دورية أكاديمية

An attached microalgae platform for recycling phosphorus through biologically mediated fertilizer formation and biomass cultivation

التفاصيل البيبلوغرافية
العنوان: An attached microalgae platform for recycling phosphorus through biologically mediated fertilizer formation and biomass cultivation
المؤلفون: Parker Goldsberry, Peter Jeppesen, Joan McLean, Ron Sims
المصدر: Cleaner Engineering and Technology, Vol 17, Iss , Pp 100701- (2023)
بيانات النشر: Elsevier, 2023.
سنة النشر: 2023
المجموعة: LCC:Renewable energy sources
LCC:Environmental engineering
مصطلحات موضوعية: Struvite, Microalgae, Biofilm, Biofertilizer, Phosphorus, Renewable energy sources, TJ807-830, Environmental engineering, TA170-171
الوصف: Nutrient management is a global challenge for protecting water bodies from eutrophication and for retaining and sustainably recycling phosphorus within the biosphere. This challenge is especially important for water resource recovery facilities (WRRFs) in jurisdictions that limit nutrient loads in plant effluent. A microalgae-based biofilm platform has been designed, constructed, and tested to remove phosphorus and nitrogen from anaerobic digester (AD) effluent filtrate through cultivating biomass and inducing the precipitation of a mineral called struvite (NH₄MgPO₄ · 6H₂O) using a rotating algae biofilm reactor (RABR). RABRs function by rotating a growth substratum through nutrient rich water and then into the atmosphere, immersing microalgae in both sunlight and water. Photosynthesis is utilized in RABR operation to enhance struvite formation by increasing the pH value within the biofilm through the uptake of carbon dioxide from solution. Measurements of pH trended higher with depth through the biofilm when exposed to light confirming the function of photosynthesis in increasing pH and, as a consequence, struvite formation. In addition, reducing RPM allows more time for water to evaporate through exposure of the biofilm to the atmosphere and provides a management option to exceed struvite solubility product. Struvite precipitation was predicted based on chemical analysis and MINTEQ modeling of ADE, was confirmed using Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy, and quantified by determining ash content. Increase in pH within the biofilm was confirmed as photosynthetic photon flux density increased. While struvite precipitation and removal from wastewater is conventionally accomplished through physicochemical methods, this research is the first report of struvite enhanced formation through algae biofilm-based photosynthesis processes.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2666-7908
العلاقة: http://www.sciencedirect.com/science/article/pii/S2666790823001064Test; https://doaj.org/toc/2666-7908Test
DOI: 10.1016/j.clet.2023.100701
الوصول الحر: https://doaj.org/article/2e5fcb88198346fda46a1aebfcad8c23Test
رقم الانضمام: edsdoj.2e5fcb88198346fda46a1aebfcad8c23
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:26667908
DOI:10.1016/j.clet.2023.100701