miR-92b promotes gastric cancer growth by activating the DAB2IP-mediated PI3K/AKT signalling pathway

التفاصيل البيبلوغرافية
العنوان: miR-92b promotes gastric cancer growth by activating the DAB2IP-mediated PI3K/AKT signalling pathway
المؤلفون: Ruheng Hua, Jianwei Zhu, Yan Zhang, Qu-Hui Wang, Jiawei Yu, Qingfeng Ni
المصدر: Cell Proliferation
سنة النشر: 2018
مصطلحات موضوعية: 0301 basic medicine, Male, proliferation, In situ hybridization, DAB2IP, 03 medical and health sciences, Phosphatidylinositol 3-Kinases, 0302 clinical medicine, Downregulation and upregulation, Stomach Neoplasms, Cell Line, Tumor, medicine, Humans, RNA, Neoplasm, PI3K/AKT/mTOR pathway, Cell growth, Chemistry, gastric cancer, Cancer, Cell Biology, General Medicine, Original Articles, Cell sorting, medicine.disease, Blot, PI3K/AKT pathway, MicroRNAs, 030104 developmental biology, Apoptosis, ras GTPase-Activating Proteins, 030220 oncology & carcinogenesis, Cancer research, Female, Original Article, miR‐92b, Proto-Oncogene Proteins c-akt, Signal Transduction
الوصف: Objectives miR‐92b has been reported to play critical roles in several carcinomas; however, our understanding of the mechanisms by which miR‐92b stimulates gastric cancer (GC) is incomplete. The aim of this study was to investigate the clinical significance and functional relevance of miR‐92b in GC. Materials and methods Expression of miR‐92b in GC and peritumoural tissues was determined using qRT‐PCR, in situ hybridization and bioinformatics. CCK‐8, colony formation and fluorescence‐activated cell sorting assays were utilized to explore the effect of miR‐92b on GC cells. A luciferase reporter assay and Western blotting were employed to verify miR‐92b targeting of DAB2IP. Furthermore, Western blotting was used to evaluate the levels of DAB2IP and PI3K/Akt signalling pathway‐related proteins. Results In this study, we found that miR‐92b was upregulated in GC tissues compared with peritumoural tissues. Overexpression of miR‐92b promoted cell proliferation, colony formation, and G0/G1 transition and decreased apoptosis. Our results indicated that miR‐92b repressed the expression of DAB2IP and that loss of DAB2IP activated the PI3K/AKT signalling pathway. Overexpression of DAB2IP rescued the effects of miR‐92b in GC cells. Finally, our results demonstrated a significant correlation between miR‐92b expression and DAB2IP expression in GC tissues. Conclusions Our results suggest that miR‐92b promotes GC cell proliferation by activating the DAB2IP‐mediated PI3K/AKT signalling pathway. The miR‐92b/DAB2IP/PI3K/AKT signalling axis may be a potential therapeutic target to prevent GC progression.
تدمد: 1365-2184
الوصول الحر: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bccebf24474b0147c2955605c947bb43Test
https://pubmed.ncbi.nlm.nih.gov/31713929Test
حقوق: OPEN
رقم الانضمام: edsair.doi.dedup.....bccebf24474b0147c2955605c947bb43
قاعدة البيانات: OpenAIRE