Cloud Optical Properties Over West Antarctica From Shortwave Spectroradiometer Measurements During AWARE

التفاصيل البيبلوغرافية
العنوان: Cloud Optical Properties Over West Antarctica From Shortwave Spectroradiometer Measurements During AWARE
المؤلفون: Wilson, A., Scott, R. C., Cadeddu, M. P., Ghate, V., Lubin, D.
المصدر: Journal of Geophysical Research - Atmospheres; September 2018, Vol. 123 Issue: 17 p9559-9570, 12p
مستخلص: A shortwave spectroradiometer was deployed on the West Antarctic Ice Sheet (WAIS) as part of the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program ARM West Antarctic Radiation Experiment (AWARE). This instrument recorded 1‐min averages of downwelling hemispheric spectral irradiance covering the wavelength range 350–2,200 nm with spectral resolution 3 and 10 nm for wavelengths shorter and longer than 1,000 nm, respectively. Using simultaneous micropulse lidar data to identify the thermodynamic phase of stratiform clouds, a radiative transfer algorithm is used to retrieve optical depth and effective droplet (or particle) size for single‐phase liquid water and ice water clouds. The AWARE campaign on the WAIS first sampled typical climatological conditions between 7 December 2015 and 9 January 2016 and then a much warmer air mass with more moisture associated with a surface melt event between 10 and 17 January 2016. Before the melt event most liquid cloud effective droplet radii were consistent with pristine polar maritime clouds (mode radius 13.5 μm) but showed a second local maximum in the distribution (at 8 μm) consistent with colder, moisture‐limited conditions. Most ice clouds sampled occurred before the melt event (mode optical depth 4 and effective particle size 19 μm). During the melt event liquid water cloud optical depth nearly doubled (mode value increasing from 8 to 14). AWARE therefore sampled on the WAIS two cases relevant to climate model simulations: typical current climatological conditions, followed by warmer meteorology possibly consistent with future increasing surface melt scenarios. Shortwave spectral irradiance measurements from West Antarctica in austral summer 2015‐2016 allow retrieval of cloud optical propertiesThe first 5 weeks of these measurements are consistent with current summertime climatological conditionsAfter 9 January 2016 these measurements sampled conditions possibly consistent with future warmer conditions and surface melt scenarios
قاعدة البيانات: Supplemental Index
الوصف
تدمد:2169897X
21698996
DOI:10.1029/2018JD028347