يعرض 1 - 4 نتائج من 4 نتيجة بحث عن '"Ruminococcaceae"', وقت الاستعلام: 0.63s تنقيح النتائج
  1. 1

    المصدر: Journal of Agricultural and Food Chemistry. 69:14004-14012

    الوصف: The effects of ultrasound combined with glycation (UCG) on the allergenicity and human microbial community of β-Lg during in vitro digestion were studied by ELISA, cell experiments, and 16S rRNA high-throughput sequencing. UCG modification and subsequent digestion significantly reduced allergenicity. The decrease in the allergenicity of β-Lg depended not only on the low digestibility of glycated β-Lg, which led to the decrease of some peptides with complete immunogenicity, but also the masking effect of glycation on allergen epitopes of β-Lg. Meanwhile, UCG modification and subsequent digestion could alter the structures of intestinal microbiota and the community abundance at phylum, family, and genus levels, such as Bacteroidota, Fusobacteriota, Enterobacteriaceae, Bacteroidaceae, Ruminococcaceae, Bacteroides, and Faecalibacterium. These results show that simulated in vitro digestion of modified β-Lg reduces allergenicity and alters human intestinal microbiota, which could provide a theoretical basis for studying the relationship between intestinal dysbiosis and cow's milk allergy.

  2. 2

    المصدر: Journal of Agricultural and Food Chemistry. 68:8863-8874

    الوصف: The modulating effect of 2-O-β-d-glucopyranosyl-l-ascorbic acid (AA-2βG), a natural derivative of ascorbic acid from the fruits of Lycium barbarum, on mice gut microbiota was investigated in the present study. It was found that AA-2βG was able to adjust the structure of mice gut microbiota, elevated the relative abundances of Verrucomicrobia, Porphyromonadaceae, Verrucomicrobiaceae, and Erysipelotrichaceae, and meanwhile reduced the relative abundances of Firmicutes, Lachnospiraceae, Rikenellaceae, Ruminococcaceae, Bdellovibrionaceae, Anaeroplasmataceae, and Peptococcaceae. Through the linear discriminant analysis effect size analysis, the key microbiota that were found to be significantly changed after long-term consumption of AA-2βG were Ruminococcaceae, Porphyromonadaceae, Lachnospiraceae, and Rikenellaceae. In addition, AA-2βG could upregulate pro-inflammatory cytokines, promote tight junctions between intestinal cells, facilitate the generation of short-chain fatty acids (SCFAs), and upregulate the mRNA expression level of SCFAs receptors, indicating that AA-2βG might promote organism health. The results demonstrated that AA-2βG might maintain organism health by modulating gut microbiota.

  3. 3

    المساهمون: Department of Agriculture, Food and the Marine

    المصدر: Journal of Agricultural and Food Chemistry. 67:2098-2112

    الوصف: peer-reviewed Prebiotics may improve ageing-related dysbiosis. Milk is a source of nutrients including oligosaccharides whose prebiotic potential remains largely unexplored. We used a murine model to explore the effect of milk products on high diversity and lower diversity faecal microbiota from healthy and frail elderly subjects, respectively. Mice were treated with antibiotics and subsequently "humanised" with human faecal microbiota. The mice received lactose-free or whole milk, glycomacropeptide, or soy protein (control) supplemented diets for one month. The faecal microbiota was analysed by 16S rRNA gene amplicon sequencing. Lactose-free milk diet was as efficient as the control diet in retaining faecal microbiota diversity in mice. Both milk diets had a significant effect on the relative abundance of health-relevant taxa (e.g. Ruminococcaceae, Lachnospiraceae). The glycomacropeptide prebiotic activity previously observed in vitro was not replicated in vivo. However, these data indicate the novel prebiotic potential of bovine milk for human nutrition. ACCEPTED peer-reviewed

    وصف الملف: application/pdf

  4. 4

    المصدر: Journal of agricultural and food chemistry. 67(17)

    الوصف: This study investigated the potential link between gut microbiota and deoxynivalenol (DON)-induced feed refusal. A total of 24 barrows were randomly divided into one of three diets containing 0.61 (control diet), 1.28, or 2.89 mg DON/kg feed for 28 days. Dietary exposure to DON at 2.89 mg/kg significantly decreased the relative abundances of unclassified_f_Lachnospiraceae, Phascolarctobacterium and Ruminococcaceae_UCG-014, whereas it increased Prevotella_9 and norank_f_Prevotellaceae in the cecal digesta. Moreover, the decreased relative abundance of unclassified_f_Lachnospiraceae induced by DON exposure was positively correlated with average daily feed intake. Exposure to DON increased the serum concentrations of glucagon-like peptide-1 and peptide YY but reduced the levels of serum growth hormone and insulin-like growth factor 1. In summary, these findings suggest that chronic dietary exposure to DON induces disturbances of intestinal microbiota. Disturbed appetite-regulating hormones and somatotropic-axis-hormone secretion induced by negative microbial changes could be the potential mechanisms for DON-induced anorexia.