دورية أكاديمية

Computational Study of C-X-C Chemokine Receptor (CXCR)3 Binding with Its Natural Agonists Chemokine (C-X-C Motif) Ligand (CXCL)9, 10 and 11 and with Synthetic Antagonists: Insights of Receptor Activation towards Drug Design for Vitiligo

التفاصيل البيبلوغرافية
العنوان: Computational Study of C-X-C Chemokine Receptor (CXCR)3 Binding with Its Natural Agonists Chemokine (C-X-C Motif) Ligand (CXCL)9, 10 and 11 and with Synthetic Antagonists: Insights of Receptor Activation towards Drug Design for Vitiligo
المؤلفون: Giovanny Aguilera-Durán, Antonio Romo-Mancillas
المصدر: Molecules, Vol 25, Iss 19, p 4413 (2020)
بيانات النشر: MDPI AG, 2020.
سنة النشر: 2020
المجموعة: LCC:Organic chemistry
مصطلحات موضوعية: CXCR3, CXCL9, CXCL10, CXCL11, protein homology modeling, molecular dynamics, Organic chemistry, QD241-441
الوصف: Vitiligo is a hypopigmentary skin pathology resulting from the death of melanocytes due to the activity of CD8+ cytotoxic lymphocytes and overexpression of chemokines. These include CXCL9, CXCL10, and CXCL11 and its receptor CXCR3, both in peripheral cells of the immune system and in the skin of patients diagnosed with vitiligo. The three-dimensional structure of CXCR3 and CXCL9 has not been reported experimentally; thus, homology modeling and molecular dynamics could be useful for the study of this chemotaxis-promoter axis. In this work, a homology model of CXCR3 and CXCL9 and the structure of the CXCR3/Gαi/0βγ complex with post-translational modifications of CXCR3 are reported for the study of the interaction of chemokines with CXCR3 through all-atom (AA-MD) and coarse-grained molecular dynamics (CG-MD) simulations. AA-MD and CG-MD simulations showed the first activation step of the CXCR3 receptor with all chemokines and the second activation step in the CXCR3-CXCL10 complex through a decrease in the distance between the chemokine and the transmembrane region of CXCR3 and the separation of the βγ complex from the α subunit in the G-protein. Additionally, a general protein–ligand interaction model was calculated, based on known antagonists binding to CXCR3. These results contribute to understanding the activation mechanism of CXCR3 and the design of new molecules that inhibit chemokine binding or antagonize the receptor, provoking a decrease of chemotaxis caused by the CXCR3/chemokines axis.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1420-3049
العلاقة: https://www.mdpi.com/1420-3049/25/19/4413Test; https://doaj.org/toc/1420-3049Test
DOI: 10.3390/molecules25194413
الوصول الحر: https://doaj.org/article/cba64ba8d7c74cf994395b481a768ce2Test
رقم الانضمام: edsdoj.ba64ba8d7c74cf994395b481a768ce2
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:14203049
DOI:10.3390/molecules25194413