دورية أكاديمية

The CMEMS GlobColour chlorophyll a product based on satellite observation: multi-sensor merging and flagging strategies.

التفاصيل البيبلوغرافية
العنوان: The CMEMS GlobColour chlorophyll a product based on satellite observation: multi-sensor merging and flagging strategies.
المؤلفون: Garnesson, Philippe, Mangin, Antoine, Fanton d'Andon, Odile, Demaria, Julien, Bretagnon, Marine
المصدر: Ocean Science; 2019, Vol. 15 Issue 3, p819-830, 12p
مصطلحات موضوعية: CHLOROPHYLL, ENVIRONMENTAL monitoring, OPTICAL remote sensing, TIME series analysis, ARTIFICIAL satellites, MANUFACTURED products
مستخلص: This paper concerns the GlobColour-merged chlorophyll a products based on satellite observation (SeaWiFS, MERIS, MODIS, VIIRS and OLCI) and disseminated in the framework of the Copernicus Marine Environmental Monitoring Service (CMEMS). This work highlights the main advantages provided by the Copernicus GlobColour processor which is used to serve CMEMS with a long time series from 1997 to present at the global level (4 km spatial resolution) and for the Atlantic level 4 product (1 km spatial resolution). To compute the merged chlorophyll a product, two major topics are discussed: The first of these topics is the strategy for merging remote-sensing data, for which two options are considered. On the one hand, a merged chlorophyll a product computed from a prior merging of the remote-sensing reflectance of a set of sensors. On the other hand, a merged chlorophyll a product resulting from a combination of chlorophyll a products computed for each sensor. The second topic is the flagging strategy used to discard non-significant observations (e.g. clouds, high glint and so on). These topics are illustrated by comparing the CMEMS GlobColour products provided by ACRI-ST (Garnesson et al., 2019) with the OC-CCI/C3S project (Sathyendranath et al., 2018). While GlobColour merges chlorophyll a products with a specific flagging, the OC-CCI approach is based on a prior reflectance merging before chlorophyll a derivation and uses a more constrained flagging approach. Although this work addresses these two topics, it does not pretend to provide a full comparison of the two data sets, which will require a better characterisation and additional inter-comparison with in situ data. [ABSTRACT FROM AUTHOR]
Copyright of Ocean Science is the property of Copernicus Gesellschaft mbH and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:18120784
DOI:10.5194/os-15-819-2019