يعرض 1 - 4 نتائج من 4 نتيجة بحث عن '"Yan-Jun Zhou"', وقت الاستعلام: 0.67s تنقيح النتائج
  1. 1

    المصدر: Research in Veterinary Science. 117:54-56

    الوصف: PB2-627K is an important amino acid that determines the virulence of some influenza A viruses. However, it has not been experimentally investigated in the H3N2 swine influenza virus. To explore the potential role of PB2-K627E substitution in H3N2 swine influenza virus, the growth properties and pathogenicity between H3N2 swine influenza virus and its PB2-K627E mutant were compared. For the first time, our results showed that PB2-K627E mutation attenuates H3N2 swine influenza virus in mammalian cells and in mice, suggesting that PB2-627K is required for viral replication and pathogenicity of H3N2 swine influenza virus.

  2. 2

    المصدر: Research in Veterinary Science. 88:345-351

    الوصف: DNA and recombinant virus vaccines against swine influenza virus (SIV) have been pursued with promising results, but induce poor immunogenicity. This study evaluated the effects of a vaccine regimen in mice including priming with three DNA vaccines expressing soluble HA (sHA), complete HA (tmHA), or sHA fused with three copies murine C3d (sHA-mC3d3) and boosting with recombinant pseudorabies virus expressing HA (rPRV-HA). Immune responses were monitored by ELISA, HI assays, and virus neutralization. Protective efficacy was evaluated by virus isolation from lungs, distribution in tissues, and pathology following challenge with H3N2 SIV. Priming with sHA-mC3d3 and boosting with rPRV-HA induced higher levels of HA-specific antibodies and yielded the most effective protection. This finding implied that priming with a DNA vaccine expressing C3d fused with antigen and boosting with a recombinant vector vaccine is an effective way to induce protective humoral immunity and prevent some infectious diseases.

  3. 3

    المصدر: Research in veterinary science. 86(3)

    الوصف: H1N1 and H3N2 are the dominant subtypes causing swine influenza in China and other countries. It is important to develop effective vaccines against both H1N1 and H3N2 subtypes of swine influenza virus (SIV). We examined the effects of a DNA vaccine expressing an influenza HA fused to three copies of murine complement C3d in mice. Plasmids encoding soluble HA (sHA), complete HA (tmHA), or a soluble fused form of HA (sHA-mC3d3) were constructed from the H3N2 subtype of SIV. The immune response was monitored by an enzyme-linked immunosorbent assay (ELISA), hemagglutination inhibition (HI) assays, and virus neutralization tests. Analysis of antibody titers indicated that immunization with HA-mC3d3 resulted in higher titers of anti-HA antibodies and higher antibody affinities, compared with serum from mice immunized with sHA or tmHA. Furthermore, the C3d fusion increased the Th2-biased immune response, by inducing IL-4 production. Splenocytes from mice immunized with sHA-mC3d3 produced about three-fold more IL-4 than did splenocytes from mice immunized with sHA or tmHA. Seven days post-challenge with homologous virus (H3N2), no virus was isolated from the mice immunized with HA-expressing plasmids. However, 10 days post-challenge with heterologous virus (H1N1), only mice immunized with sHA-mC3d3 had no virus or microscopic lesions in the kidneys and cerebrum. In conclusion, C3d enhanced antibody responses to hemagglutinin and protective immunity against SIV of different subtypes.

  4. 4

    المصدر: Research in Veterinary Science

    الوصف: Porcine reproductive and respiratory syndrome virus (PRRSV) has a condensed single-stranded positive-sense RNA genome that contains several overlapping regions. The transcription regulatory sequence (TRS) is the important cis-acting element participating in PRRSV discontinuous transcription process. Based on reverse genetic system of type 2 highly pathogenic PRRSV cell-passage attenuated strain pHuN4-F112, firefly luciferase or Renilla luciferase genes were inserted between ORF1b and ORF2. An extra TRS6 was embedded behind the foreign luciferase genes. pA-Fluc and pA-Rluc were constructed and successfully rescued in MARC-145 cells. The phenotypical characteristics of the progeny virus were indistinguishable from those of vHuN4-F112 and were genetically stable for at least 25 cell passages. Mutant virus-infected cells were lysed at different time points to assess luciferase activities and measure foreign gene expression levels. The results showed identical variations in the luciferase activities of the recombinants in MARC-145 cells, indicating that they were suitable for monitoring viral propagation in PRRSV-permissive cell cultures. They were also used to infect pulmonary alveolar macrophages, which yielded similar variations in luciferase activities. Therefore, vA-Fluc and vA-Rluc present powerful new tools to monitor PRRSV propagation in both passaged and target cells.