يعرض 1 - 2 نتائج من 2 نتيجة بحث عن '"Xiao-Yan Yan"', وقت الاستعلام: 0.92s تنقيح النتائج
  1. 1

    المصدر: Guang pu xue yu guang pu fen xi = Guang pu. 36(3)

    الوصف: The technology of target recognition based on characteristic multi-spectrum has many advantages, such as strong detection capability and discriminating capability of target species. But there are some problems, it requires that you obtain the background spectrum as a priori knowledge, and it requires that the change of background spectrum is small with time. Thereby its application of real-time object recognition is limited in the new environment, or the complex environment. Based on magneto-optical modulation and characteristic multi-spectrum the method is designed, and the target is identified without prior access to the background spectrum. In order to achieve the function of the target information in the one acquisition time for tested, compared to conventional methods in terms of target detection, it's adaptability is better than before on the battlefield, and it is of more practical significance. Meanwhile, the magneto-optical modulator is used to suppress the interference of stray light background, thereby improving the probability of target recognition. Since the magneto-optical modulation provides incremental iterative target spectral information, therefore, even if the unknown background spectrum or background spectrum change is large, it can significantly improve the recognition accuracy of information through an iterative target spectrum. Different test targets back shimmering light intensity and background intensity values were analyzed during experiments, results showed that three targets for linearly polarized reflectance modulation is significantly stronger than the background. And it was of great influence to visible imaging target identification when measured target used camouflage color, but the system of polarization modulation type can still recognize target well. On this basis, the target range within 0.5 km x 2 km multi-wavelength characteristics of the target species were identified. When using three characteristic wavelengths, the probability of target identification significantly reduced at around 2km, when using four or five characteristic wavelength position, the probability of target identification reach up to more than 95.0%. Meanwhile, in order to reduce the calculation and improve the real-time detection capability of the system, finally, four characteristic wavelengths was selected. So the system has a certain application value.

  2. 2

    المصدر: Guang pu xue yu guang pu fen xi = Guang pu. 31(7)

    الوصف: To improve spectrum resolution of the traditional Fourier interferometer with the same size lens, was proposed based on orthogonal wedge Fourier interferometer system. The interferometer system gets the optical path difference by the prism of two mutually perpendicular, which can make the laser Interferences on the CCD Array. The detector use the area array CCD linear array CCD, and the system collected the interference fringes on the two-dimensional plane. On the basis of the spectrum distribution of orthogonal inclination Moire interferometer by calculating optical path difference function, the system made the splicing of interference fringes on the area array CCD and Moire transform, finally got the spectrum resolution. The results from the MATLAB simulation software shows that the Maximum optical path difference of the orthogonal inclination Moire interferometer can be generated up to 234 microm, which is higher than the traditional Fourier interferometer about one order of magnitude, so the spectrum resolution also increased by nearly 10 times theoretical. Experimental calibration of the spectrometer with a selection of LAB SPAKR 750A-type spectrometer, measurements for the center wavelength of 635 nm semiconductor laser, the results show basically the same center wavelength position. However, the spectrum detected by orthogonal inclination Moire interferometer system near the center wavelength is better than the traditional interferometer system.