A link between protein structure and enzyme catalyzed hydrogen tunneling

التفاصيل البيبلوغرافية
العنوان: A link between protein structure and enzyme catalyzed hydrogen tunneling
المؤلفون: Jodie K. Chin, Thomas D. Colby, Brian J. Bahnson, Barry M. Goldstein, Judith P. Klinman
المصدر: Proceedings of the National Academy of Sciences of the United States of America. 94(24)
سنة النشر: 1997
مصطلحات موضوعية: Hydrogen, Stereochemistry, Protein Conformation, Molecular Sequence Data, chemistry.chemical_element, Crystallography, X-Ray, Catalysis, chemistry.chemical_compound, Isotopes, Oxidoreductase, Kinetic isotope effect, Amino Acids, Ternary complex, Alcohol dehydrogenase, chemistry.chemical_classification, Multidisciplinary, biology, L-Lactate Dehydrogenase, Hydride, Active site, Biological Sciences, Crystallography, chemistry, Benzyl alcohol, biology.protein, Mutagenesis, Site-Directed
الوصف: We present evidence that the size of an active site side chain may modulate the degree of hydrogen tunneling in an enzyme-catalyzed reaction. Primary and secondary k H /k T and k D /k T kinetic isotope effects have been measured for the oxidation of benzyl alcohol catalyzed by horse liver alcohol dehydrogenase at 25°C. As reported in earlier studies, the relationship between secondary k H /k T and k D /k T isotope effects provides a sensitive probe for deviations from classical behavior. In the present work, catalytic efficiency and the extent of hydrogen tunneling have been correlated for the alcohol dehydrogenase-catalyzed hydride transfer among a group of site-directed mutants at position 203. Val-203 interacts with the opposite face of the cofactor NAD + from the alcohol substrate. The reduction in size of this residue is correlated with diminished tunneling and a two orders of magnitude decrease in catalytic efficiency. Comparison of the x-ray crystal structures of a ternary complex of a high-tunneling (Phe-93 → Trp) and a low-tunneling (Val-203 → Ala) mutant provides a structural basis for the observed effects, demonstrating an increase in the hydrogen transfer distance for the low-tunneling mutant. The Val-203 → Ala ternary complex crystal structure also shows a hyperclosed interdomain geometry relative to the wild-type and the Phe-93 → Trp mutant ternary complex structures. This demonstrates a flexibility in interdomain movement that could potentially narrow the distance between the donor and acceptor carbons in the native enzyme and may enhance the role of tunneling in the hydride transfer reaction.
تدمد: 0027-8424
الوصول الحر: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5ed7ac89fcecb7b10af6168f279234f5Test
https://pubmed.ncbi.nlm.nih.gov/9371755Test
حقوق: OPEN
رقم الانضمام: edsair.doi.dedup.....5ed7ac89fcecb7b10af6168f279234f5
قاعدة البيانات: OpenAIRE