دورية أكاديمية

A framework for dynamic modelling of railway track switches considering the switch blades, actuators and control systems

التفاصيل البيبلوغرافية
العنوان: A framework for dynamic modelling of railway track switches considering the switch blades, actuators and control systems
المؤلفون: Saikat Dutta, Tim Harrison, Christopher Ward, Roger Dixon, Phil Winship
المصدر: Railway Engineering Science, Vol 32, Iss 2, Pp 162-176 (2024)
بيانات النشر: SpringerOpen, 2024.
سنة النشر: 2024
مصطلحات موضوعية: Railway track switch, Mathematical modelling, Redundant actuation, Finite element analysis, Railroad engineering and operation, TF1-1620
الوصف: Abstract The main contribution of this paper is the development and demonstration of a novel methodology that can be followed to develop a simulation twin of a railway track switch system to test the functionality in a digital environment. This is important because, globally, railway track switches are used to allow trains to change routes; they are a key part of all railway networks. However, because track switches are single points of failure and safety-critical, their inability to operate correctly can cause significant delays and concomitant costs. In order to better understand the dynamic behaviour of switches during operation, this paper has developed a full simulation twin of a complete track switch system. The approach fuses finite element for the rail bending and motion, with physics-based models of the electromechanical actuator system and the control system. Hence, it provides researchers and engineers the opportunity to explore and understand the design space around the dynamic operation of new switches and switch machines before they are built. This is useful for looking at the modification or monitoring of existing switches, and it becomes even more important when new switch concepts are being considered and evaluated. The simulation is capable of running in real time or faster meaning designs can be iterated and checked interactively. The paper describes the modelling approach, demonstrates the methodology by developing the system model for a novel “REPOINT” switch system, and evaluates the system level performance against the dynamic performance requirements for the switch. In the context of that case study, it is found that the proposed new actuation system as designed can meet (and exceed) the system performance requirements, and that the fault tolerance built into the actuation ensures continued operation after a single actuator failure.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2662-4745
2662-4753
العلاقة: https://doaj.org/toc/2662-4745Test; https://doaj.org/toc/2662-4753Test
DOI: 10.1007/s40534-023-00324-2
الوصول الحر: https://doaj.org/article/b0945cafa4d843388bd0ce318d218584Test
رقم الانضمام: edsdoj.b0945cafa4d843388bd0ce318d218584
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:26624745
26624753
DOI:10.1007/s40534-023-00324-2