دورية أكاديمية

Forecasting Copper Electrorefining Cathode Rejection by Means of Recurrent Neural Networks With Attention Mechanism

التفاصيل البيبلوغرافية
العنوان: Forecasting Copper Electrorefining Cathode Rejection by Means of Recurrent Neural Networks With Attention Mechanism
المؤلفون: Pedro Pablo Correa, Aldo Cipriano, Felipe Nunez, Juan Carlos Salas, Hans Lobel
المصدر: IEEE Access, Vol 9, Pp 79080-79088 (2021)
بيانات النشر: IEEE, 2021.
سنة النشر: 2021
المجموعة: LCC:Electrical engineering. Electronics. Nuclear engineering
مصطلحات موضوعية: Deep learning, electrorefining, predictive models, recurrent neural networks, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
الوصف: Electrolytic refining is the last step of pyrometallurgical copper production. Here, smelted copper is converted into high-quality cathodes through electrolysis. Cathodes that do not meet the physical quality standards are rejected and further reprocessed or sold at a minimum profit. Prediction of cathodic rejection is therefore of utmost importance to accurately forecast the electrorefining cycle economic production. Several attempts have been made to estimate this process outcomes, mostly based on physical models of the underlying electrochemical reactions. However, they do not stand the complexity of real operations. Data-driven methods, such as deep learning, allow modeling complex non-linear processes by learning representations directly from the data. We study the use of several recurrent neural network models to estimate the cathodic rejection of a cathodic cycle, using a series of operational measurements throughout the process. We provide an ARMAX model as a benchmark. Basic recurrent neural network models are analyzed first: a vanilla RNN and an LSTM model provide an initial approach. These are further composed into an Encoder-Decoder model, that uses an attention mechanism to selectively weight the input steps that provide most information upon inference. This model obtains 5.45% relative error, improving by 81.4% the proposed benchmark. Finally, we study the attention mechanism’s output to distinguish the most relevant electrorefining process steps. We identify the initial state as critical in predicting cathodic rejection. This information can be used as an input for decision support systems or control strategies to reduce cathodic rejection and improve electrolytic refining’s profitability.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2169-3536
العلاقة: https://ieeexplore.ieee.org/document/9410222Test/; https://doaj.org/toc/2169-3536Test
DOI: 10.1109/ACCESS.2021.3074780
الوصول الحر: https://doaj.org/article/610c7ed2952149b3816d3408d4cfa1daTest
رقم الانضمام: edsdoj.610c7ed2952149b3816d3408d4cfa1da
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:21693536
DOI:10.1109/ACCESS.2021.3074780