دورية أكاديمية

Does spinopelvic alignment affect femoral head cartilage and the proximal femoral physis in slipped capital femoral epiphysis? A finite element analysis.

التفاصيل البيبلوغرافية
العنوان: Does spinopelvic alignment affect femoral head cartilage and the proximal femoral physis in slipped capital femoral epiphysis? A finite element analysis.
المؤلفون: Kumaran, Yogesh1,2 (AUTHOR), Mumtaz, Muzammil1 (AUTHOR), Quatman, Carmen2 (AUTHOR), Balch-Samora, Julie3 (AUTHOR), Soehnlen, Sophia1,2 (AUTHOR), Hoffman, Brett1 (AUTHOR), Tripathi, Sudharshan1 (AUTHOR), Nishida, Norihiro4 (AUTHOR), Goel, Vijay K.1 (AUTHOR) Vijay.Goel@utoledo.edu
المصدر: Clinical Biomechanics. Jun2024, Vol. 116, pN.PAG-N.PAG. 1p.
مصطلحات موضوعية: *PELVIC anatomy, *SPINE radiography, *CARTILAGE physiology, *PELVIC physiology, *SPINE physiology, *HIP joint physiology, *PELVIC radiography, *EPIPHYSIOLYSIS, *BIOMECHANICS, *BIOLOGICAL models, *SHEAR (Mechanics), *FEMUR head, *ORTHOPEDIC implants, *FINITE element method, *SPIRAL computed tomography, *SIMULATION methods in education, *EPIPHYSIS, *PHYSIOLOGIC strain, *SPINE, *POSTURE
مستخلص: Slipped capital femoral epiphysis is a prevalent pediatric hip disorder. Recent studies suggest the spine's sagittal profile may influence the proximal femoral growth plate's slippage, an aspect not extensively explored. This study utilizes finite element analysis to investigate how various spinopelvic alignments affect shear stress and growth plate slip. A finite element model was developed from CT scans of a healthy adult male lumbar spine, pelvis, and femurs. The model was subjected to various sagittal alignments through reorientation. Simulations of two-leg stance, one-leg stance, walking heel strike, ascending stairs heel strike, and descending stairs heel strike were conducted. Parameters measured included hip joint contact area, stress, and maximum growth plate Tresca (shear) stress. Posterior pelvic tilt cases indicated larger shear stresses compared to the anterior pelvic tilt variants except in two leg stance. Two leg stance resulted in decreases in the posterior tilted pelvi variants hip contact and growth plate Tresca stress compared to anterior tilted pelvi, however a combination of posterior pelvic tilt and high pelvic incidence indicated larger shear stresses on the growth plate. One leg stance and heal strike resulted in higher shear stress on the growth plate in posterior pelvic tilt variants compared to anterior pelvic tilt, with a combination of posterior pelvic tilt and high pelvic incidence resulting in the largest shear. Our findings suggest that posterior pelvic tilt and high pelvic incidence may lead to increased shear stress at the growth plate. Activities performed in patients with these alignments may predispose to biomechanical loading that shears the growth plate, potentially leading to slip. • Exaggerated hip-spine alignment contributes to growth plate shear. • Variation in spinopelvic alignment alters hip joint cartilage mechanics. • Spinopelvic asymmetry may be a contributing factor to growth plate slip. [ABSTRACT FROM AUTHOR]
قاعدة البيانات: Academic Search Index
الوصف
تدمد:02680033
DOI:10.1016/j.clinbiomech.2024.106269