Translation of the cell adhesion molecule ALCAM in axonal growth cones - regulation and functional importance

التفاصيل البيبلوغرافية
العنوان: Translation of the cell adhesion molecule ALCAM in axonal growth cones - regulation and functional importance
المؤلفون: Paulina Fischer, Bettina Maier, Christian Albrecht, G. Elisabeth Pollerberg, Karsten Thelen, Marc Faber
المصدر: Journal of cell science. 125(Pt 4)
سنة النشر: 2012
مصطلحات موضوعية: Retinal Ganglion Cells, genetic structures, Growth Cones, Chick Embryo, Biology, Activated-Leukocyte Cell Adhesion Molecule, medicine, Cell Adhesion, Animals, RNA, Messenger, Axon, Cell adhesion, Growth cone, 3' Untranslated Regions, ALCAM, Retina, Cell adhesion molecule, Cell Membrane, Translation (biology), Cell Biology, Axons, Endocytosis, Cell biology, medicine.anatomical_structure, Retinal ganglion cell, Gene Expression Regulation, Protein Biosynthesis, sense organs
الوصف: ALCAM is a cell adhesion molecule that is present on extending axons and has been shown to be crucial for elongation and navigation of retinal ganglion cell (RGC) axons. In the present study, we show that ALCAM mRNA is present in axonal growth cones of RGCs in vivo and in vitro, and that translation of ALCAM occurs in RGC growth cones separated from their soma. This growth cone translation is regulated by the 3′-untranslated region (3′-UTR) of ALCAM and depends on the activity of the kinases ERK and TOR (target of rapamycin). We also investigated the impact of the growth cone translation of ALCAM on axonal functions. Growth cone translation of ALCAM is crucial for the enhanced elongation of axons extending in contact with ALCAM protein. The local translation of ALCAM in the growth cone is able to rapidly counterbalance experimentally induced ALCAM internalization, thereby contributing to the maintenance of constant ALCAM levels in the plasma membrane. Assays where RGC axons have the choice to grow on laminin or both ALCAM and laminin – as is the case in the developing retina – reveal that the axonal preference for ALCAM-containing lanes depends on translation of ALCAM in growth cones. Taken together, these results show for the first time that translation of a cell adhesion molecule in growth cones, as well as the impact of this local translation on the behavior of axon and growth cone.
تدمد: 1477-9137
الوصول الحر: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e181e9e9ed6281079583108b427eea01Test
https://pubmed.ncbi.nlm.nih.gov/22421359Test
حقوق: OPEN
رقم الانضمام: edsair.doi.dedup.....e181e9e9ed6281079583108b427eea01
قاعدة البيانات: OpenAIRE