Renatus, M., Schwarzenbacher, R., Zhou, Q., Sun, C., Fesik, S. W., Liddington, R. C., and Salvesen, G. S. Structural basis for the inhibition of caspase-3 by XIAP. Cell, 104: 791-800, 2001. 50. Chai, J., Shiozaki, E., Srinivasula, S. M., Wu, Q., Datta, P., Alnemri, E. S., Shi, Y., and Dataa, P. Structural basis of caspase-7 inhibition by XIAP. Cell, 104: 769-780, 2001. 51. Wang, X. The expanding role of mitochondria in apoptosis. Genes Dev., 15: 2922-2933, 2001. 52. Wang, X. Z., Lawson, B., Brewer, J. W., Zinszner, H., Sanjay, A., Mi, L. J., Boorstein, R., Kreibich, G., Hendershot, L. M., and Ron, D. Signals from the stressed endoplasmic reticulum induce C/EBP-homologous protein (CHOP/GADD153). Mol. Cell Biol., 16: 4273-4280, 1996. 53. Wu, G., Chai, J. J., Suber, T. L., Wu, J. W., Du, C. Y., Wang, X. D., and Shi, Y. G. Structural basis of IAP recognition by Smac/DIABLO. Nature, 408: 1008-1012, 2000. 54. Ekert, P. G., Silke, J., Hawkins, C. J., Verhagen, A. M., and Vaux, D. L. DIABLO promotes apoptosis by removing MIHA/XIAP from processed caspase 9. J. Cell Biol., 152: 483-490, 2001. 55. Ye, H., Cande, C., Stephanou, N. C., Jiang, S., Gurbuxani, S., Larochette, N., Daugas, E., Garrido, C., Kroemer, G., and Wu, H. DNA binding is required for the apoptogenic action of apoptosis inducing factor. Nat. Struct. Biol., 9: 680-684, 2002. 56. Hong, S. J., Dawson, T. M., and Dawson, V. L. Nuclear and mitochondrial conversations in cell death: PARP-1 and AIF signaling. Trends Pharmacol. Sci., 25: 259-264, 2004. 57. Cande, C., Vahsen, N., Garrido, C., and Kroemer, G. Apoptosis-inducing factor (AIF): caspase-independent after all. Cell Death Differ., 11: 591-595, 2004. 58. Orrenius, S., Zhivotovsky, B., and Nicotera, P. Regulation of cell death: the calcium-apoptosis link. Nat. Rev. Mol. Cell Biol., 4: 552-565, 2003. 59. Berridge, M. J., Lipp, P., and Bootman, M. D. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol., 1: 11-21, 2000. 60. Berridge, M. J. and Irvine, R. F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature, 312: 315-321, 1984. 61. Berridge, M. J. Inositol trisphosphate and calcium signalling. Nature, 361: 315-325, 1993. 62. Kass, G. E. and Orrenius, S. Calcium signaling and cytotoxicity. Environ. Health Perspect., 107 Suppl 1: 25-35, 1999. 63. Hajnoczky, G., Davies, E., and Madesh, M. Calcium signaling and apoptosis. Biochem. Biophys. Res. Commun., 304: 445-454, 2003. 64. Breckenridge, D. G., Germain, M., Mathai, J. P., Nguyen, M., and Shore, G. C. Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene, 22: 8608-8618, 2003. 65. Nakagawa, T. and Yuan, J. Y. Cross-talk between two cysteine protease families: Activation of caspase-12 by calpain in apoptosis. J. Cell Biol., 150: 887-894, 2000. 66. Szegezdi, E., Fitzgerald, U., and Samali, A. Caspase-12 and ER-stress- mediated apoptosis: the story so far. Ann. N. Y. Acad. Sci., 1010: 186-194, 2003. 67. Hetz, C., Russelakis-Carneiro, M., Maundrell, K., Castilla, J., and Soto, C. Caspase-12 and endoplasmic reticulum stress mediate neurotoxicity of pathological prion protein. EMBO J., 22: 5435-5445, 2003. 68. Kalai, M., Lamkanfi, M., Denecker, G., Boogmans, M., Lippens, S., Meeus, A., Declercq, W., and Vandenabeele, P. Regulation of the expression and processing of caspase-12. J. Cell Biol., 162: 457-467, 2003. 69. Kouroku, Y., Fujita, E., Jimbo, A., Kikuchi, T., Yamagata, T., Momoi, M. Y., Kominami, E., Kuida, K., Sakamaki, K., Yonehara, S., and Momoi, T. Polyglutamine aggregates stimulate ER stress signals and caspase-12 activation. Hum. Mol. Genet., 11: 1505-1515, 2002. 70. Yoneda, T., Imaizumi, K., Oono, K., Yui, D., Gomi, F., Katayama, T., and Tohyama, M. Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J. Biol. Chem., 276: 13935-13940, 2001. 71. Bitko, V. and Barik, S. An endoplasmic reticulum-specific stress-activated caspase (caspase-12) is implicated in the apoptosis of A549 epithelial cells by respiratory syncytial virus. J. Cell Biochem., 80: 441-454, 2001. 72. Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B. A., and Yuan, J. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature, 403: 98-103, 2000. 73. Memartino, G. N. and Croall, D. E. Purification and characterization of a protein inhibitor of calcium-dependent proteases from rat liver. Arch. Biochem. Biophys., 232: 713-720, 1984. 74. DeMartino, G. N. and Croall, D. E. Purification and characterization of a calcium-dependent protease from rat liver. Biochemistry, 22: 6287-6291, 1983. 75. Saido, T. C., Sorimachi, H., and Suzuki, K. Calpain: new perspectives in molecular diversity and physiological-pathological involvement. FASEB J., 8: 814-822, 1994. 76. Croall, D. E. and DeMartino, G. N. Calcium-activated neutral protease (calpain) system: structure, function, and regulation. Physiol Rev., 71: 813-847, 1991. 77. Croall, D. E. and DeMartino, G. N. Comparison of two calcium-dependent proteinases from bovine heart. Biochim. Biophys. Acta, 788: 348-355, 1984. 78. Fujita, E., Kouroku, Y., Jimbo, A., Isoai, A., Maruyama, K., and Momoi, T. Caspase-12 processing and fragment translocation into nuclei of tunicamycin-treated cells. Cell Death Differ., 9: 1108-1114, 2002. 79. Lamkanfi, M., Kalai, M., and Vandenabeele, P. Caspase-12: an overview. Cell Death Differ., 11: 365-368, 2004. 80. Hitomi, J., Katayama, T., Taniguchi, M., Honda, A., Imaizumi, K., and Tohyama, M. Apoptosis induced by endoplasmic reticulum stress depends on activation of caspase-3 via caspase-12. Neurosci. Lett., 357: 127-130, 2004. 81. Barone, M. V., Crozat, A., Tabaee, A., Philipson, L., and Ron, D. CHOP (GADD153) and its oncogenic variant, TLS-CHOP, have opposing effects on the induction of G1/S arrest. Genes Dev., 8: 453-464, 1994. 82. Tombal, B., Weeraratna, A. T., Denmeade, S. R., and Isaacs, J. T. Thapsigargin induces a calmodulin/calcineurin-dependent apoptotic cascade responsible for the death of prostatic cancer cells. Prostate, 43: 303-317, 2000. 83. McCullough, K. D., Martindale, J. L., Klotz, L. O., Aw, T. Y., and Holbrook, N. J. Gadd153 sensitizes cells to endoplasmic reticulum stress by down- regulating Bcl2 and perturbing the cellular redox state. Mol. Cell Biol., 21: 1249-1259, 2001. 84. Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S., and Boyd, M. R. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst., 82: 1107-1112, 1990. 85. Skelly, J., Copeland, J. A., Howard, C. R., and Zuckerman, A. J. Hepatitis B surface antigen produced by a human hepatoma cell line. Nature, 282: 617-618, 1979. 86. Fukushima, M. Prostaglandin J2--anti-tumour and anti-viral activities and the mechanisms involved. Eicosanoids, 3: 189-199, 1990. 87. Chen, S. Y., Lu, F. J., Gau, R. J., Yang, M. L., and Huang, T. S. 15-Deoxy-delta12,14-prostaglandin J2 induces apoptosis of a thyroid papillary cancer cell line (CG3 cells) through increasing intracellular iron and oxidative stress. Anticancer Drugs, 13: 759-765, 2002. 88. Santoro, M. G., Garaci, E., and Amici, C. Prostaglandins with antiproliferative activity induce the synthesis of a heat shock protein in human cells. Proc. Natl. Acad. Sci. U. S. A., 86: 8407-8411, 1989. 89. Gorospe, M., Wang, X., Guyton, K. Z., and Holbrook, N. J. Protective role of p21 (Waf1/Cip1) against prostaglandin A2-mediated apoptosis of human colorectal carcinoma cells. Mol. Cell Biol., 16: 6654-6660, 1996. 90. Honda, A., Mori, Y., Iguchi, K., and Yamada, Y. Structure requirements for antiproliferative and cytotoxic activities of marine coral prostanoids from the Japanese stolonifer Clavularia viridis against human myeloid leukemia cells in culture. Prostaglandins, 36: 621-630, 1988. 91. Fitzpatrick, F. A. and Wynalda, M. A. Albumin-catalyzed metabolism of prostaglandin D2. Identification of products formed in vitro. J. Biol. Chem., 258: 11713-11718, 1983. 92. Haraguchi, T., Ding, D. Q., Yamamoto, A., Kaneda, T., Koujin, T., and Hiraoka, Y. Multiple-color fluorescence imaging of chromosomes and microtubules in living cells. Cell Struct. Funct., 24: 291-298, 1999. 93. Ho, Y. S., Tsai, P. W., Yu, C. F., Liu, H. L., Chen, R. J., and Lin, J. K. Ketoconazole-induced apoptosis through P53-dependent pathway in human colorectal and hepatocellular carcinoma cell lines. Toxicol. Appl. Pharmacol., 153: 39-47, 1998. 94. Kurosu, K., Saeki, M., and Kamisaki, Y. Formation of high molecular weight caspase-3 complex in neonatal rat brain. Neurochem. Int., 44: 199-204, 2004. 95. Song, Q., Kuang, Y., Dixit, V. M., and Vincenz, C. Boo, a novel negative regulator of cell death, interacts with Apaf-1. EMBO J., 18: 167-178, 1999. 96. Schmitt, E., Paquet, C., Beauchemin, M., and Bertrand, R. Bcl-xES, a BH4- and BH2-containing antiapoptotic protein, delays Bax oligomer formation and binds Apaf-1, blocking procaspase-9 activation. Oncogene, 23: 3915-3931, 2004. 97. Hu, Y., Benedict, M. A., Wu, D., Inohara, N., and Nunez, G. Bcl-XL interacts with Apaf-1 and inhibits Apaf-1-dependent caspase-9 activation. Proc. Natl. Acad. Sci.U. S. A., 95: 4386-4391, 1998. 98. Moriishi, K., Huang, D. C., Cory, S., and Adams, J. M. Bcl-2 family members do not inhibit apoptosis by binding the caspase activator Apaf-1. Proc. Natl. Acad. Sci.U. S. A., 96: 9683-9688, 1999. 99. Conus, S., Rosse, T., and Borner, C. Failure of Bcl-2 family members to interact with Apaf-1 in normal and apoptotic cells. Cell Death Differ., 7: 947-954, 2000. 100. Newmeyer, D. D., Bossy-Wetzel, E., Kluck, R. M., Wolf, B. B., Beere, H. M., and Green, D. R. Bcl-xL does not inhibit the function of Apaf-1. Cell Death Differ., 7: 402-407, 2000. 101. Minta, A., Kao, J. P., and Tsien, R. Y. Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J. Biol. Chem., 264: 8171-8178, 1989. 102. Eberhard, M. and Erne, P. Kinetics of calcium binding to fluo-3 determined by stopped-flow fluorescence. Biochem. Biophys. Res. Commun., 163: 309-314, 1989. 103. Michelangeli, F. Fluo-3 an ideal calcium indicator for measuring calcium fluxes in SR and ER. Biochem. Soc. Trans., 19: 183S, 1991. 104. Boehning, D., Patterson, R. L., Sedaghat, L., Glebova, N. O., Kurosaki, T., and Snyder, S. H. Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nat. Cell Biol., 5: 1051-1061, 2003.; zh-TW; http://ntur.lib.ntu.edu.tw/handle/246246/55638Test; http://ntur.lib.ntu.edu.tw/bitstream/246246/55638/1/ntu-93-R91423015-1.pdfTest

  2. 2

    المؤلفون: 邱靜儀

    المساهمون: 吳文桂

    الوقت: 46

    وصف الملف: 155 bytes; text/html

    العلاقة: 1. Hodges, S.J., Agbaji, A.S., Harvey, A.L. and Hider, R.C. (1987) Cobra cardiotoxins. Purification, effects on skeletal muscle and structure/activity relationships. Eur. J. Biochem. 165, 373-383. 2. Tzeng, W.F. and Chen, Y.H. (1988) Suppression of snake-venom cardiotoxin-induced cardiomyocyte degeneration by blockage of Ca2+ influx or inhibition of non-lysosomal proteinases. Biochem. J. 256, 89-95. 3. Zusman, N., Miklas, T.M., Graves, T., Dambach, G.E. and Hudson, R.A. (1984) On the interaction of cobra venom protein cardiotoxins with erythrocytes. Biochem. Biophys. Res. Commun. 124, 629-636. 4. Grainger, D.W., Reichert, A., Ringsdorf, H., Salesse, C., Davies, D.E. and Lloyd, J.B. (1990) Biochim. Biophys. Acta 1022, 146-154. 5. Jain, M.K., Ranadive, G., Yu, B.Z. and Verheij, H.M. (1991) Interfacial catalysis by phospholipase A2: monomeric enzyme is fully catalytically active at the bilayer interface. Biochemistry 30, 7330-7340. 6. Mirsky, V.M. (1994) Effect of the lipid hydrolysis products on the phospholipase A2 action towards lipid monolayer. Chem. Phys. Lipid 70, 75-81. 7. Stahelin, R.V. and Cho W. (2001) Differential roles of ionic, aliphatic, and aromatic residues in membrane-protein interactions: a surface plasmon resonance study on phospholipases A2. Biochemistry 40, 4672-4678. 8. Sumandea, M., Das, S., Sumandea, C. and Cho, W. (1999) Roles of aromatic residues in high interfacial activity of Naja naja atra phospholipase A2. Biochemistry 38, 16290-16297. 9. Hanahan, D.J. (1986) Platelet activating factor: a biologically active phosphoglyceride. Annu. Rev. Biochem. 55, 483-509. 10. Lambeau, G. and Lazdunski, M. (1999) Receptors for a growing family of secreted phospholipases A2. Trends. Pharmaco.l Sci. 20, 162-170. 11. F.F. Davidson, E.A. Dennis, (1990)J. Mol. Evol. 31, 228- 238. 12. R.L. Heinrikson, E.T. Krueger, P.S. Keim, (1977) J. Biol. Chem.252, 4913-4921. 13. M.J. Dufton, R.C. Hider, Eur. J. (1983)Biochem. 137, 545- 551. 14. David A. Six, Edward A. (2000) Dennis The expanding superfamily of phospholipa Biochimica et Biophysica Acta 1488, 1-19 15. Zimmerberg J, Chernomordik LV. (2005) Neuroscience. Synaptic membranes bend to the will of a neurotoxin.Science. 310, 1626-1627. 16. Pan, F.M., Chang, W.C. and Chiou, S.H. (1994) cDNA and protein sequences coding for the precursor of phospholipase A2 from Taiwan cobra, Naja naja atra. Biochem. Mol. Biol. Int. 33, 187-194. 17. Hanahan, D.J.(1986) Platelet activating factor: a biologically active phosphoglyceride. Annu. Rev. Biochem. 55, 483-509. 18. Lambeau, G. and Lazdunski, M. (1999) Receptors for a growing family of secreted phospholipases A2. Trends. Pharmaco.l Sci. 20, 162-170. 19. John, W. and Sons.(1997)Venom Phospholipase A2 Enzymes:structure, function and mechanism. 20. van den Bergh, C.J., Slotboom, A.J., Verheij, H.M., de Haas, G.H. (1988) The role of aspartic acid-49 in the active site of phospholipase A2. A site-specific mutagenesis study of porcine pancreatic phospholipase A2 and the rationale of the enzymatic activity of [lysine49]phospholipase A2 from Agkistrodon piscivorus piscivorus' venom. Eur. J. Biochem. 176, 353-357. 21. Ward, R.J., Chioato, L., de Oliveira, A.H., Ruller, R., Sa, J.M. (2002) Active-site mutagenesis of a Lys49-phospholipase A2: biological and membrane-disrupting activities in the absence of catalysis. Biochem. J. 362, 89-96. 22. Shimohigashi, Y., Tani, A., Yamaguchi, Y., Ogawa, T., Ohno, M. (1996) Discriminatory recognition of membrane phospholipids by lysine-49- phospholipases A2 from Trimeresurus flavoviridis venom. J. Mol. Recognit. 9, 639-643. 23. Zuliani, J.P., Fernandes, C.M., Zamuner, S.R., Gutierrez, J.M., Teixeira, C.F. (2005) Inflammatory events induced by Lys-49 and Asp-49 phospholipases A2 isolated from Bothrops asper snake venom: role of catalytic activity. Toxicon. 45, 335-346. 24. Brian J. Bahnson(2005) Structure, function and interfacial allosterism in phospholipase A2: insight from the anion-assisted dimerq Archives of Biochemistry and Biophysics 433, 96–106 25 Hazen, S.L. and Gross, R.W. (1991) ATP-dependent regulation of rabbit myocardial cytosolic calcium-independent phospholipase A2. J. Biol. Chem. 266, 14526-14534. 26. Rao, C.S. and Damodaran, S. (2004) Surface pressure dependence of phospholipase A2 activity in lipid monolayers is linked to interfacial water activity. Colloids Surf. B. Biointerfaces. 34, 197-204. 27. Cajal, Y., Berg, O.G. and Jain, M.K.(2004) Origins of delays in monolayer kinetics: phospholipase A2 paradigm. Biochemistry 43, 9256-9264. 28. Slotboom, A.J. and de Haas, G.H. (1975) Specific transformations at the N-terminal region of phospholipase A2. Biochemistry 14, 5394-5399. 29. Waite, M., (1966) Biochemistry of lipid :lipoprotein and membrane, p201-214 Plenum Press, New York 30. Burack, W.R., Dibble, A.R., Allietta, M.M. and Biltonen, R.L. (1997) Changes in vesicle morphology induced by lateral phase separation modulate phospholipase A2 activity. Biochemistry 36, 10551-10557. 31. Reichert, A., Ringsdorf, H. and Wagenknecht, A. (1992) Spontaneous domainformation of phospholipase A2 at interfaces: fluorescence microscopy of the interaction of phospholipase A2 with mixed monolayers of lecithin, lysolecithin and fatty acid. Biochim. Biophys. Acta 1106, 178-188. 32. Bollinger, J.G., Diraviyam, K., Ghomashchi, F., Murray, D. and Gelb, M.H. (2004) Interfacial binding of bee venom secreted phospholipase A2 to membranes occurs predominantly by a nonelectrostatic mechanism. Biochemistry 43, 13293-13304. 33. 洪水根,汪德耀(1997)膜分子生物學,水產出版社 34. Maget-Dana, R. (1999) The monolayer technique: a potent tool for studying the interfacial properties of antimicrobial and membrane-lytic peptides and their interactions with lipid membranes. Biochim. Biophys. Acta 1462, 109-140. 35. Vollhardt, D., Fainerman, V.B. (2000) Penetration of dissolved amphiphiles into two-dimensional aggregating lipid monolayers. Adv. Colloid Interface Sci. 86, 103-151. 36. Mukhopadhyay, S. and Cho, W. (1996) Interactions of annexin V with phospholipidmonolayers. Biochim. Biophys. Acta 1279, 58-62. 37. Petty, and M.C. (1996) Langmuir-Blodgett films. An introduction. Cambridge University press 38. Bar, L.K., Barenholz, Y. and Thompson, T.E. (1997) Effect of sphingomyelin composition on the phase structure of phosphatidylcholine-sphingomyelin bilayers. Biochemistry 36, 2507-2516. 39. Rintoul, D.A. and Welti, R. (1989) Thermotropic behavior of mixtures of glycosphingolipids and phosphatidylcholine: effect of monovalent cations on sulfatide and galactosylceramide. Biochemistry 28, 26-31. 40. Kampf, J.P., Frank, C.W., Malmstrom, E.E. and Hawker, C.J. (1999) Adaptation of bulk constitutive equations to insoluble monolayer collapse at the air-water interface. Science 283, 1730-1733. 41. Doisy, A., Proust, J.E., Ivanova, Tz., Panaiotov, I. And Dubois, J.L. (1996) Phospholipid/Drug interactions in liposomes studied by rheological properties of monolayers. Langmuir 12, 6098-6103 42. Mirsky, V.M. (1994) Effect of the lipid hydrolysis products on the phospholipase A2 action towards lipid monolayer. Chem. Phys. Lipids 70, 75-81. 43. Phillips, M.C., Graham, D.E. and Hauser, H. (1975) Lateral compressibility and penetration into phospholipid monolayers and bilayer membranes. Nature 254, 154-156. 44. Brezesinski, G. and Mohwald, H. (2003) Langmuir monolayers to study interactions at model membrane surfaces. Adv. Colloid Interface Sci. 100-102, 563-584. 45. Blume, A. (1979) A comparative study of the phase transitions of phospholipid bilayers and monolayers. Biochim. Biophys. Acta 557, 32-44. 46. Davies, R.J. and Jones, M.N. (1992) The thermal behaviour of phosphatidylcholine-glycophorin monolayers in relation to monolayer and bilayer internal pressure. Biochim. Biophys. Acta 1103, 8-12. 47. Surewicz, W.K., Mantsch, H.H. and Chapman, D. (1993) Determination of protein secondary structure by Fourier transform infrared spectroscopy: a critical assessment. Biochemistry 32, 389-394. 48. Surewicz, W.K., Stepanik, T.M., Szabo, A.G. and Mantsch, H.H. (1988) Lipid-induced changes in the secondary structure of snake venom cardiotoxins. J. Biol. Chem. 263, 786-790. 49. Forouhar, F., Huang, W.N., Liu, J.H., Chien, K.Y., Wu, W.G. and Hsiao, C.D. (2003) Structural Basis of Membrane-induced Cardiotoxin A3 Oligomerization. J. Biol. Chem. 278, 21980-21988. 50. Tatulian, S.A., Biltonen, R.L. and Tamm, L.K. (1997) Structural changes in secretory phospholipase A2 induced by membrane binding: a clue to interfacial activation? J. Mol. Biol. 268, 809-815 51. Lin, Y.H., Huang, W.N., Lee, S.C. and Wu, W.G. (2000) Heparin reduces the alpha-helical content of cobra basic phospholipase A(2) and promotes its complex formation. Int. J. Biol. Macromol. 27, 171-176. 52. Goormaghtigh, E., Raussens, V., and Ruysschaert, J.M. (1999) Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes. Biochim. Biophys. Acta 1422, 105-185. 53. Harrick, N.J.(1979) Internal reflection spectroscopy. Ossining, NewYork. 54. Pan, Y.H., Epstein, T.M., Jain, M.K. and Bahnson, B.J. (2001) Five coplanar anion binding sites on one face of phospholipase A2: relationship to interface binding. Biochemistry 40, 609-617. 55. Yokoyama, S. and Kezdy, F.J. (1991) Monolayers of long chain lecithins at the air/water interface and their hydrolysis by phospholipase A2. J. Biol. Chem. 266, 4303-4308. 56. Maloney, K.M., Grandbois, M., Grainger, D.W., Salesse, C., Lewis, K.A. and Roberts. M.F. (1995) Phospholipase A2 domain formation in hydrolyzed asymmetric phospholipid monolayers at the air/water interface. Biochim. Biophys. Acta 1235, 395-405. 57. Grandbois, M., Desbat, B. and Salesse, C. (2000) Monitoring of phospholipid monolayer hydrolysis by phospholipase A2 by use of polarization-modulated Fourier transform infrared spectroscopy. Biophys. Chem. 88, 127-135. 58. Shinji YokoyamaS and F. J. Kezdyg (1976) Comparative Studies of Lipase and Phospholipase A, Acting on Substrate Monolayers. The Journal of Biological Chemistry.251, 3128-3133.; http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/35396Test

  3. 3