دورية أكاديمية

Design and development of a liquids self emulsyfing drug delivery system of ibuprofen incorporated by the method adsorption by carriers in solids dosage forms ; Diseño y desarrollo de un sistema de entrega de fármaco autoemulsificable líquido de ibuprofeno incorporado por el método de adsorción por portador en una forma farmacéutica sólida (comprimidos)

التفاصيل البيبلوغرافية
العنوان: Design and development of a liquids self emulsyfing drug delivery system of ibuprofen incorporated by the method adsorption by carriers in solids dosage forms ; Diseño y desarrollo de un sistema de entrega de fármaco autoemulsificable líquido de ibuprofeno incorporado por el método de adsorción por portador en una forma farmacéutica sólida (comprimidos)
المؤلفون: Lopez, Anthony, Herazo, Katerine, Sotomayor, Reinaldo G.
المصدر: Revista Colombiana de Ciencias Químico-Farmacéuticas; Vol. 48 Núm. 3 (2019) ; Revista Colombiana de Ciencias Químico-Farmacéuticas; v. 48 n. 3 (2019) ; Revista Colombiana de Ciencias Químico-Farmacéuticas; Vol. 48 No. 3 (2019) ; 1909-6356 ; 0034-7418
بيانات النشر: Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Farmacia
سنة النشر: 2019
المجموعة: Universidad Nacional de Colombia: Portal de Revistas UN
مصطلحات موضوعية: Ibuprofen, solubility, self-emulsifying drug delivery system, ibuprofeno, solubilidad, sistemas de entrega de fármacos autoemulsificables
الوصف: Ibuprofen is one of the most used drugs and it’s indicated for anti-inflammatory therapies and pain, among other pathologies. However, this drug has a low and erratic bioavailability, due to its poor aqueous intrinsic solubility, which is categorized as class II in the Biopharmaceutical Classification System. The objective of this work was to develop, design and evaluate a self-emulsifying drug delivery system (SEDDS) to improve the solubility and dissolution speed of ibuprofen.Oils, co-solvents, surfactants and carriers were evaluated for their ability to improve the solubility of ibuprofen, self-emulsification ability, robustness at different pH levels and adsorption capacity. Coconut oil, Tween 80 and propylene glycol achieved a significant increase in the aqueous solubility of ibuprofen in a self-emulsification time of less than 2 minutes. Neusilin US2® was selected as carrier, resulting in a small granule of excellent fluidity, which allowed to obtain tablets that satisfactorily fulfilled the control tests according to the established specifications. The liquid and solid SEDDS are an advantageous and promising formulation alternative to improve the solubility of poorly soluble drugs according to the biopharmaceutical classification system, through their solubilization properties. ; El ibuprofeno es uno de los fármacos más utilizados e indicado para terapias antiinflamatorias, dolor, entre otras patologías. Sin embargo, este fármaco presenta una baja y errática biodisponibilidad, debido a la pobre solubilidad acuosa intrínseca del mismo, por lo cual esta categorizado como clase II en el sistema de clasificación biofarmacéutica. El objetivo de este trabajo fue desarrollar, diseñar y evaluar un sistema de entrega de fármaco autoemulsificable (SEDDS) para mejorar la solubilidad y velocidad de disolución de ibuprofeno.Aceites, cosolventes, tensioactivos y portadores porosos fueron evaluados por su capacidad de mejorar la solubilidad del ibuprofeno, habilidad de autoemulsificación, robustez en diferentes pH y ...
نوع الوثيقة: article in journal/newspaper
وصف الملف: application/pdf
اللغة: Spanish; Castilian
العلاقة: https://revistas.unal.edu.co/index.php/rccquifa/article/view/84960/74380Test; V. Nekkanti, J. Rueda, Z. Wang, G.V. Betageri, Comparative evaluation of proliposomes and self micro-emulsifying drug delivery system for improved oral bioavailability of nisoldipine, Int. J. Pharm., 505, 79 (2016). 2. P.P. Constantinides, Lipid microemulsion for improving dissolution and oral absorption: physical and bio pharmaceutical aspects, Pharm. Res., 12, 56 (1995). 3. G.L. Amidon, H. Lennernas, V.P. Shah, J.R. Crison, A theorical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability, Pharm. Res., 12, 413 (1995). 4. K.L. Christensen, G.P. Pedersen, H.G. Kristensen, Technical optimization of redispersible dry emulsions, Int. J. Pharm., 212, 195 (2001). 5. T.J. Wiegand, C.M. Vernetti, Nonsteriodal anti-inflammatory drug (NSAID) toxicity, Medscape, URL: http://emedicine.medscape.com/article/816117-overviewTest, consultado en diciembre de 2016. 6. J.M. Seager, C.J. Hawkey, ABC of the upper gastrointestinal tract: indigestion and non-steroidal anti-inflammatory drugs, BMJ, 323, 1236 (2001). 7. IMS Health Intelligence, 2005, Report N. º 360, URL: http://www.imshealth.com/vgn/images/portal/CIT_40000873/3/5/81567513i360_final.pdTest, consultado en agosto de 2018. 8. Y. Mehran, K. Briggs, C. Jankovski, A. Hawi, The “High Solubility” definition of the current FDA Guidance on Biopharmaceutical Classification System may be too strict for acidic drugs, Pharm. Res., 21, 293, (2004). 9. L. Yu, G.L. Amidon, J. Poli, H. Zhao, M. Mehta, Biopharmaceutics Classification System: The scientific basis for biowaiver extensions, Pharm. Res., 19, 921 (2002). 10. C.W. Pouton, Formulation of self-emulsifying drug delivery systems, Adv. Drug Deliv. Rev., 25, 47 (1997). 11. M. Górecki, M. Sosada, B. Pasker, M. Pająk, P. Fraś, Preparation of ibuprofen emulsions with rapeseed phospholipids and vegetable oils, Indian J. Pharm. Educ. Res., 50, 271 (2016). 12. V. Jannin, J. Musakhanian, D. Marchaud, Approaches for the development of solid and semi-solid lipid-based formulations, Adv. Drug Deliv. Rev., 60, 734 (2008). 13. S. Sharma, H. Bajaj, P. Bhardwaj, A.D. Sharma, R. Singh, Development and characterization of self-emulsifying drug delivery system of a poorly water soluble drug using natural oil, Acta Pol. Pharm., 69, 713 (2012). 14. S. Anuchatkidjaroen, T. Phaechamud, Injectable Surfactant included-virgin coconut oil with and without ibuprofen, Adv. Mater. Res., 581, 108 (2012). 15. P. Balakrishnan, B.J. Lee, D.H. Oh, J.O. Kim, M.J. Hong, J.P. Jee, J.A. Kim, B.K. Yoo, J.S. Woo, C.S. Yong, H.G. Choi, Enhanced oral bioavailability of dexibuprofen by a novel solid Self-emulsifying drug delivery system (SEDDS), Eur. J. Pharm. Biopharm., 72, 539 (2009). 16. M.A. Roni, R.U. Jalil, Comparative study of ibuprofen solubility in synthetic and natural lipid vehicles, Dhaka Univ. J. Pharm. Sci., 10, 65 (2011). 17. F.D. Gunstone, Fatty Acid and Lipid Chemistry, Springer-Science+ Business Media Dordrecht, Frimley, 1996, Vol 1, p. 205. 18. M. Lozano, D. Cordoba, M. Cordoba, Manual de tecnología farmacéutica, Elsevier, Barcelona, 2012, Vol 1, p.155. 19. K.P. Vishesh, Self-emulsifying drug delivery system, J. Pharm. Res. Opinion, 3, 80 (2011). 20. R.C. Rowe, P. Sheskey, M.E. Quinn, Handbook of Pharmaceutical Excipients, 6th ed., Pharmaceutical Press, Grayslake, 2009, p. 592. 21. C.W. Pouton, Lipid formulations for oral administration of drugs: non-emulsifying, self-emulsifying, and self-microemulsifying drug delivery systems, Eur. J. Pharm. Sci., 11, 93 (2000). 22. A. Nicolas, T.F. Vandamme, Nano-emulsions and micro-emulsions: Clarifications of the critical differences, Pharm. Res., 28, 978 (2011). 23. K. Balakumar, C.V. Raghavan, N.T. Selvan, S.M. Rahman, Self-emulsifying drug delivery system: Optimization and its prototype for various composition of oils, surfactants and co-surfactants, J. Pharm. Res., 6, 510 (2013). 24. Y. Ito, T. Kusawake, M. Ishida, R. Tawa, N. Shibata, K. Takada, Oral solid gentamicin preparation using emulsifier and adsorbent, J. Control Release, 105, 23 (2005). 25. S. Gumaste, S. Pawlak, D.M. Dalrymple, C.J. Nider, L.D. Trombetta, A.T.M. Serajuddin, Development of Solid SEDDS, IV: Effect of adsorbed lipid and surfactant on tableting properties and Surface Structure of different silicates, Pharm. Res., 30, 3170 (2013). 26. Farmacopea de los Estados Unidos de América 37/ Formulario Nacional 32 (USP/NF). United States Pharmacopeial Convention. MD, USA: Rockville, 2014, Vol.1, p.374. 27. M. Kazi, H. Al-Qami., F. Alanazi, Development of oral solid self-emulsifying lipid formulations of risperidone with improved in vitro dissolution and digestion, Eur. J. Pharm. Biopharm., 114 ,239 (2017). 28. Dissolution Methods. US. Food & Drug Administration. URL: https://www.accessdata.fda.gov/scripts/cder/dissolution/dspTest, consultado en julio de 2018 29. M. Piest, S. Gupta., A. Bernaerts, Lipid based smedds formulation of ibuprofen and phenylephrine for softgels, URL: https://biopharma-asia.com/technical-papers/lipid-based-smedds-formulation-ibuprofen-phenylephrine-softgelsTest/, consultado en abril de 2018. 30. Y. Cao, M. Marra, B.D. Anderson, Predictive relationships for the effects of triglyceride ester concentration and water uptake on solubility and partitioning of small molecules into lipid vehicles, J. Pharm. Sci., 93, 2768 (2004). 31. R.M. Watkinson, R.H. Guy, G. Oliveira, J. Hadgraft, M.E. Lane, Optimisation of cosolvent concentration for topical drug delivery III – Influence of lipophilic vehicles on ibuprofen permeation, Skin Pharmacol. Physiol., 24, 22 (2011). 32. A. Zaghloul, A. Nada, I. Khattab, Development, characterization and optimization of ibuprofen self-emulsifying drug delivery system applying face centered experimental design, Int. J. Pharm. & Technol., 3, 1674 (2011). 33. M. Górecki, M. Sosada, B. Pasker, M. Pajak, P. Fras, Preparation of ibuprofen emulsions with rapeseed phospholipids and vegetable oils, Indian J. Pharm. Educ. Res., 50, 271, (2016). 34. A. Aiyejina, D.P. Chakrabarti, A. Pilgrim, M.K.S. Sastry, Wax formation in oil pipelines: A critical rewiew, Int. J. Multiph. Flow, 37, 671 (2011). 35. A. Sumuntana, P. Thawatchai, Injectable surfactant included-virgin coconut oil with and without ibuprofen. Adv. Mat. Res., 581, 108 (2012). 36. K.A. Fotouh, A. Allam, M. El-Badry, A.M. El-Sayer, Development and in vitro/in vivo performance of self-nanoemulsifying drug delivery systems loaded with candesartan cilexetil, Eur. J. Pharm., 109, 503 (2017). 37. C. Pouton, C.J.H. Porter, Formulation of lipid-based delivery systems for oral administration: Materials, methods and strategies, Eur. J. Pharm. Sci., 60, 625 (2008). 38. P. Bu, Y. Ji, S. Narayanan, D. Dalrymple, X. Cheng, A.T.M. Serajuddin, Assessment of cell viability and permeation enhancement in presence of lipid-based self-emulsifying drug delivery systems using Caco-2 cell model: polysorbate 80 as the surfactant, Eur. J. Pharm. Sci., 99, 350 (2017). 39. T. Tran, S.D.V.S. Siqueira, H. Amenitsch, A. Müllertz, T. Rades, In vitro and in vivo performance of monoacyl phospholipid-based self-emulsifying drug delivery systems, J. Control. Release, 255, 45 (2017). 40. A. Krupa, S. Jakub, R. Benedykt, J. Renata, Preformulation studies on solid self-emulsifying systems in powder form containing magnesium aluminometasilicate as porous carrier, AAPS PharmSciTech, 16, 3 (2015). 41. A. Krupa, D. Majda, R. Jachowicz, W. Mozgawa, Solid-state interaction of ibuprofen and Neusilin US2, Thermochim. Acta, 509, 12, (2010). 42. H. Williams, M. Van Speybroeck, P. Augustijns, C.J.H. Porter, Lipid-Based Formulations solidified via adsoprion onto the mesoporous carrier Neusilin US2: Effect of Drug type and formulation composition on in vitro pharmaceutical performance, J. Pharm. Sci., 103, 1734 (2014). 43. R. Haware, B. Prasad Vinjamuri, A. Sarkar, M. Stefik, Deciphering magnesium stearate thermotropic behavior, Int. J. Pharm., 548, 314 (2018). 44. S.G. Gumaste, D. Dalrymple, A.T.M. Serajuddin, Development of solid SEDDS, V: Compaction and drug release properties of tablets prepared by adsorbing lipid-based formulations onto Neusilin US2, Pharm. Res., 30(12), 3186 (2013). 45. K. Čerpnjak, A. Zvonar, F. Vrečer, M. Gašperlin, Development of a solid self-emulsifying drug delivery system (SMEDDS) for solubility enhancement of naproxen, Drug Dev. Ind. Pharm., 41, 1548 (2014). 46. A. Bernkop-Schnürch, Self-emulsifying drug delivery systems (SEDDS), The splendid comeback of an old technology, Adv. Drug Delivery Rev., 142, 1 (2019). 47. A.R. Patel, P.R Vavia, Preparation and in vivo evaluation of SMEDDS (self-microemulsifying drug delivery system) containing fenofibrate, AAPS J., 9, 344 (2007).; https://revistas.unal.edu.co/index.php/rccquifa/article/view/84960Test
الإتاحة: https://revistas.unal.edu.co/index.php/rccquifa/article/view/84960Test
حقوق: Derechos de autor 2020 Revista Colombiana de Ciencias Químico-Farmacéuticas ; https://creativecommons.org/licenses/by/4.0Test
رقم الانضمام: edsbas.A5D58A5A
قاعدة البيانات: BASE