Reorganisation of rhizosphere soil pore structure by wild plant species in compacted soils

التفاصيل البيبلوغرافية
العنوان: Reorganisation of rhizosphere soil pore structure by wild plant species in compacted soils
المؤلفون: Glyn Bengough, Sacha J. Mooney, Jasmine Burr-Hersey, Karl Ritz
المصدر: Journal of Experimental Botany
بيانات النشر: Oxford University Press, 2020.
سنة النشر: 2020
مصطلحات موضوعية: 0106 biological sciences, roots, porosity, Physiology, Plant Science, Taraxacum officianale, 01 natural sciences, complex mixtures, Plant Roots, Cirsium vulgare, soil compaction, dandelion, Soil, food, Cirsium, Taraxacum officinale, spear thistle, Plantago lanceoloata, X-ray computed tomography, Rhizosphere, Plantago, biology, Chemistry, AcademicSubjects/SCI01210, ribwort plantain, 04 agricultural and veterinary sciences, biology.organism_classification, Bulk density, Research Papers, food.food, Agronomy, Plant—Environment Interactions, Loam, Soil water, 040103 agronomy & agriculture, 0401 agriculture, forestry, and fisheries, Tomography, X-Ray Computed, 010606 plant biology & botany
الوصف: Soil porosity is increased within the rhizosphere of three common wild plant species growing in compacted soil, with significant differences between species.
Soil compaction represents a major impediment to plant growth, yet wild plants are often observed thriving in soil of high bulk density in non-agricultural settings. We analysed the root growth of three non-cultivated species often found growing in compacted soils in the natural environment. Plants of ribwort plantain (Plantago lanceolata), dandelion (Taraxacum officinale), and spear thistle (Cirsium vulgare) were grown for 28 d in a sandy loam soil compacted to 1.8 g cm–3 with a penetration resistance of 1.55 MPa. X-Ray computed tomography was used to observe root architecture in situ and to visualise changes in rhizosphere porosity (at a resolution of 35 μm) at 14 d and 28 d after sowing. Porosity of the soil was analysed within four incremental zones up to 420 μm from the root surface. In all species, the porosity of the rhizosphere was greatest closest to the root and decreased with distance from the root surface. There were significant differences in rhizosphere porosity between the three species, with Cirsium plants exhibiting the greatest structural genesis across all rhizosphere zones. This creation of pore space indicates that plants can self-remediate compacted soil via localised structural reorganisation in the rhizosphere, which has potential functional implications for both plant and soil.
اللغة: English
تدمد: 1460-2431
0022-0957
الوصول الحر: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::379a7bc557885aebf15db0c3d9eb8148Test
http://europepmc.org/articles/PMC7541912Test
حقوق: OPEN
رقم الانضمام: edsair.doi.dedup.....379a7bc557885aebf15db0c3d9eb8148
قاعدة البيانات: OpenAIRE