Understanding mechanics and stress effects in RAINBOW and THUNDER stress-biased actuators

التفاصيل البيبلوغرافية
العنوان: Understanding mechanics and stress effects in RAINBOW and THUNDER stress-biased actuators
المؤلفون: Robert W. Schwartz, John Ballato, William D. Nothwang, Alison Jackson, Pitak Laoratanakul, Youngwoo Moon
المصدر: SPIE Proceedings.
بيانات النشر: SPIE, 2000.
سنة النشر: 2000
مصطلحات موضوعية: Stress (mechanics), Engineering, Piezoelectric coefficient, Thunder, business.industry, Residual stress, Equivalent circuit, Mechanics, Actuator, business, Piezoelectricity, Finite element method
الوصف: Rainbow and Thunder actuators constitute a family of "stress-biased" devices that display enhanced strain and load-bearingcapabilities in comparison to traditional flextensional devices. For both of these actuators, doming occurs during the coolingphase of the fabrication process to relieve thermal expansion mismatch between the metallic and piezoelectric layers.Accompanying dome formation is the development of a tensile stress within the surface region of the piezoelectric layer thatcan approach 400 MPa. This tensile stress affects the ferroelectric domain configuration and improves the 900 domain wallmovement within the surface region ofthe piezoelectric under an applied electric field. It has been reported that this effect isresponsible for the enhanced electromechanical performance of these devices. The results of the present study, however,suggest that in addition to stress, other mechanical and mass loading effects may also play a role in the enhanced performanceof these devices. Equivalent circuit and finite element modeling studies of these stress-biased actuators are reported, and inparticular, the effects of specimen geometry on internal stress in the piezoelectric layer are discussed. Finite element analysisshows that in the surface region of the piezoelectric, the highest tensile stresses are, in fact, predicted for those devices thatdisplay the greatest displacement performance; i.e., devices that have a piezoelectric layer that is approximately twice asthick as the "metallic" layer. However, equivalent circuit studies show that the highest predicted strains should also beobserved for samples with similar geometries yet this approach does not include stress effects. This implies that not onlystress, but also mass loading and other mechanical effects must also be considered in predicting optimum design geometries.Keywords: Rainbow actuator, Thunder actuator, equivalent circuit modeling, stress effects, fmite element modeling
تدمد: 0277-786X
الوصول الحر: https://explore.openaire.eu/search/publication?articleId=doi_________::211f166ba989ff5408b5f8fe8c855667Test
https://doi.org/10.1117/12.388220Test
رقم الانضمام: edsair.doi...........211f166ba989ff5408b5f8fe8c855667
قاعدة البيانات: OpenAIRE