يعرض 1 - 4 نتائج من 4 نتيجة بحث عن '"Daphne R. Goring"', وقت الاستعلام: 0.63s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: Frontiers in Plant Science, Vol 13 (2022)

    الوصف: Successful fertilization of a flowering plant requires tightly controlled cell-to-cell communication between the male pollen grain and the female pistil. Throughout Arabidopsis pollen-pistil interactions, ligand-receptor kinase signaling is utilized to mediate various checkpoints to promote compatible interactions. In Arabidopsis, the later stages of pollen tube growth, ovular guidance and reception in the pistil have been intensively studied, and thus the receptor kinases and the respective ligands in these stages are quite well understood. However, the components of the earlier stages, responsible for recognizing compatible pollen grains and pollen tubes in the upper reproductive tract are less clear. Recently, predicted receptor kinases have been implicated in the initial stages of regulating pollen hydration and supporting pollen tube growth through the upper regions of the reproductive tract in the pistil. The discovery of these additional signaling proteins at the earlier stages of pollen-pistil interactions has further elucidated the mechanisms that Arabidopsis employs to support compatible pollen. Despite these advances, many questions remain regarding their specific functions. Here, we review the roles of the different receptor kinases, integrate their proposed functions into a model covering all stages of pollen-pistil interactions, and discuss what remains elusive with regard to their functions, respective binding partners and signaling pathways.

    وصف الملف: electronic resource

  2. 2

    المصدر: Frontiers in plant science. 13

    الوصف: Successful fertilization of a flowering plant requires tightly controlled cell-to-cell communication between the male pollen grain and the female pistil. Throughout

  3. 3

    المصدر: Reversible Ubiquitylation in Plant Biology
    Frontiers in Plant Science, Vol 5 (2014)
    Frontiers in Plant Science

    الوصف: Post-translational modification by ubiquitin plays a critical regulatory function in nearly all aspects of plant biology (Vierstra, 2009). Diverse conjugation enzymes attach monoubiquitin or polyubiquitin, with eight different linkages, as distinct signals to the regulatory and mechanistic components of various cellular processes. This ebook updates the functions, targets, and mechanisms of the conjugation components involved in the monoubiquitination of histones H2A and H2B and the polyubiquitination of all linkage types. Additionally, the roles and mechanisms of E3 ligases in biotic and abiotic stress responses and self-incompatibility (SI) and the regulation of cullin-based ligases (CRLs) by neddylation/deneddylation are updated. Finally, the functional roles of deubiquitination enzymes (DUBs) are reviewed together with a report on the biochemical and phylogenetic analyses of Arabidopsis OTU DUBs that support their functional differences.

  4. 4

    المؤلفون: Emily Indriolo, Daphne R. Goring

    المصدر: Frontiers in Plant Science, Vol 5 (2014)
    Frontiers in Plant Science

    الوصف: Ubiquitination plays essential roles in the regulation of many processes in plants including pollen rejection in self-incompatible species. In the Brassicaceae (mustard family), self-incompatibility drives the rejection of self-pollen by preventing pollen hydration following pollen contact with the stigmatic surface. Self-pollen is recognized by a ligand-receptor pair: the pollen S-locus cysteine rich/S-locus protein 11 (SCR/SP11) ligand and the pistil S receptor kinase (SRK). Following self-pollen contact, the SCR/SP11 ligand on the pollen surface binds to SRK on the pistil surface, and the SRK-activated signaling pathway is initiated. This pathway includes the armadillo repeat containing 1 (ARC1) protein, a member of the plant U-box (PUB) family of E3 ubiquitin ligases. ARC1 is a functional E3 ligase and is required downstream of SRK for the self-incompatibility response. This mini review highlights our recent progress in establishing ARC1's conserved role in self-pollen rejection in Brassica and Arabidopsis species and discusses future research directions in this field.