Characterization of the Roles of the Saccharomyces cerevisiae RAD54 Gene and a Homologue of RAD54, RDH54/TID1, in Mitosis and Meiosis

التفاصيل البيبلوغرافية
العنوان: Characterization of the Roles of the Saccharomyces cerevisiae RAD54 Gene and a Homologue of RAD54, RDH54/TID1, in Mitosis and Meiosis
المؤلفون: Jean-Marie Buerstedde, Hideo Shinagawa, Miki Shinohara, Akira Shinohara, Emi Shita-Yamaguchi, Hideyuki Ogawa
المصدر: Genetics. 147:1545-1556
بيانات النشر: Oxford University Press (OUP), 1997.
سنة النشر: 1997
مصطلحات موضوعية: Saccharomyces cerevisiae Proteins, Mitotic crossover, DNA Repair, Genes, Fungal, Molecular Sequence Data, Saccharomyces cerevisiae, Mutant, Mitosis, Investigations, Biology, Genetic recombination, Fungal Proteins, Meiosis, Genetics, Amino Acid Sequence, Gene conversion, Cloning, Molecular, Sequence Homology, Amino Acid, Homozygote, fungi, DNA Helicases, Wild type, Epistasis, Genetic, Methyl Methanesulfonate, biology.organism_classification, Diploidy, Molecular biology, Rad52 DNA Repair and Recombination Protein, DNA-Binding Proteins, DNA Repair Enzymes, Phenotype, Mutagenesis, Homologous recombination, DNA Topoisomerases, DNA Damage
الوصف: The RAD54 gene, which encodes a protein in the SW12/SNF2 family, plays an important role in recombination and DNA repair in Saccharomyces cerevisiae. The yeast genome project revealed a homologue of RAD54, RDH54/TID1. Properties of the rdh54/tid1 mutant and the rad54 rdh54/tid1 double mutant are shown for mitosis and meiosis. The rad54 mutant is sensitive to the alkylating agent, methyl methanesulfonate (MMS), and is defective in interchromosomal and intrachromosomal gene conversion. The rdh54/tid1 single mutant, on the other hand, does not show any significant deficiency in mitosis. However, the rad54 rdh54/tid1 mutant is more sensitive to MMS and more defective in interchromosomal gene conversion than is the rad54 mutant, but shows the same frequency of intrachromosomal gene conversion as the rad54 mutant. These results suggest that RDH54/TID1 is involved in a minor pathway of mitotic recombination in the absence of RAD54. In meiosis, both single mutants produce viable spores at slightly reduced frequency. However, only the rdh54/tid1 mutant, but not the rad54 mutant, shows significant defects in recombination: retardation of the repair of meiosis-specific double-strand breaks (DSBs) and delayed formation of physical recombinants. Furthermore, the rad54 rdh54/tid1 double mutant is completely defective in meiosis, accumulating DSBs with more recessed ends than the wild type and producing fewer physical recombinants than the wild type. These results suggest that one of the differences between the late stages of mitotic recombination and meiotic recombination might be specified by differential dependency on the Rad54 and Rdh54/Tid1 proteins.
تدمد: 1943-2631
الوصول الحر: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a75d12729224e4c87e0b765ddd301099Test
https://doi.org/10.1093/genetics/147.4.1545Test
حقوق: OPEN
رقم الانضمام: edsair.doi.dedup.....a75d12729224e4c87e0b765ddd301099
قاعدة البيانات: OpenAIRE