دورية أكاديمية

Evaluation of Angiogenesis in an Acellular Porous Biomaterial Based on Polyhydroxybutyrate and Chitosan Using the Chicken Ex Ovo Chorioallantoic Membrane Model

التفاصيل البيبلوغرافية
العنوان: Evaluation of Angiogenesis in an Acellular Porous Biomaterial Based on Polyhydroxybutyrate and Chitosan Using the Chicken Ex Ovo Chorioallantoic Membrane Model
المؤلفون: Zuzana Demcisakova, Lenka Luptakova, Zuzana Tirpakova, Alena Kvasilova, Lubomir Medvecky, Ward De Spiegelaere, Eva Petrovova
المصدر: Cancers, Vol 14, Iss 17, p 4194 (2022)
بيانات النشر: MDPI AG, 2022.
سنة النشر: 2022
المجموعة: LCC:Neoplasms. Tumors. Oncology. Including cancer and carcinogens
مصطلحات موضوعية: angiogenesis, biomaterial, bone tissue engineering, chitosan, CAM assay, polyhydroxybutyrate, Neoplasms. Tumors. Oncology. Including cancer and carcinogens, RC254-282
الوصف: The chorioallantoic membrane (CAM) is a highly vascularized avian extraembryonic membrane widely used as an in vivo model to study angiogenesis and its inhibition in response to tissues, cells, or soluble factors. In recent years, the use of CAM has become an integral part of the biocompatibility testing process for developing biomaterials intended for regenerative strategies and tissue engineering applications. In this study, we used the chicken ex ovo CAM assay to investigate the angiogenic potential of innovative acellular biopolymer polyhydroxybutyrate/chitosan (PHB/CHIT) scaffold, which is intended for the treatment of hard tissue defects, depending on treatment with pro- and anti-angiogenic substances. On embryonic day (ED) 7, the experimental biomaterials were placed on the CAM alone or soaked in vascular endothelial growth factor (VEGF-A), saline solution (PHY), or tyrosine kinase inhibitor (SU5402). After 72 h, the formation of vessels was analyzed in the surrounding area of the scaffold and inside the pores of the implants, using markers of embryonic endothelium (WGA, SNA), myofibroblasts (α-SMA), and macrophages (KUL-01). The morphological and histochemical analysis showed strong angiogenic potential of untreated scaffolds without additional effect of the angiogenic factor, VEGF-A. The lowest angiogenic potential was observed in scaffolds soaked with SU5402. Gene expression of pro-angiogenic growth factors, i.e., VEGF-A, ANG-2, and VE-CAD, was upregulated in untreated scaffolds after 72 h, indicating a pro-angiogenic environment. We concluded that the PHB/CHIT has a strong endogenous angiogenic potential and could be promising biomaterial for the treatment of hard tissue defects.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2072-6694
العلاقة: https://www.mdpi.com/2072-6694/14/17/4194Test; https://doaj.org/toc/2072-6694Test
DOI: 10.3390/cancers14174194
الوصول الحر: https://doaj.org/article/3565c92632fc4ec1bf0dcba738983eebTest
رقم الانضمام: edsdoj.3565c92632fc4ec1bf0dcba738983eeb
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:20726694
DOI:10.3390/cancers14174194