دورية أكاديمية

Tumor Microenvironment Modulates Invadopodia Activity of Non-Selected and Acid-Selected Pancreatic Cancer Cells and Its Sensitivity to Gemcitabine and C18-Gemcitabine

التفاصيل البيبلوغرافية
العنوان: Tumor Microenvironment Modulates Invadopodia Activity of Non-Selected and Acid-Selected Pancreatic Cancer Cells and Its Sensitivity to Gemcitabine and C18-Gemcitabine
المؤلفون: Tiago M. A. Carvalho, Madelaine Magalì Audero, Maria Raffaella Greco, Marilena Ardone, Teresa Maggi, Rosanna Mallamaci, Barbara Rolando, Silvia Arpicco, Federico Alessandro Ruffinatti, Alessandra Fiorio Pla, Natalia Prevarskaya, Tomas Koltai, Stephan J. Reshkin, Rosa Angela Cardone
المصدر: Cells, Vol 13, Iss 9, p 730 (2024)
بيانات النشر: MDPI AG, 2024.
سنة النشر: 2024
المجموعة: LCC:Cytology
مصطلحات موضوعية: hypoxia, cell invasion, extracellular acidosis, invadopodia, chemoresistance, Cytology, QH573-671
الوصف: Background: Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease with high mortality due to early metastatic dissemination and high chemoresistance. All these factors are favored by its extracellular matrix (ECM)-rich microenvironment, which is also highly hypoxic and acidic. Gemcitabine (GEM) is still the first-line therapy in PDAC. However, it is quickly deaminated to its inactive metabolite. Several GEM prodrugs have emerged to improve its cytotoxicity. Here, we analyzed how the acidic/hypoxic tumor microenvironment (TME) affects the response of PDAC cell death and invadopodia-mediated ECM proteolysis to both GEM and its C18 prodrug. Methods: For this, two PDAC cell lines, PANC-1 and Mia PaCa-2 were adapted to pHe 6.6 or not for 1 month, grown as 3D organotypic cultures and exposed to either GEM or C18 in the presence and absence of acidosis and the hypoxia inducer, deferoxamine. Results: We found that C18 has higher cytotoxic and anti-invadopodia activity than GEM in all culture conditions and especially in acid and hypoxic environments. Conclusions: We propose C18 as a more effective approach to conventional GEM in developing new therapeutic strategies overcoming PDAC chemoresistance.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2073-4409
العلاقة: https://www.mdpi.com/2073-4409/13/9/730Test; https://doaj.org/toc/2073-4409Test
DOI: 10.3390/cells13090730
الوصول الحر: https://doaj.org/article/359ae37a40954942bc5f86182bbda81fTest
رقم الانضمام: edsdoj.359ae37a40954942bc5f86182bbda81f
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:20734409
DOI:10.3390/cells13090730