دورية أكاديمية

Roles of HDAC3-orchestrated circadian clock gene oscillations in diabetic rats following myocardial ischaemia/reperfusion injury

التفاصيل البيبلوغرافية
العنوان: Roles of HDAC3-orchestrated circadian clock gene oscillations in diabetic rats following myocardial ischaemia/reperfusion injury
المؤلفون: Zhen Qiu, Hao Ming, Shaoqing Lei, Bin Zhou, Bo Zhao, Yanli Yu, Rui Xue, Zhongyuan Xia
المصدر: Cell Death and Disease, Vol 12, Iss 1, Pp 1-15 (2021)
بيانات النشر: Nature Publishing Group, 2021.
سنة النشر: 2021
المجموعة: LCC:Cytology
مصطلحات موضوعية: Cytology, QH573-671
الوصف: Abstract The circadian clock is closely related to the development of diabetes mellitus and cardiovascular disease, and disruption of the circadian clock exacerbates myocardial ischaemia/reperfusion injury (MI/RI). HDAC3 is a key component of the circadian negative feedback loop that controls the expression pattern of the circadian nuclear receptor Rev-erbα to maintain the stability of circadian genes such as BMAL1. However, the mechanism by which the HDAC3-orchestrated Rev-erbα/BMAL1 pathway increases MI/RI in diabetes and its relationship with mitophagy have yet to be elucidated. Here, we observed that the clock genes Rev-erbα, BMAL1, and C/EBPβ oscillations were altered in the hearts of rats with streptozotocin (STZ)-induced diabetes, with upregulated HDAC3 expression. Oscillations of Rev-erbα and BMAL1 were rapidly attenuated in diabetic MI/R hearts versus non-diabetic I/RI hearts, in accordance with impaired and rhythm-disordered circadian-dependent mitophagy that increased injury. Genetic knockdown of HDAC3 significantly attenuated diabetic MI/RI by mediating the Rev-erbα/BMAL1 circadian pathway to recover mitophagy. Primary cardiomyocytes with or without HDAC3 siRNA and Rev-erbα siRNA were exposed to hypoxia/reoxygenation (H/R) in vitro. The expression of HDAC3 and Rev-erbα in cardiomyocytes was increased under high-glucose conditions compared with low-glucose conditions, with decreased BMAL1 expression and mitophagy levels. After H/R stimulation, high glucose aggravated H/R injury, with upregulated HDAC3 and Rev-erbα expression and decreased BMAL1 and mitophagy levels. HDAC3 and Rev-erbα siRNA can alleviate high glucose-induced and H/R-induced injury by upregulating BMAL1 to increase mitophagy. Collectively, these findings suggest that disruption of HDAC3-mediated circadian gene expression oscillations induces mitophagy dysfunction, aggravating diabetic MI/RI. Cardiac-specific HDAC3 knockdown could alleviate diabetic MI/RI by regulating the Rev-erbα/BMAL1 pathway to restore the activation of mitophagy.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2041-4889
العلاقة: https://doaj.org/toc/2041-4889Test
DOI: 10.1038/s41419-020-03295-y
الوصول الحر: https://doaj.org/article/f213f68a64b14a96aedaee9495916288Test
رقم الانضمام: edsdoj.f213f68a64b14a96aedaee9495916288
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:20414889
DOI:10.1038/s41419-020-03295-y